
ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Lecture 4: Total variation/Inequalities between f-divergences

Lecturer: Yihong Wu Scribe: Matthew Tsao, Feb 8, 2016 [Ed. Mar 22]

Recall the definition of f -divergences from last time. If a function f : R+ → R satisfies the following
properties:

• f is a convex function.

• f(1) = 0.

• f is strictly convex at x = 1, i.e. for all x, y, α such that αx + αy = 1, the inequality
f(1) < αf(x) + αf(y) is strict.

Then the functional that maps pairs of distributions to R+ defined by

Df (P‖Q) , EQ
[
f

(
dP

dQ

)]
is an f -divergence.

4.1 Data processing inequality

Theorem 4.1. Consider a channel that produces Y given X based on the law PY |X (shown below).
If PY is the distribution of Y when X is generated by PX and QY is the distribution of Y when X
is generated by QX , then for any f -divergence Df (·‖·),

Df (PY ‖QY ) ≤ Df (PX‖QX).

PY |X

PX

QX

PY

QY

One interpretation of this result is that processing the observation x makes it more difficult to
determine whether it came from PX or QX .
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Proof.

Df (PX‖QX) = EQX

[
f

(
PX
QX

)]
(a)
= EQXY

[
f

(
PXY
QXY

)]
= EQY

[
EQX|Y f

(
PXY
QXY

)]
Jensen’s inequality→ ≥ EQY

[
f

(
EQX|Y

PXY
QXY

)]
= EQY

[
f

(
EPX|Y

PY
QY

)]
(b)
= EQY

[
f

(
PY
QY

)]
= Df (PY ‖QY ).

Note that (a) means Df (PX‖QX) = Df (PXY ‖QXY ); (b) can be alternatively understood by noting
that EQ[ PXYQXY

|Y ] is precisely the relative density PY
QY

, by checking the definition of change of measure,

i.e., EP [g(Y )] = EQ[g(Y ) PXYQXY
] = EQ[g(Y )E[ PXYQXY

|Y ]] for any g.

Remark 4.1. PY |X can be a deterministic map so that Y = f(X). More specifically, if f(X) =
1E(X) for any event E, then Y is Bernoulli with parameter P (E) or Q(E) and the data processing
inequality gives

Df (PX‖QX) ≥ Df (Bern(P (E))‖Bern(Q(E))). (4.1)

This is how we prove the converse direction of large deviation.

Example 4.1. If X = (X1, X2) and f(X) = X1, then we have Df (PX1X2‖QX1X2) ≥ Df (PX1‖QX1).
As seen from the proof of Theorem 4.1, this is in fact equivalent to data processing inequality.

Remark 4.2. If Df (P‖Q) is an f -divergence, then Df̃ (P‖Q) with f̃(x) := xf( 1
x) is also an f -

divergence and Df (P‖Q) = Df̃ (Q‖P ). Example: Df (P‖Q) = D(P‖Q) then Df̃ (P‖Q) = D(Q‖P ).

Proof. First we verify that f̃ has all three properties required for Df̃ (·‖·) to be an f -divergence.

• For x, y ∈ R+ and α ∈ [0, 1] define c = αx+ αy so that αx
c + αy

c = 1. Observe that

f̃(αx+ αy) = cf

(
1

c

)
= cf

(
αx

c

1

x
+
αy

c

1

y

)
≤ cαx

c
f

(
1

x

)
+ c

αy

c
f

(
1

y

)
= αf̃(x) + αf̃(y).

Thus f̃ : R+ → R is a convex function.

• f̃(1) = f(1) = 0.

• For x, y ∈ R+, α ∈ [0, 1], if αx+ αy = 1, then by strict convexity of f at 1,

0 = f̃(1) = f(1) = f

(
αx

1

x
+ αy

1

y

)
< αxf

(
1

x

)
+ αyf

(
1

y

)
= αf̃(x) + αf̃(y).

So f̃ is strictly convex at 1 and thus Df̃ (·‖·) is a valid f -divergence.

Finally,

Df (P‖Q) = EQ
[
f

(
P

Q

)]
= EP

[
Q

P
f

(
P

Q

)]
= EP

[
f̃

(
Q

P

)]
= Df̃ (Q‖P ).
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4.2 Total variation and hypothesis testing

Recall that the choice of f(x) = 1
2 |x− 1| gives rise to the total variation distance,

Df (P‖Q) =
1

2
EQ
∣∣∣∣PQ − 1

∣∣∣∣ =
1

2

∫
|P −Q|,

where
∫
|P −Q| is a short-hand understood in the usual sense, namely,

∫
|dPdµ −

dQ
dµ |dµ where µ is a

dominating measure, e.g., µ = P +Q, and the value of the integral does not depends on µ.

We will denote total variation by dTV(P,Q) or TV(P,Q).

Theorem 4.2. The following definitions for total variation are equivalent:

1.
dTV(P,Q) = sup

E
P (E)−Q(E), (4.2)

where the supremum is over all measurable set E.

2. 1 − dTV(P,Q) is the minimal sum of Type-I and Type-II error probabilities for testing P
versus Q, and1

dTV(P,Q) = 1−
∫
P ∧Q. (4.3)

3. Provided the diagonal {(x, x) : x ∈ X} is measurable,

dTV(P,Q) = inf
PXY :

PX=P,PY =Q

P [X 6= Y ] . (4.4)

4. Let F = {f : X → R, ‖f‖∞ ≤ 1}. Then

dTV(P,Q) =
1

2
sup
f∈F

EP f(x)− EQf(x). (4.5)

Remark 4.3 (Variational representation). The equation (4.2) and (4.5) provide sup-representation
of total variation, which will be extended to general f -divergences (later). Note that (4.4) is an
inf-representation of total variation in terms of couplings, meaning total variation is the Wasserstein
distance with respect to Hamming distance. The benefit of variational representations is that
choosing a particular coupling in (4.4) gives an upper bound on dTV(P,Q), and choosing a particular
f in (4.5) yields a lower bound.

Remark 4.4 (Operational meaning). In the binary hypothesis test for H0 : X ∼ P or H1 : X ∼ Q,
Theorem 4.2 shows that 1− dTV(P,Q) is the sum of false alarm and missed detection probabilities.
This can be seen either from (4.2) where E is the decision region for deciding P or from (4.3) since
the optimal test (for average probability of error) is the likelihood ratio test dP

dQ > 1. In particular,

• dTV(P,Q) = 1 ⇔ P ⊥ Q, the probability of error is zero since essentially P and Q have
disjoint supports.

• dTV(P,Q) = 0⇔ P = Q and the minimal sum of error probabilities is one, meaning the best
thing to do is to flip a coin.

1Throughput the course a ∧ b = min{a, b} and a ∨ b = max{a, b}. Here again
∫
P ∧Q is a short-hand understood

per the usual sense, namely,
∫
( dP
dµ

∧ dQ
dµ

)dµ where µ is any dominating measure.
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4.3 Motivating example: Hypothesis testing with multiple sam-
ples

Observation: “Not all f -divergences are both equal”

1. Different f -divergence has different operational significance. For example, as we saw in
Section 4.2, testing two hypothesis boils down to total variation, which determines the
fundamental limit (minimum average probability of error). Later in the course we will

encounter another f -divergence: L(P‖Q) =
∫ (P−Q)2

P+Q , which is useful for estimation.

2. Some f -divergence is easier to evaluate than others. For example, for product distributions,
Hellinger distance and χ2-divergence tensorize in the sense that they are easily expressible
in terms of those of the one-dimensional marginals; however, computing the total variation
between product measures is frequently difficult. Another example is that computing the χ2-
divergence between a product distribution and a mixture of product distributions is convenient,
which will become useful later in the course.

Therefore the punchline is that it is often fruitful to bound one f -divergence by another and this
sometimes leads to tight characterizations. In this section we consider a specific useful example
to drive this point home. Then in the next section we develop inequalities between f -divergences
systematically.

Consider a binary hypothesis test where data X = (X1, X2, ...Xn) are i.i.d drawn from either P or
Q and the goal is to test

H0 : X ∼ P⊗n vs H1 : X ∼ Q⊗n.
As mentioned before, 1−dTV(P⊗n, Q⊗n) gives minimal Type-I+II probabilities of error, achieved by
the maximum likelihood test. By the data processing inequality, dTV(P⊗m, Q⊗m) ≤ dTV(P⊗n, Q⊗n)
for m < n. From this we see that dTV(P⊗n, Q⊗n) is an increasing sequence in n (and bounded by 1
by definition) and hence converges. One would hope that as n→∞, dTV(P⊗n, Q⊗n) converges to 1
and consequently, the probability of error in the hypothesis test converges to zero. It turns out that
if the distributions P,Q are independent of n, then large deviation theory gives

dTV(P⊗n, Q⊗n) = 1− exp(−nC(P,Q) + o(n)) (4.6)

where the constant C(P,Q) = − log inf0≤α≤1
∫
PαQ1−α is the Chernoff Information of P,Q. It

is clear from this that dTV(P⊗n, Q⊗n)→ 1 as n→∞, and, in fact, exponentially fast.

However, as frequently encountered in high-dimensional problems, if the distributions P = Pn and
Q = Qn depend on n, then the large-deviation approach that leads to (4.6) is no longer valid. In
such a situation, total variation is still relevant for hypothesis testing, but its behavior as n→∞ is
not obvious nor easy to compute. In this case, understanding how a more computationally tractable
f -divergence is related to total variation may give insight on hypothesis testing without needing to
directly compute the total variation. It turns out Hellinger distance is precisely suited for this task –
see Theorem 4.3 below.

Recall that the squared Hellinger distance, H2(P,Q) = EQ
[(

1−
√

P
Q

)2]
is an f -divergence with

f(x) = (1−
√
x)2, which provides a sandwich bound for total variation

0 ≤ 1

2
H2(P,Q) ≤ dTV(P,Q) ≤ H(P,Q)

√
1− H2(P,Q)

4
≤ 1. (4.7)
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The proof of this statement will explained in the next lecture. A few observations which are direct
consequences of these inequalities:

• H2(P,Q) = 2, if and only if dTV(P,Q) = 1.

• H2(P,Q) = 0 if and only if dTV(P,Q) = 0.

• Hellinger consistency ⇔ TV consistency, namely H2(Pn, Qn)→ 0⇔ dTV(Pn, Qn)→ 0.

Theorem 4.3. For any sequence of distributions Pn and Qn, as n→∞,2

dTV(P⊗nn , Q⊗nn )→ 0⇔ H2(Pn, Qn) = o

(
1

n

)
dTV(P⊗nn , Q⊗nn )→ 1⇔ H2(Pn, Qn) = ω

(
1

n

)
Proof. Because the observations X = (X1, X2, ...Xn) are i.i.d, the joint distribution factors

H2(P⊗nn , Q⊗nn ) = 2− 2EQ⊗nn

√√√√ n∏
i=1

Pn
Qn

(Xi)


By independence→ = 2− 2

n∏
i=1

EQn

[√
Pn
Qn

(Xi)

]
= 2− 2

(
EQn

[√
Pn
Qn

])n

= 2− 2

(
1− 1

2
H2(Pn, Qn)

)n
dTV(P⊗nn , Q⊗nn )→ 0 if and only ifH2(P⊗nn , Q⊗nn )→ 0 which happens precisely when

(
1− 1

2H
2(Pn, Qn)

)n →
1, which happens when H2(Pn, Qn) = o( 1

n).

Similarly, dTV(P⊗nn , Q⊗nn ) → 1 if and only if H2(P⊗nn , Q⊗nn ) → 2 which happens precisely when(
1− 1

2H
2(Pn, Qn)

)n → 0, if and only if H2(Pn, Qn) = ω( 1
n).

Remark 4.5. The proof of Theorem 4.3 relies on two ingredients:

1. Sandwich bound (4.7).

2. Tensorization properties of Hellinger:

H2

(
n∏
i=1

Pi,

n∏
i=1

Qi

)
= 2− 2

n∏
i=1

(
1− H2(Pi, Qi)

2

)
(4.8)

Note that there are other f -divergences that are also tensorizable, e.g., χ2-divergences:

χ2

(
n∏
i=1

Pi,
n∏
i=1

Qi

)
=

n∏
i=1

(
1 + χ2(Pi, Qi)

)
− 1; (4.9)

however, no sandwich inequality like (4.7) exists for dTV and χ2 and hence there is no χ2-version of
Theorem 4.3. Asserting the non-existence of such inequalities requires understanding the relationship
between these two f -divergences.

2For positive sequences {an}, {bn}, we say an = ω(bn) if bn = o(an).
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4.4 Inequalities between f-divergences

We will discuss two methods for finding inequalities between f -divergences.

• ad hoc approach: case-by-case proof using results like Jensen’s inequality, max ≤ mean ≤ min,
Cauchy-Schwarz, etc.

• systematic approach: joint range of f -divergences.

Definition 4.1. The joint range between two f -divergences Df (·‖·) and Dg(·‖·) is the range of the
mapping (P,Q) 7→ (Df (P‖Q), Dg(P‖Q)), i.e., the set R ⊂ R+ × R+ where (x, y) ∈ R if there exist
distributions P,Q on some common measurable space such that x = Df (P‖Q) and y = Dg(P‖Q).

D
f

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
g
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The green region in the above figure shows what a joint range between Df (·‖·) and Dg(·‖·) might
look like. By definition of R, the lower boundary gives the sharpest lower bound of Dg in terms of
Df , namely:

Df (P‖Q) ≥ V (Dg(P‖Q)), where V (t) , inf{Df (P‖Q) : Dg(P‖Q) = t};

similarly, the upper boundary gives the best upper bound. As will be discussed in the next lecture,
the sandwich bound (4.7) correspond to precisely the lower and upper boundaries of the joint range
of H2 and dTV, therefore not improvable. It is important to note, however, that R may be an
unbounded region and some of the boundaries may not exist, meaning it is impossible to bound one
by the other, such as χ2 versus dTV.
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To gain some intuition, we start with the ad hoc approach by proving Pinsker’s inequality, which
bounds total variation from above by the KL divergence.

Theorem 4.4 (Pinsker’s inequality).

D(P‖Q) ≥ 2d2TV(P,Q). (4.10)

Proof. First we show that, by the data processing inequality, it suffices to prove the result for
Bernoulli distributions. For any event E, let Y = 1 {X ∈ E} which is Bernoulli with parameter
P (E) or Q(E). By data processing inequality, D(P‖Q) ≥ d(P (E)‖Q(E)). If Pinsker’s inequality is
true for all Bernoulli random variables, we have√

1

2
D(P‖Q) ≥ dTV(Bern(P (E)),Bern(Q(E)) = |P (E)−Q(E)|

Taking the supremum over E gives
√

1
2D(P‖Q) ≥ supE |P (E) − Q(E)| = dTV(P,Q), in view of

Theorem 4.2.

The binary case follows easily from Taylor’s theorem:

d(p‖q) =

∫ p

q

p− t
t(1− t)

dt ≥ 4

∫ p

q
(p− t)dt = 2(p− q)2

and dTV(Bern(p),Bern(q)) = |p− q|.

Remark 4.6. Pinsker’s inequality is known to be sharp in the sense that the constant “2” in (4.10)
is not improvable, i.e., there exist {Pn, Qn} such that LHS

RHS → 2 as n→∞. (Why?) Nevertheless,
this does not mean that (4.10) itself is not improvable because it might be possible to subtract
some higher-order term from the RHS. This is indeed the case and there are many refinements of
Pinsker’s inequality. But what is the best inequality? Settling this question rests on characterizing
the joint range and the lower boundary. This is the topic of next lecture.
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