
ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Lecture 6: Variational representation, HCR and CR lower bounds.

Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016 [Ed. Apr 20]

Last lecture we discussed systematic methods to find the best inequalities between different f -
divergence via their joint range. We showed that examining the binary cases is sufficient to derive
optimal inequalities. In this lecture we will further discuss lower bounds for statistical estimation
using f -divergences.

Outline:

• Variational representation of f -divergences.

– Convexity.

– Lower semi-continuity.

• (Specializing to χ2) Lower bounds for statistical estimation.

– Hammersley-Chapman-Robbins (HCR) lower bound.

– Cramér-Rao (CR) lower bound.

– Bayesian Hammersley-Chapman-Robbins (HCR) lower bound.

– Bayesian Cramér-Rao (CR) lower bound.

6.1 Variational representation of f-divergences

We begin with an example regarding the total variation metric.

Example 6.1 (Total variation). Let (X ,F) a measure space and P,Q two probability distributions.
In previous lectures we saw how by choosing f(x) = 1

2 |x− 1| the f -divergence becomes the total
variation metric. In particular, we saw that:

dTV(P,Q) = Df (P‖Q) =
1

2

∫
|P −Q| = sup

E∈F
|P (E)−Q(E)| = 1

2
sup
‖f‖∞≤1

|EP f(x)− EQf(x)|.

It should be noted that the requirement of f to be convex in the definition of f -divergence is
essential. In Euclidean spaces any convex function can be represented as the pointwise supremum of
a family of affine functions and vice versa, every supremum of a family of affine functions produces a
convex function. Take f(x) = 1

2 |x− 1| as an example. We see that it can be written as a pointwise
supremum of f1(x) = 1

2(x − 1) and f2(x) = 1
2(1 − x). This remark can be used not only as a

geometric interpretation of convex functions but as a definition of convexity. For f -divergences
which are convex functions of probability measures, its variational representation amounts to writing
it as a pointwise supremum of affine functions.
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6.1.1 Convex conjugate

Let f : (0,+∞)→ R be a convex function. The convex conjugate f∗ of f is defined by:

f∗(y) = sup
x∈R

[xy − f(x)]. (6.1)

Two important properties of the convex conjugates are

1. f∗ is also convex (which holds regardless of f being convex or not);

2. Biconjugation: (f∗)∗ = f .

In particular, the definition of f∗ yields the following (Young-Fenchel inequality)

f(x) ≥ xy − f∗(y), (6.2)

where the last inequality holds for any y.

Using the notion of convex conjugate, we obtain a variational representation of f -divergence in
terms of the convex conjugate of f :1

Df (P‖Q) = EQ

[
f

(
P

Q

)]
= sup

g:X→R
EP [g(X)]− EQ[f∗(g(X))], (6.3)

where g is such that both expectations are finite (of course). This representation is insightful for
many reasons. For example, we get the following properties for free:

1. Convexity: First of all, note that Df (P‖Q) is expressed as a supremum of affine functions
(since the expectation is a linear operation). As a result, we get that (P,Q) 7→ Df (P‖Q) is
convex, which was proved in previous lectures using different method.

2. Weak lower semicontinuity: We begin with an example. Assume {Xi} are i.i.d. Rademachers
(±1). Then, by the central limit theorem we have that∑n

i=1Xi√
n

D−→N (0, 1);

however,

Df

(
PX1+X2+...+Xn√

n

∥∥∥∥N (0, 1)

)
6→ 0,

since the former distribution is discrete and the latter is continuous. Therefore the best we can
hope for f -divergence is semicontinuity. Indeed, if X is a nice space (e.g., Euclidean space), in
(6.3) we can restrict the function g to continuous bounded functions, in which case Df (P‖Q) is
expressed as a supremum of weakly continuous functionals (note that f∗ ◦ g is also continuous
and bounded since f∗ is continuous) and is hence weakly lower semi-continuous, i.e., for any
sequence of distributions Pn and Qn such that Pn

w−→ P and Qn
w−→ Q, we have

lim inf
n→∞

Df (Pn‖Qn) ≥ Df (P‖Q).

1Equivalently, one can take the supremum over all kernels PZ|X where Z is R-valued.
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Example 6.2 (Total variation). By using f(x) = 1
2 |x− 1| in the formula of f -divergence we get

the total variation metric given by

dTV (P,Q) =
1

2

∫
|P −Q|.

By using the definition of convex conjugate it is easy to see that

f∗(y) = sup
x

{
xy − 1

2
|x− 1|

}
=

{
+∞ if |y| > 1

2
y if |y| ≤ 1

2

Thus (6.3) gives

dTV (P,Q) = sup
g:X→R

EP [g(X)]− EQ[f∗(g(X))] = sup
g:|g|≤ 1

2

EP [g(X)]− EQ[g(X)], (6.4)

where in the last equality we restricted the supremum to functions bounded by 1/2, since any other
function would make the term inside the supremum equal to −∞.

Example 6.3 (KL-divergence). By using f(x) = x log x in the formula of f -divergence we get the
KL-divergence

D(P‖Q) = EP
[

log
P

Q

]
.

By using differentiation to find the supremum it is easy to see that f∗(y) = ey−1. Plugging in the
formula of f -divergence we get

D(P‖Q) = 1 + sup
g:X→R

EP [g(X)]− EQ[eg(X)]. (6.5)

In comparison, the famous Donsker-Varadhan representation is

D(P ||Q) = sup
g

EP [g(X)]− logEQ[eg(X)], (6.6)

which is stronger than (6.5) in the sense that for each g, the RHS of (6.6) is at least that of (6.5),
since log(1 + t) ≤ t.

Example 6.4 (χ2-divergence). By using f(x) = (x− 1)2 in the formula of f -divergence we get the
χ2-divergence

χ2(P‖Q) = EQ

[(
P

Q
− 1

)2
]

= varQ

(
P

Q

)
.

By using differentiation to find the supremum it is easy to see that f∗(y) = y + y2

4 . Hence

χ2(P‖Q) = sup
g:X→R

EP [g(X)]− EQ

[
g(X) +

g2(X)

4

]
.

Finally by a change of variable h(x) = 1
2g(x) + 1 we get

χ2(P‖Q) = sup
h:X→R

2EP [h(X)]− EQ[h2(X)]− 1. (6.7)

This result is very important and will be used repeatedly for the derivation of the Hammersley-
Chapman-Robbins (HCR) lower bound as well as their Bayesian version in the next section.
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6.2 Hammersley-Chapman-Robbins (HCR) lower bound

In this section, we apply the variational representation for the χ2-divergence to probability distribu-
tions P and Q on R.2 By limiting the choice of function h to affine functions, the equality (6.7)
becomes an inequality. In particular, let h(x) = ax+ b and optimize over a, b ∈ R, we have

χ2(P‖Q) ≥ sup
a,b∈R

{
2(aEP (X) + b)− EQ[(aX + b)2]− 1

}
=

(EP [X]− EQ[X])2

varQ(X)
. (6.8)

Note: The inequality (6.8) can be interpreted as follows: On the left hand side of the inequality we
have the χ2-divergence, a measure of the dissimilarity between two distributions. Looking at the
right hand side we see that if the two distributions are centered at very distant locations, then the
right hand side will be large. Due to (6.8), this will lead to a bigger χ2-divergence something that
was in fact expected.

The reason that the variance with respect to the Q distribution appears in the denominator is to
quantify how different the two means are relatively. Indeed, the standard deviation must appear as
a normalizing factor because the LHS is a numerical number. Also, the bound only involves the
variance under Q not P , which is consistent with the asymmetry of χ2-divergence.

Using (6.7) we now derive the HCR lower bound on the variance of an estimator (possibly randomized).
To this end, assume that data X ∼ Pθ, where θ ∈ Θ ⊂ R. We use quadratic cost to quantify the
difference between the real and the predicted parameter, i.e., `(θ, θ̂) = (θ − θ̂)2. Then the risk of
estimator θ̂ when the real parameter is θ is given by Rθ(θ̂) = Eθ[(θ − θ̂)2]. Now, fix θ ∈ Θ. For any
other θ′ ∈ Θ we will use (6.8) with Q = Pθ and P = P ′θ. As a result we have that

χ2(Pθ′‖Pθ) ≥ χ2(Pθ̂‖Qθ̂) ≥
(Eθ[θ̂]− Eθ′ [θ̂])2

varθ(θ̂)

Where the first inequality arises by using the data processing inequality and the second inequality
by (6.8). Finally, by swapping the denominator with the left hand side and taking the supremum
over all θ′ 6= θ, and since varθ(θ̂) is not a function of θ′, we derive the final result.

Theorem 6.1 (Hammersley-Chapman-Robbins (HCR) lower bound). For the quadratic loss, any
estimator θ̂ satisfies

Rθ(θ̂) ≥ varθ(θ̂) ≥ sup
θ′ 6=θ

(Eθ[θ̂]− Eθ′ [θ̂])2

χ2(Pθ′‖Pθ)
, ∀θ ∈ Θ. (6.9)

6.3 Cramér-Rao (CR) lower bound

We now derive the Cramér-Rao lower bound as a consequence of the HCR lower bound. To this
end, we restrict the problem to unbiased estimators, where an estimator θ̂ is said to be unbiased if
Eθ[θ̂] = θ for all θ ∈ Θ. Then by applying the HCR lower bound we have that

varθ(θ̂) ≥ sup
θ′ 6=θ

(θ − θ′)2

χ2(Pθ′‖Pθ)
≥ lim

θ′→θ

(θ − θ′)2

χ2(Pθ′‖Pθ)
. (6.10)

2This can always be assumed by allowing the likelihood ratio function dP
dQ

which is a sufficient statistic.

4



Here, we bypass the supremum by sending θ′ to θ. However, when θ′ → θ both the numerator and
denominator will go to zero. Doing this, we hope that the denominator will go to zero quadratically
as the numerator does. Remember that

χ2(Pθ′‖Pθ) =

∫
(Pθ − Pθ′)2

Pθ
.

Then by using the Taylor expansion for Pθ around θ′ we get that

Pθ − Pθ′ = (θ − θ′)dPθ
dθ

+ o[(θ − θ′)2],

for θ near θ′. Combining the above while ignoring the little-o terms we get that

χ2(Pθ′‖Pθ) = (θ − θ′)2
∫

(dPθdθ )2

Pθ
.

Plugging back in (??) we get the CR lower bound.

Theorem 6.2 (Cramér-Rao (CR) lower bound). For any unbiased estimator θ̂ and any θ ∈ Θ

varθ(θ̂) ≥
1

I(θ)
,

where I(θ) is the Fisher information given by

I(θ) =

∫
(dPθdθ )2

Pθ
.

An intuitive interpretation of I(θ) is that it is a measure of the information the data contains for
the estimation of the parameter when its true value is θ.

Example 6.5 (GLM). Let θ ∈ R and X ∼ Pθ = N (θ, 1). Define the standard normal distribution
by Φ(x). Note that Pθ(x) = Φ(x− θ). Next we calculate the Fisher information. By shifting x to θ,
note that

I(θ) =

∫
(dPθ(x)dθ )2

Pθ(x)
dx =

∫
( ddθΦ(x− θ))2

Φ(x− θ)
dx = I(0).

Thus, I(θ) = I(0) for all θ ∈ Θ. In general, in any case where we have the model X = θ +Noise,
where the noise is standard normal (location model) we have that the fisher information is the same
everywhere.

Remark

Another useful way of seeing the Fisher information is the following:

I(θ) =

∫
(∂Pθ(x)∂θ )2

Pθ(x)
∂x = Eθ

[(
∂Pθ(X)
∂θ

Pθ(X)

)2]
= Eθ

[(
∂ logPθ(X)

∂θ

)2]
= varθ

[
∂ logPθ(X)

∂θ

]
,

where the last equality holds after noticing that

Eθ
[
∂ logPθ(X)

∂θ

]
= 0.
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6.4 Biased estimators

Many times restricting ourselves to unbiased estimators proves to be very limiting. As a result,
biased estimators need to be considered. Then it is useful to see how the HCR bound can be applied
in this case. Define the bias of an estimator θ̂ by b(θ) = Eθ[θ̂]− θ. Assuming the risk function is
quadratic it is easy to see that for a biased estimator by directly using HCR then

Rθ(θ̂) = b2(θ) + varθ(θ̂) ≥ b2(θ) + sup
θ′ 6=θ

(b(θ′) + θ′ − b(θ)− θ)2

χ2(Pθ′‖Pθ)
.

By using the same taylor expansion trick and assuming that b(θ) is differentiable we finally get that
for an estimator θ̂ and any θ ∈ Θ

Rθ(θ̂) ≥ b2(θ) +
(1 + b′(θ))2

I(θ)
.

Using this inequality we can find a lower bound on the worst case mini-max risk. In particular, we
have that

R∗ = inf
θ̂

sup
θ
Rθ(θ̂) ≥ inf

b

[
sup
θ

(
b2(θ) +

(1 + b′(θ))2

I(θ)

)]
,

where in the last inequality we also used the fact that the choice of the estimator affects our quantity
only through the bias.

6.5 Bayesian CR lower bound

Previously in this lecture we used the HCR bound to derive the CR lower bound. In order to derive
the Bayesian version of the CR lower bound a similar approach can be used: first prove the Bayesian
HCR and then derive the Bayesian CR lower bound as a result.

Theorem 6.3 (Bayesian CR lower bound). Assume that the loss function is quadratic, i.e., `(θ, θ̂) =
(θ − θ̂)2. Also, for any estimator θ̂ (possibly randomized), and for any prior π ∈M(Θ) define the
Bayes risk of θ̂ by Rπ(θ̂) =

∫
Rθ(θ̂)π(dθ) =

∫
Eθ[(θ̂ − θ)2]π(dθ). Then we have that

R∗π = inf
θ̂
Rπ(θ̂) ≥ 1

Eθ∼π[I(θ)] + I(π)
,

where I(π) the Fisher information of π, i.e.,

I(π) =

∫
(π′(θ))2

π(θ)
dθ.
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