
ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Lecture 7: Information bound

Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 16, 2016 [Ed. Mar 9]

Recall the Chi-squared divergence and Hammersley-Chapman-Robbins (HCR) bound from last class.
Suppose that P,Q are two probability distribution defined on R, that X ∈ X is random variable.
The Chi-squared divergence is

χ2(P‖Q) = sup
g:X→R

2EP [g(X)]− EQ[g2(X)]− 1.

Furthermore, choosing affine function g yields

χ2(P‖Q) ≥
(EP [X]− EQ[X])2

varQ[X]

which gives the HCR bound.

7.1 HCR Lower Bound

We are now continuing on the HCR lower bound from the last class. We here illustrate an example
of HCR lower bound on estimation.

Example 7.1 (Estimation). Let θ ∈ R be an unknown, deterministic parameter, and let X ∈ R be
a random variable, interpreted as a measure of θ or data. Suppose θ̂ is an unbiased estimate of θ
based on X. The relationships can be shown as

θ → X → θ̂.

The estimation loss `(θ, θ̂) is defined as l(θ, θ̂) = (θ− θ̂)2. Let P = Pθ′ , Q = Pθ, and then the risk is
lower bounded by

Rθ(θ̂) ≥ varθ(θ̂) ≥
(Eθθ̂ − Eθ′ θ̂)2

χ2(Pθ′‖Pθ)
.

Suppose θ̂ is an unbiased estimate of θ, then

Rθ(θ̂) ≥ sup
θ 6=θ

(θ − θ′)2

χ2(Pθ′‖Pθ)
≥ lim

θ′→θ

(θ′ − θ)2

χ2(Pθ′‖Pθ)
.

7.2 Fisher Information

The Fisher information is a way of measuring the amount of information that an observable random
variable X carries about an unknown, deterministic parameter θ upon which the probability of the
observatoin X depends. Assume the probability density function of random variable X conditional
on the value of θ is pθ. The Fisher information is defined as
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Definition 7.1 (Fisher Information). The Fisher information of the parameteric family of densitities
{pθ : θ ∈ Θ} (with respect to µ) at θ is

I(θ) = E

[(
∂ log pθ
∂θ

)2
]

=

∫ (
∂pθ
∂θ

)2

· 1

pθ
. (7.1)

Theorem 7.1 (Fisher Information). If pθ is twice differentiable with respect to θ, the Fisher
information can be written as

I(θ) = −Eθ
[
∂2

∂θ2
log pθ

]
Proof. Since

∂2

∂θ2
log pθ =

∂2

∂θ2
pθ

pθ
−

(
∂
∂θpθ

pθ

)2

=
∂2

∂θ2
pθ

pθ
−
(
∂

∂θ
log pθ

)2

and

E
[
∂2pθ
∂θ2

· 1

pθ

]
=

∂2

∂θ2

∫
pθµ(dx) =

∂2

∂θ2
1 = 0.

Thus, we have

I(θ) = Eθ

[(
∂

∂θ
log pθ

)2
]

= −Eθ
[
∂2

∂θ2
log pθ

]
.

Theorem 7.2 (Fisher Information: mutiple sample). Suppose random sample X1, . . . , Xn inde-
pendently and identically drawn from a distribution pθ. The Fisher information In(θ) provided by
random samples X1, . . . , Xn is

In(θ) = nI(θ),

where I(θ) is Fisher information provided by a single sample X1.

Proof. We first denote the joint pdf of X1, . . . , Xn as

pθ(x1, . . . , xn) =
n∏
i=1

pθ(xi).

Then the Fisher information In(θ) provided by X1, . . . , Xn is

In(θ) = Eθ

[(
∂lθ(X1, . . . , Xn)

∂θ

)2
]

=

∫
. . .

∫ (
∂lθ(x1, . . . , xn)

∂θ

)2

pθ(x1, . . . , xn)dx1dx2 . . . dxn,

which is an n-dimensional integral. Thus, by Theorem 7.1, the Fisher information provided by
X1, . . . , Xn can be calculated as

In(θ) = −Eθ
[
∂2 log pθ(X1, . . . , Xn)

∂θ2

]
= −Eθ

[
n∑
i=1

∂2 log pθ(Xi)

∂θ2

]
= −

n∑
i=1

Eθ
[
∂2 log pθ(Xi)

∂θ2

]
= nI(θ).
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7.3 Variantions of HCR/CR Lower Bound

This section contains the following three versions of HCP/CR lower bound:

• Multiple Samples Version

• Multivariate Version

• Functional Version

7.3.1 Multiple Samples Version

Suppose θ is some unknown, deterministic parameter and X1, . . . , Xn are n random variables
independently and identically coming from the distribution Pθ. The estimate θ̂ comes from
X1, . . . , Xn. The relationships is shown as follows:

θ → X1, . . . , Xn → θ̂.

Then the risk is lower bound by

Rθ(θ̂) ≥ varθθ̂ ≥
(Eθθ̂ − Eθ′ θ̂)2

χ2(P⊗nθ′ ‖P
⊗n
θ )

.

For the HCR lower bound,

Rθ(θ̂) ≥ sup
θ 6=θ′

(θ − θ′)2

(1 + χ2(Pθ‖Pθ′))n − 1

θ′→θ
≥ 1

nI(θ)
.

We next show the counterpart for

χ2(P‖Q) ≥
(EPX − EQX)2

varQX
.

Suppose P,Q are two distributions defined on Rp, then

χ2(P‖Q) = sup
g:Rp→R

[2EP g(X)− EQg2(X)− 1].

Furthter, if g(X) = 〈a,X〉+ 1, then

χ2(P‖Q) ≥ 2EP 〈a,X〉+ 1− EQ(〈a,X〉+ 1)2.

If we further assume EQX = 0 , then we have

χ2(P‖Q) ≥ 2 〈a,EPX〉 − aTEQ[XXT ]a.

Therefore, we finally have

χ2(P‖Q) ≥ (EPX − EQX)T cov−1
Q (X)(EPX − EQX)
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7.3.2 Multivariate Version

Let the loss function `(θ, θ̂) = ‖θ − θ̂‖22 and θ̂ be the unbiased estimate of θ, i.e., Eθθ̂ = θ. Then

(θ′ − θ)T cov−1
θ (θ̂)(θ′ − θ) ≤ χ2(Pθ′‖Pθ)

θ′→θ
= (θ′ − θ)T I(θ)(θ′ − θ) + ‖θ′ − θ‖22,

where the equality follows from the Taylor expansion and Fisher information matrix is given as

I(θ) =

∫
∇Pθ(∇Pθ)T

Pθ
.

If we take θ′ = θ + εu, ε→ 0, then we have

uT cov−1
θ (θ̂)u ≤ uT I(θ)u,

which is equivalent to
covθ(θ̂) � I−1(θ),

and further indicates
Rθ(θ̂) = tr(covθ(θ̂)) ≥ tr(I−1(θ)).

Then we have

E‖θ − θ̂‖22 =

p∑
i=1

E(θ̂i − θi)2 ≥
p∑
i=1

1

Ii
,

where Ii = (I(Pθ)ii) since
p∑
i=1

1

Ii(θ)
≤ tr(I−1(θ)).

Note that if we apply the one-dimensional CRLB for each coordinate we would get the rightmost
inequality which is weaker. In addition, the Fisher information matrix can be written as

I(θ) = Eθ[(∇ logPθ)(∇ logPθ)
T ] = covθ(∇ logPθ) = −

(
Eθ
[
∂2 logPθ
∂θi∂θj

])
.

7.3.3 Functional Version

Assume that θ is an unknown parameter, that random variable X comes from the distribution Pθ
and that T̂ (X) is an estimation for T (θ), where T : Θ→ R. The relationship is shown as follows:

θ → X → T̂ .

If we further assume T̂ (θ) is an unbiased estimation for T (θ), then

varθ(T̂ ) ≥ ‖∇T‖
2
2

I(θ)
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7.4 Bayesian Cramér-Rao Lower Bound

The class will introduce two methods of proving Bayesian Cramér-Rao lower bound.

• Method 1: χ2 → Bayesian HCR→ Bayesian CR

• Method 2: Classical Method

The notation used in this section is shown as follows:

• Θ = R

• `(θ, θ̂) = (θ − θ̂)2.

• π is a “nice” prior on R

The relationship can be described as follows:

π → θ → X → θ̂.

Theorem 7.3 (Bayesian Cramér-Rao Lower Bound). Assuming suitable regularity conditions, then

R∗ ≥ R∗π = inf
θ̂
Eπ(θ, θ̂)2 ≥ 1

Eθ∼πI(θ) + I(π)
,

where R∗π is the Bayes risk and I(π) =
∫
π′2

π .

Let

Q : π −→ θ
Pθ=QX|θ−→ X −→ θ̂,

P : π̃ −→ θ
P̃θ=PX|θ−→ X −→ θ̂.

Then

χ2(PθX‖QθX) ≥ χ2(Pθθ̂‖Qθθ̂)← data processing inequality

≥ χ2(Pθ−θ̂‖Qθ−θ̂)← data processing inequality

≥
(E(θ − θ̂)− EQ(θ − θ̂))2

varθ(θ̂ − θ)

=
δ2

varθ(θ − θ̂)

Further, if we assume
Qθ = π,QX|θ = Pθ, Pθ = Tδπ, PX|θ = Pθ−δ,

then PX = QX which further indicates Pθ̂ = Qθ̂ and the mean of θ̂ under distribution of P equals
to the mean under the distribution under Q. For the Bayesian HCR lower bound,

R∗π ≥ sup
δ 6=0

δ2

χ2(PXθ‖QXθ)
≥ lim

δ→0

δ2

χ2(PXθ‖QXθ)
=

1

I(π) + Eθ∼π[I(θ)]
. (7.2)

We give a short proof of (7.2) here.
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Proof.

χ2(PXθ‖QXθ) =

∫
(PXθ −QXθ)2

QXθ
=

∫
[Pθ(PX|θ −QX|θ) + (Pθ −Qθ)QX|θ]2

QXθ

=

∫
P 2
θ

Qθ

∫
(PX|θ −QX|θ)2

QX|θ
+

∫
(Pθ −Qθ)2

Q2
θ

+ 2

∫
Pθ(Pθ −Qθ)

Qθ

∫
(PX|θ −QX|θ)

= χ2(Pθ‖Qθ) + E

[
χ2(PX|θ‖QX|θ) ·

(
Pθ
Qθ

)2
]

Then applying

• χ2(Pθ‖Qθ) = χ2(Tδπ‖π) = δ2[I(π) + o(1)] by Taylor expansion,

• χ2(PX|θ‖QX|θ) = [I(θ) + o(1)]δ2 by Taylor expansion,

we obtain (7.2).

7.5 Information Bound

In this section, we introduce the local version of the minimax lower bound. The local minimax risks
is defined in a quadratic form: inf θ̂ sup|θ−θ0|≤ε E(θ̂ − θ)2. Further, we have

inf
θ̂

sup
|θ−θ0|≤ε

E(θ̂ − θ)2 ≥ 1

I(θ) + nEθ∼π[I(θ)]

=
1 + o(1)

nEθ∼π[I(θ)]

If θ 7→ I(θ) is continuous, then

Eθ∼π[I(θ)] = I(θ0) + o(1) =
1 + o(1)

nI(θ)
.

Assume the random variable Z coming from the distribution π, Z ∼ π. Let I(Z) , I(π). For

constant α, β 6= 0, then I(Z + α) = I(Z) and I(βZ) = I(Z)
β2 . If the π has the distribution of form

cos2 πx
2 , then minπ:[−1,1] I(π) = π2. If the distribution π has the form of cos2 π(x−θ0)

2ε , then I(θ) = π2

ε .
Then we have

inf
θ̂

sup
|θ0−θ|≤ε

E(θ̂ − θ)2 ≥ R∗π ≥
1

nEθ∼π[I(θ)] + I(π)
.

Now if we pick ε = n−1/4, we have

R∗ ≥ inf
θ̂

sup
|θ−θ0|≤n−1/4

Eθ(θ − θ̂)2 ≥ 1

nI(θ) + o(
√
n)

Optimize
=⇒ R∗ ≥ 1 + o(1)

n infθ0∈Θ I(θ0)
.

6


	7.1 HCR Lower Bound
	7.2 Fisher Information
	7.3 Variantions of HCR/CR Lower Bound
	7.3.1 Multiple Samples Version
	7.3.2 Multivariate Version
	7.3.3 Functional Version

	7.4 Bayesian Cramér-Rao Lower Bound
	7.5 Information Bound

