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Recall from last lecture:

Model: A set of probability distributions P = {Py : § € O}, where 0 is the parameter (finite or
infinite dimensional) that specifies the distribution.

The estimation problem: Nature chooses 6 and generate data X from the distribution Py. Upon
observing X, the statistician estimates a functional 7'(6) of 6, by T. In this lecture, for simplicity,
we focus on estimating 6 itself and thus 7'(f) = 6. In the following parts, we consider deterministic
estimator of 6 denoted by é(X ) as well as randomized estimator given by the transition kernel Py x.

Equivalently, we can write 6 = é(X ,U), where U is a random variable that is independent from X.
For all practical purposes (e.g., X takes value in a standard Borel space), we can choose U to be
uniform on [0,1]. (Why?)

Risk: Ry(f) = Egl(6,6), which quantifies the quality of the estimator 8 at 6.

Remark 2.1 (Convex loss => deterministic estimator). If § — £(6, ) is convex, then random-
ization does not help. The proof of this claim is just based on the Jensen’s inequality: for any
randomized estimator 8, we have

Ry(0) = EL(0,0) > EL(0,E[0|X]),

where E[A| X] is a deterministic estimator.

2.1 Bayes risk

The Bayes approach is an average-case analysis by considering the average risk of an estimator over
all § € ©. Concretely, we set a probability distribution (prior) 7 on ©. Then, the average risk

(w.r.t 7) is defined as X R K
RTI'(H) = EQNWRG(G) = EG,Xe(ea 9)

The Bayes risk for a prior 7 is the minimum that the average risk can achieve, i.e.
R = inf R, (0).
é
Example 2.1 (Quadratic loss and MMSE). Let 6,0 € R, § ~ 7. Consider quadratic loss £(6, ) =
|0 — 0]|3, then the Bayes risk is the minimum mean-square error (MMSE)
Ry =E|[¢ - E[0]X]|3,

where the Bayes estimator is the conditional mean (X) = E[f|X].



Example 2.2 (Gaussian Location Model). X =0+ Z,Z ~ N (0,1),0 € R. Consider the Gaussian

prior distribution: 6 ~ 7 = N(0,0%). Then E[f|X] = %X and

0_2

Ri=-2 .
T o241

(2.1)

Similarly, for multivariate GLM: X = 0 + Z, Z ~ N(0,1,), if 6 ~ 7 = N'(0,0%L,), then we have

P (2.2)

If R, = inf, Rﬂ(é) is attained by 6, 0 is called Bayes estimator. Bayes estimator is always
deterministic — this fact holds for any loss function. To see this, note that for any randomized
estimator § = 6(X,U), its risk is lower bounded by

Rw(é) = EG,X,Ue(ea é(Xv U)) = EURW(é('7 U)) > lngﬂ'(é(’ u))

where for any wu, é(, u) is a deterministic estimator.

An alternative way to appreciate this is the following: Note that for any randomized estimator un-

derstood as a Markov kernel Py ,, the average risk R, (0) is an affine functional of P; .. Maximizing

|X> 01X
a convex (e.g., affine) function over a convex constraint set is always achieved at the extremal points.
In this case the extremal points of Markov kernels are simply delta measures, which corresponds to
deterministic estimators.

The usual critisim to the Bayes approach is which prior to pick. A framework related to this but
not discussed in this case is the empirical Bayes approach, where one “estimates” the prior from the
data instead of choosing a prior a priori. Instead, we take a frequentist viewpoint by considering
the worst-case situation:

2.2 Minimax risk

We have the risk of § at a given point 6 : Rg(f). The minimax risk is defined as
R* = inf sup Ry(9). (2.3)
0 0co
If there exists 6 s.t. SUPgeo Ry() = R*, then the estimator § is minimax (minimax optimal).
Finding the value of the minimax risk R* entails
Minimax upper bound: 30,¥0, Re(f) < r < R* <r (2.4)
Minimax lower bound: v, 36, Rg(é) >rs R >r (2.5)

This task is frequently difficult especially in high dimensions. Instead of the exact minimax risk, it
is often useful to find a constant-factor approximation, which we call minimax rate

R =9, (2.6)



that is, cyp < R* < C for some universal constants ¢, C' > 0. Establishing ¢ is a minimax rate still
entails upper and lower bounds (2.4) and (2.5), albeit within multiplicative constant factors.

In practice, minimax lower bounds are rarely established via the obvious recipe (2.5). Throughout
this course, all lower bound techniques essentially boil down to lower bounding the minimax risk by
Bayes risk with a sagaciously chosen prior.

Theorem 2.1 (Minimax risk > worst-case Bayes risk).

R* > R} £ sup R:.
™

Proof. Two (equivalent) ways to understand this fact:

1. “max > mean”: V0, R;(f) = EgrRy(0) < SUPgeo Ry(6);
2. “min max > max min”:

R* = infsup Ryp(0) = inf sup Ry(0) > sup inf R (d) = sup R:,
0 6cO 0 meM(©) TEM(O) 0 ™

where M(©) is the set of all probability distributions on ©. O

Example 2.3 (Minimax > worst-case Bayes). Let 0, § € N 2 {1,2,...} and £(0,0) = 1{d < 6},
i.e., the statistician loses one dollar if the nature’s choice exceeds the statistician’s guess and loses
nothing if otherwise. Consider the extreme case of blind guessing (i.e., no data is available, say,
X = 0). Then V0, we have Ry(f) = P(f < 0). Furthermore, we have R* > limpe0 P < 0) =1,

which is clearly achievable. On the other hand, for any prior m on N, R () = P(f < 0) and we let
6 — oo. Therefore, we have R; = 0. Therefore in this case

R*=1>Rp=0.
Example 2.4 (Gaussian Linear Model). This experiment is given by:
X ~N(0,1), £0,0)=(0-0)> 06,0k

To get a minimax upper bound, we choose 6 = X and thus Rg(é) = 1. Therefore, R* < 1. To get a
minimax lower bound, we set a prior distribution for 6, i.e., 7 ~ A'(0,0?%). Using (2.1), we have

R*> R: = ¢ for all ¢ > 0 and thus R* > sup, R} = 1.

p-dimensional case: X = 60+ Z € R?, Z ~ N(0,1,,),£(0,0) = ||§ — 4||2. Similarly, using (2.1) as a
lower bound and using # = X for the upper bound, we have R* = p.
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