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Lecture 9: Exact minimax risk for Gaussian location model, LeCam’s method

Lecturer: Yihong Wu Scribe: Siddhartha Satpathi, Feb 23, 2016 [Ed. Apr 20]

In this lecture we consider estimation problems with no prior assumption on the structure of the
parameter space. Examples of structures include sparsity, smoothness and low-rankness.

Let X = (X4,...,X,) < Py be n samples drawn from distribution Py parametrized by 6 € O,
where © is R?. Given a loss function £ : R? x R? — RT, the minimax risk is

R:(©) = inf sup Egl(6, 6).
0 6€O

Two obvious observations:

e More structures lead to smaller risk. Formally, if ©' C ©, then R}(©') < R%(©).! Without
assuming any prior structure, © = RP, and we denote R} (RP) = Ry, -

e More samples lead to smaller risk. Formally, n — R (©) is decreasing and typically vanishing
as n — 0o. In the classical large-sample asymptotic regime as studied in Lecture ?7, the
speed is usually “parametric*, e.g., % under the quadratic risk. In comparison, the focus in
this course is understanding the dependency on dimension and other structural parameters
without assuming large samp*le size. This is captured by the minimax rate. For example, we

R
N n,p / : /
say Rmp = \I/n,pa when ¢ <_ Uy << c, N n,p for some universal constants ¢ and ¢’.

9.1 Log-concavity, Anderson’s lemma and exact minimax risk in
GLM

Definition 9.1 (Gaussian location model (GLM)). Let Xi,..., X, be iid drawn from N (0, I,)
with § € R?. The goal is to estimate the mean 6. Let 6 denote the estimator and R}, ,, denote the

minimax risk under loss function (6, ).

Theorem 9.1. Under GLM with quadratic loss function €(0,0) = ||0 — 0|3 = b (0 — 0:)2, then

R, = %, Vn,p € N.

Proof. We upper bound and lower bound Rj, ,, by B in order to show equality. Let us have an
estimator X = % ~ N (6, %Ip). Hence the risk R}, , is upper bf)unded by the risk obtained when
using estimator § = X. We can compute the risk for using = X as £. So,

R <P (9.1)

nvp_n

!Note that this does not mean that achieving R} (©’) is computationally easier than R}, (©)!



We lower bound the minimax risk R}, , by Bayes risk with prior 7 ~ N (0, sI,,). We can compute

Ry = ;%5 So,
Ry, > Ry
lim s—oco0 P
=L 9.2
L 92)
Combining the upper bound and lower bound in (9.1) and (9.2), we complete the proof. O

The limitation of the above proof technique is that it only works for quadratic loss function. We
next discuss a more general theorem which works over a larger range of loss functions.

Definition 9.2 (Bowl-shaped). A function p : R? — R, is called bowl-shaped when all its sublevel
sets K. = {z: p(x) < ¢} for all ¢ € R are convex and symmetric (i.e. K. = —K,).

Theorem 9.2. Consider GLM with loss functions €(0,0) = p(0 — ), where p : R? — R, is
bowl-shaped and lower-semicontinous. Then

. Z
o= ()
where Z ~ N (0, 1,,).

Corollary 9.1. Let p=||.||? g > 1, then under GLM,

1

R}, = —=El 2"

Example 9.1. Applications of Corollary 9.1:

o If p=|.[j3, then R}, , = 2E|| Z||> = 2.

o If p = ||.[|oo, then E||Z]|o < Iogp and R}, = /2.

o If § € RP*P is a matrix, and p = ”ng = Omax(*), then E[|Z][,, < \/p and R}, , < £

n

pXp § ' — 2. g =P
o If 0 € RP*P is a matrix, and p = ||.||%, R}, , = ©-.

Proof of Theorem, 9.2. (Upper bound) Consider the estimator § = X = L5 Xi ~N(6,11,). Then
0 —=\/12 where Z ~ N(0,1,). Thus

R, > E[((6,X)] = E[p(6 — X)] = E[mjﬁzw (9.3)



(Lower bound) We lower bound the minimax risk Ry, , by Bayes risk Ry with prior 7 = N(0, sI):

R > R:

n,p —

= inf Er[p(0 — )]
= inf E[E[p(9 - 0)/]

— Efinf E[p(6 — 6)|X]]

5—00 1+sn
2 Elp(lim /5 fan)]
— Elp(—=2)] (9.4)

where (a) follows from Anderson’s Lemma 9.1, (b) uses Z ~ N(0, I,) or /75,7 = (0 — E[0| X]) ~

N0, 1555, Ip) since 0|X ~ N (1%, 155, 1p), (c) follows from Fatou’s Lemma, and (d) follows since

p(+) is a lower-semicontinuous function.

Combining the upper bound and lower bounds in (9.3) and (9.4), we can say that R}, , = E[p( L 7).
O

B,

Lemma 9.1 (Anderson). Let X ~ N (0,X), and p : RP — Ry is a bowl-shaped loss function, then

min E[p(y + X)] = E[p(X)].
yeRP

In order to prove Lemma 9.1, it suffices to consider p being indicator functions. This is done in the
next lemma, which we prove later for simpler exposition.

Lemma 9.2. Let K € RP be a symmetric convex set and X ~ N (0,X) for some covariance matriz
Y. ThenVy e R,P(X +y € K) <P(X € K).

Proof of Lemma 9.1. Denote the sub-level set set K, = {x € RP : p(z) < c}. Since p is bowl-shaped,



K. is convex and symmetric, which satisfies the conditions of Lemma 9.2. So,
[o¢]
Blo(y +)] = [~ Bloly+a) > c)de
/ Py + x € K.))dc,
0

> / P(z € K.))de,
0
= P(p c)de,
0
= E[p(z
Hence, min,cprr E[p(y + x)] = E[p(x)]. O

Before going into the proof of Lemma 9.2, we need the following definition.
Definition 9.3. A measure p on RP is said to be log-concave if
A+ (1= N)B) = (A u(B)
for all measurable A, B C R? and any A € [0, 1].
The following result characterizes log-concavity of measures in terms of that of its density. See
[Rin76] for a proof.

Theorem 9.3 (Prékopa). A measure u is log-concave if and only if pu has a density f with respect
to the Lebesgue measure, such that f is a log-concave function.

Example 9.2. Examples of log-concave measures:

e Lebesgue measure: Let u = vol be the Lebesgue measure on R?, which satisfies Theorem 9.3

(f(x) =1). Then
vol(AA + (1 — A\)B) > vol(A)*vol(B)! ™, (9.5)

which implies? the Brunn-Minkowski inequality:
vol(A + B)r > vol(A)7 + vol(B)7. (9.6)

e Gaussian distribution: Let g = AN(0,Y), with a log-concave density f since log f(x) =
—Llog(2m) — 3 logdet(X) — 12/S 1 is concave.

Proof of Lemma 9.2. By Theorem 9.3, the distribution of X is log-concave. Then

1
PIX € K] 2 P[X € S(K +4) + 5(K —y) (9.7)
()
> P[X € K —y|P[X € K + ] (9.8)
Y px +ye K], (9.9)
2 Applying (9.5) to A’ = vol(A)"YPA, B’ = vol(B)"'/?B, and A = m.
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where (a) follows from (K +y) + 3(K —y) = 3K + 1K = K since K is convex; (b) follows from
the definition of log-concavity in Definition 9.3 with A\ = %, A=K-y={r—y:2z€ K} and
B = K + y; (c) follows from P[X € K +y] = P[X € —K —y| = P[X +y € K] since X has a

symmetric distribution and K is symmetric (K = —K). O

9.2 LeCam’s two-point argument

In this section we study a general method to obtain a lower bound on the minimax risk R}, ,(©).

Theorem 9.4 (LeCam’s Method/two-point argument). Suppose the loss function £ : © x © — Ry
satisfies a-triangle inequality
5(9(), 91) < Oé(f(@(), 9) + 6(91, 9))

Y 6y,01,0 with o > 0, then

(6,0
Ry = OB 0 vy, p)

Proof. In general, testing is “easier” in statistical sense than estimation. Hence, in LeCams method,
we convert the estimation problem 6* = arginf, supycg Eof(0, 0) to a hypothesis testing problem by
discretizing the set © and obtain a lower bound on risk R}, .

For simplicity, let us break © into two points ©" = {6,605} C ©. Consider the problem, when the
distribution Py drawn from set {Py,, Pp, }. Let us consider the risk in this problem using test v,
where,

o= 6o £(60 —0) < (61 — )
6 06, —0) < £(6y —0)
for any estimate  for problem 6 € ©

Let us denote the minimax risk obtained in this problem as R*(0’). Since, we are considering a
simpler problem of = ;1 or § = #5 rather than 6 € O, the risk R*(0’) forms a lower bound to the
risk Ry, .. So,

R, ,> R*(®) = Ry, V Ry, (9.10)

where (b) follows from the definition of minimax risk.

Now, let € = £(6p,61). Probability of false alarm is defined Py, (1) = 61) and probability of miss is
defined as Py, (¢ = 6p). Now,

Py (1 = 61) = Py, (1(0 — 01) < 1(6 — 6p))
(a) .

< Pog(1(0—00) = 5
(®) 2 -
< 7“1@90 (6 — 6o)] (9.11)



where (a) follows because event {I(6 — 01) < 1(0 —0)} C {l(0 — ) > £} C {I(0—61) < =} In
other words, 1(6 — 6;) < 5 = 1(6 — ;) < 1(f — 6p). This can be verified as below,

£(00,01) < a(l(bo,0) + £(61,0)),

€
0 > — 12
U(00,0) v £(61,0) = 5~ (9.12)
Since, (0 — 6;) < 5=, together with (9.12), it implies, 16 —6,) < 5= < w. Now,
10 —6,) < % — 1(0 — 6,) < £(By — ). Therefore, we establish (a).
(b) follows from Markov’s inequality.
Similarly, we can establish that the probability of miss
20y, [1(§ — 6
Po o = 0] < 22En] i ) (9.13)
Now, we can say that
1 _TV(PQNPGD) < P91[¢ = 90] +P90(w = 01)
(@) 2¢¢ ~
= ?(Eel [1(0 01)] + EGO [1(9 00)])
2 A A
= ?(Reo (0) + Ry, (0))
¥} A A
< 2 (Ray (B) v R, )
%Y A N
< — (B, (6) V R, (9)), (9.14)
where (a) follows from (9.13) and (9.11).
Combining (9.14) with (9.10), we can say that,
. €
Ry p 2 o (L=TV(Ps,, Pyy)) (9.15)
Since (9.15) holds for every value of 6y, 61, we can write,
. 6y — 0
RY > sup W =01y _ TV (Py,, Ps,))
00,61 o
Hence proved.
O

Example for Theorem 9.4: Suppose £(6, é) =60 — é||q, g > 1. Then we can easily show that [(-)
satisfies 2971 —triangle inequality. So, by Theorem 9.4, when ¢ = 2 R, p = subg, g, %H9o —601]*(1 -
TV (Py,, Py,)).
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