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Lecture 8: Bayesian Cramér-Rao (cont’d), MLE

Lecturer: Yihong Wu Scribe: Yanjun Li, Feb 18, 2016 [Ed. Mar 9]

8.1 Example: Gaussian Location Model (GLM)

Let Xi = θ + Zi, where Zi ∼ N(0, 1), and θ ∼ π = N(0, s). Given i.i.d. observations X =
(X1, X2, · · · , Xn), we have

χ2(PθX||QθX) = χ2(PθX̄ ||QθX̄)

= χ2(Pθ||Qθ) + EQ

[(
Pθ
Qθ

)2

χ2(PX̄|θ||QX̄|θ)

]
= (eδ

2/s − 1) + eδ
2/s(enδ

2 − 1)

= eδ
2(n+ 1

s
) − 1.

The first line follows from the fact that X̄ is a sufficient statistic (θ → X̄ → X), and the information
processing inequality. The second line follows from Lecture 7 (last equation, Page 5). The third line
follows from

χ2
(
N(θ, σ2)||N(θ + δ, σ2)

)
= eδ

2/σ2 − 1.

Therefore, by Bayesian HCR and Bayesian Cramér-Rao Lower Bound:

R∗π ≥ sup
δ 6=0

δ2

eδ
2(n+ 1

s
) − 1

= lim
δ→0

δ2

eδ
2(n+ 1

s
) − 1

=
1

n+ 1
s

=
s

sn+ 1
.

In this case, the lower bound is tight. (It has been verified that R∗π = s
sn+1 .) The minimax lower

bound is R∗ ≥ supsR
∗
π = 1

n .

8.2 Classical Proof of Bayesian Cramér-Rao Lower Bound

Theorem 8.1 (Same as Theorem 7.3). If X ∼ Pθ, θ ∼ π, we have

E[(θ̂(X)− θ)2] ≥ 1

I(π) + Eθ∼π[I(θ)]
.

Alternative Proof. Note that∫
θ̂(x)

∂

∂θ
(Pθ(x)π(θ)) dθ = 0, (8.1)∫

θ
∂

∂θ
(Pθ(x)π(θ)) dθ = −

∫
Pθ(x)π(θ) dθ, (8.2)
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where the first equation follows from the regularity condition, and the second equation follows from
integration by part.

Therefore,

E
[
(θ̂(X)− θ)∂ log(Pθ(X)π(θ))

∂θ

]
=

∫
µ(dx)

∫
(θ̂(x)− θ)∂(Pθ(x)π(θ))

∂θ

Pθ(x)π(θ)

Pθ(x)π(θ)
dθ

=

∫
µ(dx)

∫
Pθ(x)π(θ)dθ

= 1,

where the second line follows from (8.1) and (8.2).

By Cauchy-Schwarz inequality,

1 = E
[
(θ̂(X)− θ)∂ log(Pθ(X)π(θ))

∂θ

]
≤ E

[
(θ̂(X)− θ)2

]
E

[(
∂ log(Pθ(X)π(θ))

∂θ

)2
]
.

Hence

E
[
(θ̂(X)− θ)2

]
≥ 1

E
[(

∂ logPθ(X)
∂θ + ∂ log π(θ)

∂θ

)2
] =

1

E[I(θ)] + I(π)
.

8.3 An Alternative Information Inequality

If we choose a uniform prior in Theorem 8.1, the resulting lower bound is zero since the Fisher
information of uniform distribution is infinity. Nevertheless, it is possible to obtain an alternative
information inequality involving Eθ∼uniform[I(θ)]; however, it should be pointed out that the lower
bound applies to the minimax risk (not Bayes risk with respect to uniform prior) since the proof in
act involves two prior: uniform on the interval and uniform over the two endpoints.

Theorem 8.2. Assume the usual regularity condition:∫
∂pθ
∂x

dx = 0.

Then

R∗ = inf
θ̂

sup
θ∈[θ0−ε,θ0+ε]

Eθ[(θ − θ̂)2] ≥ 1

(ε−1 +
√
nĪ)2

where I denotes the average Fisher information:

I =
1

2ε

∫ θ0+ε

θ0−ε
I(θ) dθ.

Proof. See Problem 2 in Homework 1.

Remark 8.1. Theorem 8.2 is a strict improvement of the closely related inequality of Chernoff-
Rubin-Stein:1

inf
θ̂

sup
θ∈[θ0−ε,θ0+ε]

Eθ[(θ − θ̂)2] ≥ max
0<δ<1

min

{
δ2

4
,
1− ε
nĪ

}
=

1

(ε−1 +
√
nĪ + 1)2

.

1This is given in [Che56, Lemma 1] without proof, which Chernoff credited to Rubin and Stein.
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Both this and Theorem 8.2 suffice to prove the optimal minimax lower bound.

8.4 Maximum Likelihood Estimator (MLE)

We sketch the analysis of MLE in the classical large-sample asymptotics.

Let X1, X2, · · · , Xn
i.i.d.∼ Pθ0 , define maximum likelihood estimator:

θ̂MLE = arg max
θ∈Θ

Lθ(X),

where

Lθ(X) = logP⊗nθ (X) =
n∑
i=1

logPθ(Xi).

Intuition:

Eθ0 [Lθ(X)− Lθ0(X)] = Eθ0

[
n∑
i=1

log
Pθ(Xi)

Pθ0(Xi)

]
= −nD(Pθ0 ||Pθ) ≤ 0.

So as long as θ0 6= θ, Lθ(X)−Lθ0(X) is a random walk with negative drift. From here the consistency
of MLE follows upon assuming appropriate regularity conditions.

Assuming more conditions one can obtain asymptotic normality and
√
n-consistency of MLE. Next,

we derive a local quadratic approximation of the log-likelihood function. By Taylor expansion,

Lθ(X) = Lθ0(X) +
n∑
i=1

∂ logPθ(Xi)

∂θ

∣∣∣∣
θ=θ0

(θ − θ0) +
1

2

n∑
i=1

∂2 logPθ(Xi)

∂θ2

∣∣∣∣
θ=θ0

(θ − θ0)2 + o((θ − θ0)2).

(8.3)

Recall that

E
[
∂ logPθ(Xi)

∂θ

]
= 0, E

[(
∂ logPθ(Xi)

∂θ

)2
]

= −E
[
∂2 logPθ(Xi)

∂θ2

]
= I(θ).

By Central Limit Theorem,

1√
nI(θ0)

n∑
i=1

∂ logPθ(Xi)

∂θ

d.−→ N(0, 1).

By (weak) Law of Large Numbers,

n∑
i=1

∂2 logPθ(Xi)

∂θ2
= −nI(θ0) + oP (n).

Substituting these quantities into (8.3), we obtain a local quadratic approximation of the log-
likelihood function:

Lθ(X) ≈ Lθ0(X) +
√
nI(θ0) · Z · (θ − θ0)− 1

2
nI(θ0)(θ − θ0)2,
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where Z ∼ N(0, 1). Maximizing the right-hand side, we obtain:

θ̂MLE ≈ θ0 +
Z√
nI(θ0)

.

Therefore, MLE achieves the locally minimax lower bound R∗ ≥ 1+o(1)
nI(θ0) (see Section 7.5 in Lecture

7).

Remark 8.2. The general asymptotic theory of MLE and achieving information bound is due to
Hájek and LeCam.

8.5 Bayesian Lower Bounds for Functional Estimation

Next, we derive the Bayesian Cramér-Rao lower bound for functional estimation T̂ (X).

Theorem 8.3. Let T : Rp → R, and

θ → X
↓ ↓

T (θ) T̂ (X)

Then we have
R∗π ≥ (∇T )′I−1∇T.

Proof. By similar arguments in previous lectures,

χ2(PθX ||QθX) ≥ χ2(P
T−T̂ ||QT−T̂ ) ≥

(
EP [T − T̂ ]− EQ[T − T̂ ]

)2

VarQ[T − T̂ ]
. (8.4)

Let Q(θ) = π(θ), and P (θ) = π(θ − εu), where u ∈ Rp. In order to make the marginal distribution
of PX = QX , let Pθ(x) = Qθ−εu(x). Hence the numerator and the denominator in (8.4) satisfy:(

EP [T − T̂ ]− EQ[T − T̂ ]
)2

= (EP [T ]− EQ[T ])2

=

(∫
π(θ)T (θ + εu) dθ −

∫
π(θ)T (θ) dθ

)2

=

(∫
π(θ) 〈∇T, εu〉+ o(ε)

)2

= ε2 〈Eπ∇T, u〉2 + o(ε2), (8.5)

VarQ[T − T̂ ] ≤ EQ[(T − T̂ )2] = Rπ. (8.6)
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The left-hand side of (8.4) satisfies

χ2(PθX ||QθX) = χ2(Pθ||Qθ) + EQ

[
χ2(PX|θ||QX|θ)

(
Pθ
Qθ

)2
]

=

∫
(π(θ − εu)− π(θ))2

π(θ)
dθ + Eπ

[∫
(Qθ−εu(x)−Qθ(x))2

Qθ(x)
dx

(
π(θ − εu)

π(θ)

)2
]

=

∫
ε2u′(∇π)(∇π)′u

π(θ)
dθ + Eπ

[∫
ε2u′(∇θQ)(∇θQ)′u

Qθ(x)
dx

]
+ o(ε2)

= ε2u′ (I(π) + Eπ[I(θ)])u+ o(ε2). (8.7)

Substituting (8.5), (8.6), and (8.7) into (8.4), we have

R∗π ≥
〈Eπ∇T, u〉2

u′ (I(π) + Eπ[I(θ)])u

Locally, Eπ∇T (θ) ≈ ∇T (θ0), and I(π) + Eπ[I(θ)] ≈ I(θ0). Hence

R∗π ≥ sup
u

〈∇T (θ0),u〉2
u′I(θ0)u = (∇T (θ0))′I−1(θ0)∇T (θ0).

The maximum is attained when u = I−1(θ0)∇T (θ0).2

Remark 8.3. The maximum likelihood estimator satisfies T (θ̂MLE) = T (θ0 + 1√
n
Z), where Z ∼

N(0, I−1(θ0)). Hence

T (θ̂MLE) ∼ N
(
T (θ0),

1

n
(∇T (θ0))′I−1(θ0)(∇T (θ0))

)
.

The maximum likelihood estimator again asymptotically achieves the locally minimax lower bound.

8.6 Example: Classical asymptotics of entropy estimation

Corollary 8.1. Let X1, · · · , Xn
i.i.d.∼ p ∈Mk, where Mk denotes the set of probability distributions

over [k] = {1, . . . , k}. Then the minimax quadratic risk of entropy estimation satisfies

R∗ = inf
Ĥ

sup
P∈Mk

E[(Ĥ −H)2] =
1

n

(
max
p∈Mk

V (p) + o(1)

)
, n→∞

where

H(p) =
k∑
i=1

pi log
1

pi
= E

[
log

1

p(X)

]
,

V (p) = Var

(
log

1

p(X)

)
2This can be shown, for example, by letting ũ = I−

1
2 (θ0)u.
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Note: maxp∈Mk
V (p) ≤ log2 k for all k ≥ 3 (see [PPV10, (464)]).

Proof. We have H : Θ→ R+, where θ = (p1, p2, · · · , pk−1).3 Therefore,

∂H

∂pi
= log

pk
pi
, i = 1, 2, · · · , k − 1.

Next, we compute the Fisher Information matrix:

I(θ)ij = −E
[
∂2 log p(X)

∂pi∂pj

]
=

{
1
pi

+ 1
pk

if i = j
1
pk

if i 6= j
.

Therefore,

I(θ) =


1
p1

. . .
1

pk−1

+
1

pk
11′.

By Matrix Inversion Lemma,4 we have

I−1(θ) =

p1

. . .

pk−1

+

 p1
...

pk−1

 [p1 · · · pk−1

]
.

Therefore,

∇H ′I−1(θ)∇H =
k−1∑
i=1

pi log2 pk
pi
−

(
k−1∑
i=1

pi log
pk
pi

)2

=
k∑
i=1

pi log2 1

pi
+ log2 1

pk
− 2

k∑
i=1

pi log
1

pi
log

1

pk
−

((
k∑
i=1

pi log
1

pi

)
− log

1

pk

)2

=

k∑
i=1

pi log2 1

pi
−

(
k∑
i=1

pi log
1

pi

)2

= E
[
log2 1

p(X)

]
−
(
E
[
log

1

p(X)

])2

= Var

[
log

1

p(X)

]
= V (p).

Given n samples, the Fisher Information matrix is nI(θ). By Theorem 8.3,

R∗ ≥ 1 + o(1)

n
∇H ′I−1(θ)∇H =

1 + o(1)

n
V (p).
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3pk = 1 − p1 − · · · − pk−1.
4(A+ UCV )−1 = A−1U(C−1 + V A−1U)−1V A−1.
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