
ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Lecture 5: Inequalities between f-divergences via their joint range

Lecturer: Yihong Wu Scribe: Pengkun Yang, Feb 9, 2016 [Ed. Feb 28]

In the last lecture we proved the Pinkser’s inequality that D(P‖Q) ≥ 2d2TV(P,Q) in an ad hoc
manner. The downside of ad hoc approaches is that it is hard to tell whether those inequalities can
be improved or not. However, the key step when we proved the Pinkser’s inequality, reduction to
the case for Bernoulli random variables, is inspiring: is it possible to reduce inequalities between
any two f -divergences to the binary case?

5.1 Inequalities via joint range

A systematic method is to prove those inequalities via their joint range. For example, to prove
a lower bound of D(P‖Q) by a function of dTV(P,Q) that D(P‖Q) ≥ F (dTV(P,Q)) for some
F : [0, 1] 7→ [0,∞], the best choice, by definition, is the following:

F (ε) , inf
(P,Q):dTV(P,Q)=ε

D(P‖Q).

The problem boils to the characterization of the region {(dTV(P,Q), D(P‖Q)) : P,Q} ⊆ R2, their
joint range, whose lower boundary is the function F .
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Figure 5.1: Joint range of dTV and D.
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Definition 5.1 (Joint range). Consider two f -divergences Df (P‖Q) and Dg(P‖Q). Their joint
range is a subset of R2 defined by

R , {(Df (P‖Q), Dg(P‖Q)) : P,Q are probability measures on some measurable space} ,
Rk , {(Df (P‖Q), Dg(P‖Q)) : P,Q are probability measures on [k]} .

The region R seems difficult to characterize since we need to consider P,Q over all measurable
spaces; on the other hand, the region Rk for small k is easy to obtain. The main theorem we will
prove is the following [HV11]:

Theorem 5.1 (Harremoës-Vajda ’11).

R = co(R2).

It is easy to obtain a parametric formula of R2. By Theorem 5.1, the region R is no more than the
convex hull of R2.

Theorem 5.1 implies that R is a convex set; however, as a warmup, it is instructive to prove convexity
of R directly, which simply follows from the arbitrariness of the alphabet size of distributions. Given
any two points (Df (P0‖Q0), Dg(P0‖Q0)) and (Df (P1‖Q1), Dg(P1‖Q1)) in the joint range, it is easy
to construct another pair of distributions (P,Q) by alphabet extension that produces any convex
combination of those two points.

Theorem 5.2. R is convex.

Proof. Given any two pairs of distributions (P0, Q0) and (P1, Q1) on some space X and given any
α ∈ [0, 1], we define another pair of distributions (P,Q) on X × {0, 1} by

P = ᾱ(P0 × δ0) + α(P1 × δ1),
Q = ᾱ(Q0 × δ0) + α(Q1 × δ1).

In other words, we construct a random variable Z = (X,B) with B ∼ Bern(α), where PX|B=i = Pi
and QX|B=i = Qi. Then

Df (P‖Q) = EQ
[
f

(
P

Q

)]
= EB

[
EQZ|B

[
f

(
P

Q

)]]
= ᾱDf (P0‖Q0) + αDf (P1‖Q1),

Dg(P‖Q) = EQ
[
g

(
P

Q

)]
= EB

[
EQZ|B

[
g

(
P

Q

)]]
= ᾱDg(P0‖Q0) + αDg(P1‖Q1).

Therefore, ᾱ(Df (P0‖Q0), Dg(P0‖Q0)) + α(Df (P1‖Q1), Dg(P1‖Q1)) ∈ R and thus R is convex.

Theorem 5.1 is proved by the following two lemmas:

Lemma 5.1 (non-constructive/existential). R = R4.

Lemma 5.2 (constructive/algorithmic).

Rk+1 = co(R2 ∪Rk) for any k ≥ 2

and hence
Rk = co(R2), for any k ≥ 3.
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5.1.1 Representation of f-divergences

To prove Lemma 5.1 and Lemma 5.2, we first express f -divergences by means of expectation over
the likelihood ratio.

Lemma 5.3. Given two f -divergences Df (·‖·) and Dg(·‖·), their joint range is

R =

{(
E[f(X)] + f̃(0)(1− E[X])
E[g(X)] + g̃(0)(1− E[X])

)
: X ≥ 0,E[X] ≤ 1

}
,

Rk =

{(
E[f(X)] + f̃(0)(1− E[X])
E[g(X)] + g̃(0)(1− E[X])

)
:

X ≥ 0,E[X] ≤ 1, X takes at most k − 1 values,

or X ≥ 0,E[X] = 1, X takes at most k values

}
,

where f̃(0) , limx→0 xf(1/x) and g̃(0) , limx→0 xg(1/x).

In the statement of Lemma 5.3, we remark that f̃(0) and g̃(0) are both well-defined (possibly +∞)
by the convexity of x 7→ xf(1/x) and x 7→ xg(1/x) (from the last lecture).

Before proving above lemma, we look at the following two examples to understand the correspondence
between a point in the joint range and a random variable. The first example is the simple case that
P � Q, when the likelihood ratio of P and Q (or Radon-Nikodym derivative defined on the union
of the spaces of P and Q) is well-define.

Example 5.1. Consider the following two distributions P,Q on [3]:

1 2 3

P 0.34 0.34 0.32

Q 0.85 0.1 0.05

Then Df (P‖Q) = 0.85f(0.4) + 0.1f(3.4) + 0.05f(6.4), which is E[f(X)] where X is the likelihood
ratio of P and Q taking 3 values with the following pmf:

x 0.4 3.4 6.4

µ(x) 0.85 0.1 0.05

On the other direction, given the above pmf of a non-negative, unit-mean random variable X ∼ µ
that takes 3 values, we can construct a pair of distribution by Q(x) = µ(x) and P (x) = xµ(x).

In general cases P is not necessarily absolutely continuous w.r.t. Q, and the likelihood ratio X may
not always exist. However, it is still well-defined on the event {Q > 0}.

Example 5.2. Consider the following two distributions P,Q on [2]:

1 2

P 0.4 0.6

Q 0 1
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Then Df (P‖Q) = f(0.6) + 0f(0.40 ), where 0f(p0) is understood as

0f
(p

0

)
= lim

x→0
xf
(p
x

)
= p lim

x→0

x

p
f
(p
x

)
= pf̃(0).

Therefore Df (P‖Q) = f(0.6) + 0.4f̃(0) = E[f(X)] + f̃(0)(1−E[X]) where X is defined on {Q > 0}:

x 0.6

µ(x) 1

On the other direction, given above pmf of a non-negative random variable X ∼ µ with E[X] ≤ 1
that takes 1 value, we let Q(x) = µ(x), let P (x) = xµ(x) on {Q > 0} and let P have an extra point
mass 1− E[X].

Proof of Lemma 5.3. We first prove it for R. Given any pair of distributions (P,Q) that produces a
point of R, let p, q denote the densities of P,Q under some dominating measure µ, respectively. Let

X =
p

q
on {q > 0} , µX = Q, (5.1)

then X ≥ 0 and E[X] = P [q > 0] ≤ 1. Then

Df (P‖Q) =

∫
{q>0}

f

(
p

q

)
dQ+

∫
{q=0}

q

p
f

(
p

q

)
dP =

∫
{q>0}

f

(
p

q

)
dQ+ f̃(0)P [q = 0]

= E[f(X)] + f̃(0)(1− E[X]),

Analogously,
Dg(P‖Q) = E[g(X)] + g̃(0)(1− E[X]),

On the other direction, given any random variable X ≥ 0 and E[X] ≤ 1 where X ∼ µ, let

dQ = dµ, dP = Xdµ+ (1− E[X])δ∗, (5.2)

where ∗ is an arbitrary symbol outside the support of X. Then(
Df (P‖Q)
Dg(P‖Q)

)
=

(
E[f(X)] + f̃(0)(1− E[X])
E[g(X)] + g̃(0)(1− E[X])

)
.

Now we consider Rk. Given two probability measures P,Q on [k], the likelihood ratio defined in
(5.1) takes at most k values. If P � Q then E[X] = 1; if P 6� Q then X takes at most k − 1 values.

On the other direction, if E[X] = 1 then the construction of P,Q in (5.2) are on the same support
of X; if E[X] < 1 then the support of P is increased by one.

5.1.2 Proof of Theorem 5.1

Aside: Fenchel-Eggleston-Carathéodory’s theorem: Let S ⊆ Rd and x ∈ co(S). Then there
exists a set of d+ 1 points S′ = {x1, x2, . . . , xd+1} ∈ S such that x ∈ co(S′). If S is connected, then
d points are enough.
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Proof of Lemma 5.1. It suffices to prove that

R ⊆ R4.

Let S , {(x, f(x), g(x)) : x ≥ 0} which is a connected set. For any pair of distributions (P,Q) that
produces a point of R, we construct a random variable X as in (5.1), then (E[X],E[f(X)],E[g(X)]) ∈
co(S). By Fenchel-Eggleston-Carathéodory’s theorem,1 there exists (xi, f(xi), g(xi)) and the corre-
sponding weight αi for i = 1, 2, 3 such that

(E[X],E[f(X)],E[g(X)]) =

3∑
i=1

αi(xi, f(xi), g(xi)).

We construct another random variable X ′ that takes value xi with probability αi. Then X takes 3
values and

(E[X],E[f(X)],E[g(X)]) = (E[X ′],E[f(X ′)],E[g(X ′)]). (5.3)

By Lemma 5.3 and (5.3),(
Df (P‖Q)
Dg(P‖Q)

)
=

(
E[f(X)] + f̃(0)(1− E[X])
E[g(X)] + g̃(0)(1− E[X])

)
=

(
E[f(X ′)] + f̃(0)(1− E[X ′])
E[g(X ′)] + g̃(0)(1− E[X ′])

)
∈ R4.

We observe from Lemma 5.3 that Df (P‖Q) only depends on the distribution of X for some X ≥ 0
and E[X] ≤ 1. To find a pair of distributions that produce a point in Rk it suffices to find a
random variable X ≥ 0 taking k values with E[X] = 1, or taking k − 1 values with E[X] ≤ 1. In
Example 5.1 where (P,Q) produces a point in R3, we want to show that it also belongs to co(R2).
The decomposition of a point in R3 is equivalent to the decomposition of the likelihood ratio X that

µX = αµ1 + ᾱµ2.

A solution of such decomposition is that µX = 0.5µ1 + 0.5µ2 where µ1, µ2 has the following pmf:

x 0.4 3.4

µ1(x) 0.8 0.2

x 0.4 6.4

µ2(x) 0.9 0.1

Then by (5.2) we obtain two pairs of distributions

P1 0.32 0.68

Q1 0.8 0.2

P2 0.36 0.64

Q2 0.9 0.1

We obtain that (
Df (P‖Q)
Dg(P‖Q)

)
= 0.5

(
Df (P1‖Q1)
Dg(P1‖Q1)

)
+ 0.5

(
Df (P2‖Q2)
Dg(P2‖Q2)

)
.

1To prove Theorem 5.1, it suffices to invoke the basic Carathéodory’s theorem, which proves a weaker version of
Lemma 5.1 that R = R5.
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Proof of Lemma 5.2. It suffices to prove the first statement, namely, Rk+1 = co(R2 ∪Rk) for any
k ≥ 2. By the same argument as in the proof of Theorem 5.2 we have co(Rk) ⊆ Rk+1 and note
that R2 ∪Rk = Rk. We only need to prove that

Rk+1 ⊆ co(R2 ∪Rk).

Given any pair of distributions (P,Q) that produces a point of (Df (P‖Q), Dg(P‖Q)) ∈ Rk+1, we
construct a random variable X as in (5.1) that takes at most k + 1 values. Let µ denote the
distribution of X. We consider two cases that Eµ[X] < 1 and Eµ[X] = 1 separately.

• Eµ[X] < 1. Then X takes at most k values since otherwise P � Q. Denote the smallest value
of X by x and then x < 1. Suppose µ(x) = q and then µ can be represented as

µ = qδx + q̄µ′,

where µ′ is supported on at most k − 1 values of X other than x. Let µ2 = δx. We need to
construct another probability measure µ1 such that

µ = αµ1 + ᾱµ2,

– Eµ′ [X] ≤ 1. Let µ1 = µ′ and let α = q̄.

– Eµ′ [X] > 1. Let µ1 = pδx + p̄µ′ where p =
Eµ′ [X]−1
Eµ′ [X]−x such that Eµ1 [X] = 1. Let

α =
Eµ[X]−x

1−x .

• Eµ[X] = 1.2 Denote the smallest value of X by x and the largest value by y, respectively, and
then x ≤ 1, y ≥ 1. Suppose µ(x) = r and µ(y) = s and then µ can be represented as

µ = rδx + (1− r − s)µ′ + sδy,

where µ′ is supported on at most k− 1 values of X other than x, y. Let µ2 = βδx + β̄δy where
β = y−1

y−x such that Eµ2 [X] = 1. We need to construct another probability measure µ1 such
that

µ = αµ1 + ᾱµ2,

– Eµ′ [X] ≤ 1. Let µ1 = pδy + p̄µ′ where p =
1−Eµ′ [X]

y−Eµ′ [X] such that Eµ1 [X] = 1. Let ᾱ = r/β.

– Eµ′ [X] > 1. Let µ1 = pδx + p̄µ′ where p =
Eµ′ [X]−1
Eµ′ [X]−x such that Eµ1 [X] = 1. Let ᾱ = s/β̄.

Applying the construction in (5.2) with µ1 and µ2, we obtain two pairs of distributions (P1, Q1)
supported on k values and (P2, Q2) supported on two values, respectively. Then(

Df (P‖Q)
Dg(P‖Q)

)
=

(
Eµ[f(X)] + f̃(0)(1− Eµ[X])
Eµ[g(X)] + g̃(0)(1− Eµ[X])

)
= α

(
Eµ1 [f(X)] + f̃(0)(1− Eµ1 [X])
Eµ1 [g(X)] + g̃(0)(1− Eµ1 [X])

)
+ ᾱ

(
Eµ2 [f(X)] + f̃(0)(1− Eµ2 [X])
Eµ2 [g(X)] + g̃(0)(1− Eµ2 [X])

)
= α

(
Df (P1‖Q1)
Dg(P1‖Q1)

)
+ ᾱ

(
Df (P2‖Q2)
Dg(P2‖Q2)

)
.

2Many thanks to Pengkun Yang for correcting the error in the original proof.
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Remark 5.1. Theorem 5.1 is a direct consequence of Krein-Milman’s theorem. Consider the space
of {PX : X ≥ 0,E[X] ≤ 1}, which has only two types of extreme points:

1. X = x for 0 ≤ x ≤ 1;

2. X takes two values x1, x2 with probability α1, α2, respectively, and E[X] = 1.

For the first case, let P = Bern(x) and Q = δ1; for the second case, let P = Bern(α2x2) and
Q = Bern(α2).

5.2 Examples

5.2.1 Hellinger distance versus total variation

The upper and lower bound we mentioned in the last lecture is the following [Tsy09, Sec. 2.4]:

1

2
H2(P,Q) ≤ dTV(P,Q) ≤ H(P,Q)

√
1−H2(P,Q)/4. (5.4)

Their joint range R2 has a parametric formula{
(2(1−√pq −

√
p̄q̄), |p− q|) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1

}
and is the gray region in Fig. 5.2. The joint rangeR is the convex hull ofR2 (grey region, non-convex)
and exactly described by (5.4); so (5.4) is not improvable. Indeed, with t ranges from 0 to 1,

• the upper boundary is achieved by P = Bern(1+t2 ), Q = Bern(1−t2 ),

• the lower boundary is achieved by P = (1− t, t, 0), Q = (1− t, 0, t).
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Figure 5.2: Joint range of dTV and H2.
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5.2.2 KL divergence versus total variation

Pinsker’s inequality states that
D(P‖Q) ≥ 2d2TV(P,Q). (5.5)

There are various kinds of improvements of Pinsker’s inequality. Now we know that the best lower
bound is the lower boundary of Fig. 5.1, which is exactly the boundary of R2. Therefore a paremetric
formula of the lower boundary is easy to write down, but there is no known close-form expression.
Here is a corollary that we will use later:

D(P‖Q) ≥ dTV(P,Q) log
1 + TV (P,Q)

1− TV (P,Q)
.

Consequences:

• The original Pinsker’s inequality shows that D → 0⇒ dTV → 0.

• dTV → 1 ⇒ D → ∞. Thus D = O(1) ⇒ dTV is bounded away from one. This is not
obtainable from Pinsker’s inequality.

Also from Fig. 5.1 we know that it is impossible to have an upper bound of D(P‖Q) using a function
of dTV(P,Q) due to the lack of upper boundary.

For more examples see [Tsy09, Sec. 2.4].
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