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To end this chapter, we discuss several extension of the Gaussian local model (GLM) to illustrate
the following concepts such as tensor product of experiments and sample complexity.

Recall the scalar GLM we discussed in the last lecture, where X = θ+Z, where θ ∈ R, Z ∼ N (0, σ2)
and the loss function is quadratic `(θ, θ̂) = (θ − θ̂)2. Then we have

R∗ = σ2. (3.1)

This follows from

• Lower bound: If θ ∼ N (0, σ20), we know Rπ =
σ2
0σ

2

σ2
0+σ

2 . Letting σ0 →∞ yields R∗ ≥ σ2.

• Upper bound: Let the estimator be θ̂ = X. Thus Rθ(θ̂) = σ2 for all θ. Hence R∗ ≤ σ2.

3.0.1 Multivariate version and tensor product of experiments

We observe X = θ+Z, where θ ∈ Rp, Z ∼ N (0, σ2Ip) and the loss function `(θ, θ̂) = ‖θ− θ̂‖22. Then

R∗ = pσ2. (3.2)

This can be obtained using similar argument to the univariate case:

• Lower bound: θ ∼ N (0, σ20Ip) and σ0 →∞.

• Upper bound: take θ̂ = X.

The multivariate GLM can be viewed as a tensor product of the univariate GLM, and their minimax
risks satisfy a general relationship. We discuss this notion below:

Minimax risk for tensor product of the experiment Given statistical experiments Pi =
{Pθi : θi ∈ Θi} and the corresponding loss function `i, for i ∈ [p], consider their tensor product,
which is the following statistical experiment:

P =

{
Pθ =

p∏
i=1

Pθi : θ = {θ1, . . . , θp} ∈ Θ ,
p∏
i=1

Θi

}
,

X = (X1, . . . , Xp) where Xi
ind∼ Pθi ,

`(θ, θ̂) =
n∑
i=1

`i(θi, θ̂i),∀θ, θ̂ ∈ Θ.

Then the minimax risk of the tensor product experiment is related to the minimax risk R∗(Pi) and
worst-case Bayes risks R∗B(Pi) , supπ Rπ(Pi) of individual experiments as follows:1

1Here the minimax risk is defined allowing randomized procedures.
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Theorem 3.1 (Minimax risk of tensor product).

p∑
i=1

R∗B(Pi) ≤ R∗(P) ≤
p∑
i=1

R∗(Pi). (3.3)

Consequently, if minimax theorem holds for each experiment, i.e., R∗(Pi) = R∗B(Pi), we have

R∗(P) =

p∑
i=1

R∗(Pi). (3.4)

Proof. The right inequality simply follows by separately estimating θi based on Xi, namely, θ̂ =
(θ̂1, . . . , θ̂p). For the left inequality, consider a product prior π =

∏p
i=1 πi. Then Xi’s are independent.

For any θ̂i = θ̂i(X1, . . . , Xp, Ui), where Ui is independent external randomness, we can rewrite

θ̂i = θ̂i(Xi, Ũi), where Ũi = (X\i, Ui) ⊥⊥ Xi serves as randomization. Therefore the Bayes risk of

θ̂i satisfies: E[`(θi, θ̂i)] ≥ R∗πi . Summing over i and taking suprema over priors πi’s yields the left
inequality of (3.5).

Remark 3.1 (Minimax risk of tensor product < sum of minimax risks). The right inequality of
(3.5) can be strict. This might appear surprising since Xi only carries information about θi and it is
intuitive to estimate θi based solely on Xi. Nevertheless, the following is a counterexample:

Consider X = θZ, where θ ∈ N, Z ∼ Bern(12). The estimator θ̂ takes values in N as well and the

loss function is `(θ, θ̂) = 1{θ̂ < θ}, i.e., whoever guesses the greater number wins. The minimax risk
for this experiment is equal to P [Z = 0] = 1

2 . To see this, note that if Z = 0, then all information
about θ is erased. Therefore for any (randomized) estimator Pθ̂|X , the risk is lower bounded by

Rθ(θ̂) = P[θ̂ < θ] ≥ P[θ̂ < θ, Z = 0] = 1
2P[θ̂ < θ|X = 0]. Therefore sending θ → ∞ yields

supθ Rθ(θ̂) ≥ 1
2 . This is achievable by θ̂ = X. Clearly, this is a case where minimax theorem does

not hold, which is very similar to the trivial example given in the last lecture.

Next consider the tensor product of two copies of this experiment. We show that the minimax risk

is strictly less than one. For i = 1, 2, let Xi = θiZi, where Z1, Z2
i.i.d.∼ Bern(12). Consider the following

estimator θ̂1 = θ̂2 = X1 ∨X2. Then for any θ1, θ2 ∈ N,

E[`(θ, θ̂)] = P[θ̂1 < θ1] + P[θ̂2 < θ2] = P[Z1 = 0, Z2 < θ1/θ2] + P[Z2 = 0, Z1 < θ2/θ1]

=
1

2
(P[Z2 < θ1/θ2] + P[Z1 < θ2/θ1]) ≤

3

4
.

Remark 3.2 (Non-uniqueness of minimax estimator). In general, minimax risk achieving strategies
need not be unique. For instance, consider Example 3.1 where θ̂ = X is the maximum likelihood
estimator as well as the minimax. On the other hand, the risk of the James-Stein estimator

θ̂JS =

(
1− p− 2

‖X‖2

)
X

dominates that of MLE everywhere (see Fig. 3.1). Therefore θ̂JS also achieves R∗ = p for p ≥ 3.
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Figure 3.1: Risks of MLE and JS estimators for p = 10.

3.0.2 Multiple samples and sample complexity

We now consider a variant of GLM where we observe X = (X1, . . . , Xn) where Xi = θ + Zi, Zi
iid∼

N (0, σ2Ip), θ ∈ Rp. In this case, we have

R∗ =
pσ2

n
. (3.5)

To see this, note that for the case of i.i.d. Gaussian random variables, X̄ is a sufficient statistic of X
for θ, because the joint pdf pX1,...,Xn|θ is of the form h (X) gθ(X̄), and hence by Fisher’s factorization

criterion, θ → X̄ → (X1, . . . , Xn). Therefore the model reduces to X̄ ∼ N (θ, σ
2

n Ip), which is the
single-sample multivariate case and the minimax risk follows from (3.3).

Sample complexity Given the experiment {Pθ : θ ∈ Θ}, consider the experiment

Pn =
{
P⊗nθ : θ ∈ Θ

}
.

Note this is not the tensor product of the given experiment because all samples are generated
by a common parameter. It is easy to see that n 7→ R∗ (Pn) is decreasing since we can always
discard samples. Typically, R∗ (Pn)→ 0 as n→∞. Thus it is natural to consider how fast R∗(Pn)
decreases with n (convergence rate). Equivalently, one can ask what is the minimum number of
samples to attain a prescribed error ε even in the worst case. This motivates the following definition.

Definition 3.1 (Sample complexity). Given an error margin ε > 0, we define the sample complexity
of the statistical model as

n∗(ε) , min {n ∈ N : R∗ (Pn) ≤ ε} .

In machine learning and related fields, it is customary and useful to consider high-probability bound
instead of average risk bound and it is useful to define the sample complexity to be the minimum
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number of samples required to achieve a prescribed loss with high confidence. In other words,
given ε > 0 and 0 < δ < 1, the sample complexity n∗(ε, δ) is the smallest n such that there exists
θ̂ = θ̂(X1, . . . , Xn) satisfying

Pθ(`(θ, θ̂) ≤ ε) ≥ 1− δ, ∀θ ∈ Θ.

This is in fact just a special case of Definition 3.1 with the loss function ` replaced by 1{`(θ, θ̂) ≥ ε}.

Remark 3.3. For the multi-sample GLM with unit variance, we know that R∗ = p
n . Hence the

sample complexity is given by n∗(ε) = dpε e. Here we notice that the sample complexity grows
linearly with the dimension p. This is the common wisdom that “the sample size need to scale at
least proportionally to the number of parameters”, also known as “counting the degrees of freedom”.
Indeed in high dimensions we typically expect the sample complexity to grow with the ambient
dimension. However, such claim of linear growth should be taken with a grain of salt because it
highly depends on what loss function and what is target we are estimating. For example, consider
the matrix case θ ∈ Rp×p and let ε be a small constant. Then

• For quadratic loss, namely, ‖θ − θ̂‖2F , then we have R∗ = p2

n and hence n∗(ε) = Θ(p2).

• If the loss function is ‖θ − θ̂‖2op, then we have R∗ � p
n and hence n∗(ε) = Θ(p).

• If we only want to estimate the scalar functional ‖θ‖`∞ , then n∗(ε) = Θ(
√

log p).

3.0.3 Nonparametric extension

The result we obtained on the minimax risk of GLM can be in fact generalized to the following
nonparametric setting. Consider the class of distributions (which need have density) on the real line
with bounded variance:

• Model: P = {P ∈M(R) : varP ≤ 1}, where varP denotes the variance of the distribution P .

• Data: X = (X1, . . . , Xn)
iid∼ P for some P ∈ P.

• Objective: We wish to estimate θ(P ) where θ(P ) = mean of the distribution P .

• Loss function: `(θ, θ̂) = (θ − θ̂)2 for θ, θ̂ ∈ R.

Then the minimax risk is

R∗(P) =
1

n
.

Proof. Restricting the analysis to the subcollection of Gaussian distributions PG = {N (θ, 1) : θ ∈ R},
we know that R∗(PG) = 1

n . Hence R∗(P) ≥ 1
n . On the other hand, for the estimator θ̂ = X̄,

Rθ(θ̂) = E[(θ(P )− θ̂)2] = E[(θ(P )− X̄)2] =
1

n2
E

[
n∑
i=1

(θ(P )−Xi)
2

]
≤ 1

n
.

Hence supP∈P Rθ(θ̂) ≤ 1
n and R∗(P) ≤ 1

n . Thus R∗(P) = 1
n .
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3.0.4 Non-quadratic loss

One can also consider non-quadratic loss functions such as ‖θ − θ̂‖1 when θ ∈ Rp or ‖θ − θ̂‖op when
θ ∈ Rp×p, etc., where R∗ will no longer be given by (3.6). We will prove the following result later in
the course.

Theorem 3.2. For the Gaussian location model where X = (X1, . . . , Xn)
iid∼ N (θ, Ip) and `(θ, θ̂) =

‖θ − θ̂‖2 for some arbitrary norm ‖ · ‖, one has

R∗ =
E[‖Z‖2]

n
.

Thus (3.6) can be seen as a direct consequence of this theorem. In this case, the sample complexity

n∗(ε) scales as E[‖Z‖2]
ε , depending on the norm.
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