
ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Lecture 9: Exact minimax risk for Gaussian location model, LeCam’s method

Lecturer: Yihong Wu Scribe: Siddhartha Satpathi, Feb 23, 2016 [Ed. Apr 20]

In this lecture we consider estimation problems with no prior assumption on the structure of the
parameter space. Examples of structures include sparsity, smoothness and low-rankness.

Let X = (X1, . . . , Xn)
i.i.d∼ Pθ be n samples drawn from distribution Pθ parametrized by θ ∈ Θ,

where Θ is Rp. Given a loss function ` : Rp × Rp → R+, the minimax risk is

R∗n(Θ) = inf
θ̂

sup
θ∈Θ

Eθ`(θ, θ̂).

Two obvious observations:

• More structures lead to smaller risk. Formally, if Θ′ ⊂ Θ, then R∗n(Θ′) ≤ R∗n(Θ).1 Without
assuming any prior structure, Θ = Rp, and we denote R∗n(Rp) = R∗n,p.

• More samples lead to smaller risk. Formally, n 7→ R∗n(Θ) is decreasing and typically vanishing
as n → ∞. In the classical large-sample asymptotic regime as studied in Lecture ??, the
speed is usually “parametric“, e.g., 1

n under the quadratic risk. In comparison, the focus in
this course is understanding the dependency on dimension and other structural parameters
without assuming large sample size. This is captured by the minimax rate. For example, we

say R∗n,p � Ψn,p, when c ≤ R∗n,p

Ψn,p
≤ c′, ∀ n, p for some universal constants c and c′.

9.1 Log-concavity, Anderson’s lemma and exact minimax risk in
GLM

Definition 9.1 (Gaussian location model (GLM)). Let X1, . . . , Xn be iid drawn from N (θ, Ip)

with θ ∈ Rp. The goal is to estimate the mean θ. Let θ̂ denote the estimator and R∗n,p denote the

minimax risk under loss function `(θ, θ̂).

Theorem 9.1. Under GLM with quadratic loss function `(θ, θ̂) = ‖θ − θ̂‖22 =
∑p

i=1(θi − θ̂i)2, then

R∗n,p =
p

n
, ∀n, p ∈ N.

Proof. We upper bound and lower bound R∗n,p by p
n in order to show equality. Let us have an

estimator X̄ =
∑
Xi

n ∼ N (θ, 1
nIp). Hence the risk R∗n,p is upper bounded by the risk obtained when

using estimator θ̂ = X̄. We can compute the risk for using θ̂ = X̄ as p
n . So,

R∗n,p ≤
p

n
(9.1)

1Note that this does not mean that achieving R∗n(Θ′) is computationally easier than R∗n(Θ)!
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We lower bound the minimax risk R∗n,p by Bayes risk with prior π ∼ N (0, sIp). We can compute
R∗π = sp

sn+1 . So,

R∗n,p ≥ R∗π
lim s→∞

=
p

n
(9.2)

Combining the upper bound and lower bound in (9.1) and (9.2), we complete the proof.

The limitation of the above proof technique is that it only works for quadratic loss function. We
next discuss a more general theorem which works over a larger range of loss functions.

Definition 9.2 (Bowl-shaped). A function ρ : Rd → R+ is called bowl-shaped when all its sublevel
sets Kc = {x : ρ(x) < c} for all c ∈ R are convex and symmetric (i.e. Kc = −Kc).

Theorem 9.2. Consider GLM with loss functions `(θ, θ̂) = ρ(θ − θ̂), where ρ : Rp → R+ is
bowl-shaped and lower-semicontinous. Then

R∗n,p = Eρ
(
Z√
n

)
,

where Z ∼ N (0, Ip).

Corollary 9.1. Let ρ = ‖.‖q, q ≥ 1, then under GLM,

R∗n,p =
1

nq/2
E‖Z‖q.

Example 9.1. Applications of Corollary 9.1:

• If ρ = ‖.‖22, then R∗n,p = 1
nE‖Z‖

2 = p
n .

• If ρ = ‖.‖∞, then E‖Z‖∞ �
√

log p and R∗n,p �
√

log p
n .

• If θ ∈ Rp×p is a matrix, and ρ = ‖.‖2op = σmax(·), then E‖Z‖op �
√
p and R∗n,p �

p
n

• If θ ∈ Rp×p is a matrix, and ρ = ‖.‖2F , R∗n,p = p2

n .

Proof of Theorem 9.2. (Upper bound) Consider the estimator θ̂ = X̄ = 1
n

∑
iXi ∼ N (θ, 1

nIp). Then

θ − =̂
√

1
nZ where Z ∼ N (0, Ip). Thus

R∗n,p ≥ E[`(θ, X̄)] = E[ρ(θ − X̄)] = E[ρ(
1√
n
Z)]. (9.3)
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(Lower bound) We lower bound the minimax risk R∗n,p by Bayes risk R∗π with prior π = N (0, sIp):

R∗n,p ≥ R∗π
= inf

θ̂
Eπ[ρ(θ − θ̂)]

= inf
θ̂
E[E[ρ(θ − θ̂)|X]]

= E[inf
θ̂
E[ρ(θ − θ̂)|X]]

(a)
= E[E[ρ(θ − E[θ|X])|X]]

(b)
= E[ρ(

√
s

1 + sn
Z)]

s→∞
= lim

s→∞
E[ρ(

√
s

1 + sn
Z)]

(c)
= E[ lim

s→∞
ρ(

√
s

1 + sn
Z)]

(d)
= E[ρ( lim

s→∞

√
s

1 + sn
Z)]

= E[ρ(
1√
n
Z)] (9.4)

where (a) follows from Anderson’s Lemma 9.1, (b) uses Z ∼ N (0, Ip) or
√

s
1+snZ = (θ − E[θ|X]) ∼

N (0, s
1+snIp) since θ|X ∼ N ( sn

1+sn ,
s

1+snIp), (c) follows from Fatou’s Lemma, and (d) follows since
ρ(·) is a lower-semicontinuous function.

Combining the upper bound and lower bounds in (9.3) and (9.4), we can say that R∗n,p = E[ρ( 1√
n
Z)].

Lemma 9.1 (Anderson). Let X ∼ N (0,Σ), and ρ : Rp → R+ is a bowl-shaped loss function, then

min
y∈Rp

E[ρ(y +X)] = E[ρ(X)].

In order to prove Lemma 9.1, it suffices to consider ρ being indicator functions. This is done in the
next lemma, which we prove later for simpler exposition.

Lemma 9.2. Let K ∈ Rp be a symmetric convex set and X ∼ N (0,Σ) for some covariance matrix
Σ. Then ∀y ∈ R,P(X + y ∈ K) ≤ P(X ∈ K).

Proof of Lemma 9.1. Denote the sub-level set set Kc = {x ∈ Rp : ρ(x) < c}. Since ρ is bowl-shaped,
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Kc is convex and symmetric, which satisfies the conditions of Lemma 9.2. So,

E[ρ(y + x)] =

∫ ∞
0

P(ρ(y + x) ≥ c)dc,

=

∫ ∞
0

(1− P(y + x ∈ Kc))dc,

≥
∫ ∞

0
(1− P(x ∈ Kc))dc,

=

∫ ∞
0

P(ρ(x) ≥ c)dc,

= E[ρ(x)].

Hence, miny∈Rp E[ρ(y + x)] = E[ρ(x)].

Before going into the proof of Lemma 9.2, we need the following definition.

Definition 9.3. A measure µ on Rp is said to be log-concave if

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ

for all measurable A,B ⊂ Rp and any λ ∈ [0, 1].

The following result characterizes log-concavity of measures in terms of that of its density. See
[Rin76] for a proof.

Theorem 9.3 (Prékopa). A measure µ is log-concave if and only if µ has a density f with respect
to the Lebesgue measure, such that f is a log-concave function.

Example 9.2. Examples of log-concave measures:

• Lebesgue measure: Let µ = vol be the Lebesgue measure on Rp, which satisfies Theorem 9.3
(f(x) ≡ 1). Then

vol(λA+ (1− λ)B) ≥ vol(A)λvol(B)1−λ, (9.5)

which implies2 the Brunn-Minkowski inequality:

vol(A+B)
1
p ≥ vol(A)

1
p + vol(B)

1
p . (9.6)

• Gaussian distribution: Let µ = N (0,Σ), with a log-concave density f since log f(x) =
−p

2 log(2π)− 1
2 log det(Σ)− 1

2x
′Σ−1x is concave.

Proof of Lemma 9.2. By Theorem 9.3, the distribution of X is log-concave. Then

P[X ∈ K]
(a)
= P

[
X ∈ 1

2
(K + y) +

1

2
(K − y)

]
(9.7)

(b)

≥
√

P[X ∈ K − y]P[X ∈ K + y] (9.8)

(c)
= P[X + y ∈ K], (9.9)

2Applying (9.5) to A′ = vol(A)−1/pA, B′ = vol(B)−1/pB, and λ = vol(A)1/p

vol(A)1/p+vol(B)1/p
.
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where (a) follows from 1
2(K + y) + 1

2(K − y) = 1
2K + 1

2K = K since K is convex; (b) follows from
the definition of log-concavity in Definition 9.3 with λ = 1

2 , A = K − y = {x − y : x ∈ K} and
B = K + y; (c) follows from P[X ∈ K + y] = P[X ∈ −K − y] = P[X + y ∈ K] since X has a
symmetric distribution and K is symmetric (K = −K).

9.2 LeCam’s two-point argument

In this section we study a general method to obtain a lower bound on the minimax risk R∗n,p(Θ).

Theorem 9.4 (LeCam’s Method/two-point argument). Suppose the loss function ` : Θ×Θ→ R+

satisfies α-triangle inequality
`(θ0, θ1) ≤ α(`(θ0, θ) + `(θ1, θ))

∀ θ0, θ1, θ with α > 0, then

R∗n,p ≥
`(θ0, θ1)

4α
(1− dTV(Pθ0 , Pθ1))

Proof. In general, testing is “easier” in statistical sense than estimation. Hence, in LeCams method,
we convert the estimation problem θ̂∗ = arg inf θ̂ supθ∈Θ Eθ`(θ, θ̂) to a hypothesis testing problem by
discretizing the set Θ and obtain a lower bound on risk R∗n,p.

For simplicity, let us break Θ into two points Θ′ = {θ1, θ2} ⊂ Θ. Consider the problem, when the
distribution Pθ drawn from set {Pθ1 ,Pθ2}. Let us consider the risk in this problem using test ψ,
where,

ψ =

{
θ0 `(θ0 − θ̂) ≤ `(θ1 − θ̂)
θ1 `(θ1 − θ̂) < `(θ0 − θ̂)

for any estimate θ̂ for problem θ ∈ Θ

Let us denote the minimax risk obtained in this problem as R∗(Θ′). Since, we are considering a
simpler problem of θ = θ1 or θ = θ2 rather than θ ∈ Θ, the risk R∗(Θ′) forms a lower bound to the
risk R∗n,p. So,

R∗n,p ≥ R∗(Θ′)
(b)
= R∗θ0 ∨R

∗
θ1 . (9.10)

where (b) follows from the definition of minimax risk.

Now, let ε = `(θ0, θ1). Probability of false alarm is defined Pθ0(ψ = θ1) and probability of miss is
defined as Pθ1(ψ = θ0). Now,

Pθ0(ψ = θ1) = Pθ0(l(θ̂ − θ1) ≤ l(θ̂ − θ0))

(a)

≤ Pθ0(l(θ̂ − θ0) ≥ ε

2α
)

(b)

≤ 2α

ε
Eθ0 [l(θ̂ − θ0)] (9.11)
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where (a) follows because event {l(θ̂ − θ1) ≤ l(θ̂ − θ0)} ⊂ {l(θ̂ − θ0) ≥ ε
2α} ⊂ {l(θ̂ − θ1) ≤ ε

2α}. In

other words, l(θ̂ − θ1) ≤ ε
2α =⇒ l(θ̂ − θ1) ≤ l(θ̂ − θ0). This can be verified as below,

`(θ0, θ1) ≤ α(`(θ0, θ) + `(θ1, θ)),

`(θ0, θ) ∨ `(θ1, θ) ≥
ε

2α
. (9.12)

Since, l(θ̂ − θ1) ≤ ε
2α , together with (9.12), it implies, l(θ̂ − θ1) ≤ ε

2α ≤
`(θ0−θ)+`(θ1−θ)

2 . Now,

l(θ̂ − θ1) ≤ `(θ0−θ̂)+`(θ1−θ̂)
2 =⇒ l(θ̂ − θ1) ≤ `(θ0 − θ̂). Therefore, we establish (a).

(b) follows from Markov’s inequality.

Similarly, we can establish that the probability of miss

Pθ1 [ψ = θ0] ≤ 2αEθ1 [l(θ̂ − θ1)]

ε
(9.13)

Now, we can say that

1− TV (Pθ1 , Pθ0) ≤ Pθ1 [ψ = θ0] + Pθ0(ψ = θ1)

(a)

≤ 2α

ε
(Eθ1 [l(θ̂ − θ1)] + Eθ0 [l(θ̂ − θ0)])

=
2α

ε
(Rθ0(θ̂) +Rθ1(θ̂))

≤ 4α

ε
(Rθ0(θ̂) ∨Rθ1(θ̂))

≤ 4α

ε
(Rθ0(θ̂) ∨Rθ1(θ̂)), (9.14)

where (a) follows from (9.13) and (9.11).

Combining (9.14) with (9.10), we can say that,

R∗n,p ≥
ε

4α
(1− TV (Pθ1 , Pθ0)) (9.15)

Since (9.15) holds for every value of θ0, θ1, we can write,

R∗n,p ≥ sup
θ0,θ1

`(θ0 − θ1)

4α
(1− TV (Pθ1 , Pθ0))

Hence proved.

Example for Theorem 9.4: Suppose `(θ, θ̂) = ‖θ − θ̂‖q, q ≥ 1. Then we can easily show that l(·)
satisfies 2q−1−triangle inequality. So, by Theorem 9.4, when q = 2 ,R∗n,p ≥ supθ0,θ1

1
8‖θ0 − θ1‖2(1−

TV (Pθ0 , Pθ1)).
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