
ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Lecture 10: Le Cam’s Method, Two-point Argument and Assouad’s Lemma

Lecturer: Yihong Wu Scribe: Harsh Gupta, February 27, 2016

Recap:

Theorem 10.1 (Le Cam’s Method). If l(θ0, θ1) ≤ α{l(θ0, θ̂) + l(θ1, θ̂1)},∀θ̂ then

⇒ R∗ = inf
θ̂

sup
θ∈Θ

Eθ[l(θ, θ̂)] ≥
l(θ0, θ1)

4α
(1− TV (Pθ0 , Pθ1)) (10.1)

Note:

• For n samples, the total variation increases and hence we get a smaller lower bound.

• For different loss functions we have:

l = ||.|| ⇒ α = 1

l = ||.||q ⇒ α = 2q−1

• If l(θ0, θ̂) = ||θ0 − θ̂||22, using Theorem 10.1, we have:

⇒ R∗ ≥ ||θ0 − θ1||22
8

(1− TV (Pθ0 , Pθ1)) (10.2)

Can we improve the factor of 8 in the above inequality? The answer is YES as we shall see in
the next section!

10.1 Reduction of factor from 8 to 4

We view Θ as an inner product space. Therefore, l(θ, θ̂) = ||θ − θ̂||22 = 〈θ − θ̂, θ − θ̂〉.

Theorem 10.2 (Reduction of factor in (10.2) from 8 to 4).

Proof. We use minimiax risk ≥ Bayes risk:

⇒ R∗ ≥ R∗π

Using π = λ̄δθ0 + λδθ1 as the prior, where λ ∈ [0, 1], λ̄ = 1− λ, we have:

⇒ R∗π = inf
θ̂
λ̄Eθ0 ||θ0 − θ̂||22 + λ̄Eθ1 ||θ1 − θ̂||22 (10.3)

⇒ R∗π =

∫
X
µ(dx){inf

θ̂
λ̄Pθ0(x)||θ0 − θ̂(x)||22 + λPθ1 ||θ1 − θ̂(x)||22} (10.4)
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We first consider the following general problem:

⇒ inf
θ̂
{ᾱ||θ0 − θ̂||22 + α||θ1 − θ̂||22}

⇒ inf
θ̂
{||θ̂||22 − 2θ̂(ᾱθ0 + αθ1) + ||ᾱθ0 + αθ1||22 − ||ᾱθ0 + αθ1||22 + ᾱ||θ0||22 + α||θ1||22}

⇒ inf
θ̂
{αᾱ||θ0 − θ1||22 + ||θ̂ − (ᾱθ0 + αθ1)||22} = αᾱ||θ0 − θ1||22

So we basically have the conditional mean as the estimate for the above problem which is intuitively
correct. We now normalize (10.4) and use the above result to get:

⇒ R∗π = λλ̂||θ0 − θ1||22
∫
X
µ(dx)

Pθ0Pθ1
λ̄Pθ0 + λPθ1

= λλ̂||θ0 − θ1||22Eθ0{
Pθ1

λ̄Pθ0 + λPθ1
}

Now, we observe that λ̄Pθ0 + λPθ1 ≤ Pθ0 ∨ Pθ1 . Using this fact, we have:

R∗π ≥ λλ̂||θ0 − θ1||22(

∫
X
µ(dx)(Pθ0 ∨ Pθ1))

=
1

4
||θ0 − θ1||22(1− TV (Pθ0 , Pθ1))

where we used λ = λ̄ = 1
2 .

10.2 Two-point method

For two-point method, we strip off the uncertainty by choosing only 2 possible values of the
parameters. So we have:

⇒ R∗π ≥ R∗({θ0, θ1})
= sup

π
R∗π

where the last equality follows from minimax theorem (which holds here since we consider a finite
set of parameters). Now, for the optimal Bayes Risk we have:

⇒ R∗π = inf
θ̂:X→Θ

λ̄Eθ0 l(θ0, θ̂) + λEθ1 l(θ1, θ̂)

= Eθ0 inf
θ̂:X→Θ

{λ̄l(θ0, θ̂) + λ
Pθ1
Pθ0

l(θ1, θ̂)}

Note: We could change the order of expectation and infimum in the above equation as the infimum
is over θ̂ which depends only on data.

We now define λ̄l(θ0, θ̂) + λ
Pθ1
Pθ0

l(θ1, θ̂) = F (
Pθ1
Pθ0

). Therefore, we have:

⇒ R∗π = Eθ0{F (
Pθ1
Pθ0

)}
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Example 10.1 (Quadratic Loss Function). If l(θ, θ̂) = ||θ − θ̂||22, then R∗π = Expected value of a
f-divergence between Pθ0 and Pθ1 .

We can choose a f-divergence which suits our needs.

So for two-point method, we have:

⇒ R∗(Θ) ≥ R∗({θ0, θ1})
≥ Function of (separation between θ0 and θ1, separation between Pθ0 and Pθ1)

Remark 10.1. Since the separation between Pθ0 and Pθ1 is quantified using f-divergences, we can
lower bound the minimax risk in terms of f-divergences other than total variation as well as follows:

• Using Le Cam’s method, we can find a bound using total variation and then replace total
variation with other f-divergences like χ2 or hellinger distance.

• We can also use some other f-divergence directly instead of using total variation.

10.3 How good is Le Cam’s bound?

In this section, we try to understand how tight Le Cam’s bound is. To gain insight, we first consider
the following example:

Example 10.2 (p-dimensional, n-sample Gaussian Location Model). For p-dimensional, n-sample
GLM, we use X̄ = 1

n

∑n
i=1Xi as the estimate. So we have X̄ ∼ N(θ, 1

nIp). We also know from

previous lectures that for l(θ, θ̂) = ||θ − θ̂||22, we have R∗ = p
n . Let us compare this result with the

lower bound calculated using Le Cam’s method:

⇒ R∗ ≥ sup
θ0,θ1∈Rp

1

4
||θ0 − θ1||22(1− TV (N(θ0,

1

n
Ip), N(θ1,

1

n
Ip)))

= sup
θ∈Rp

1

4
||θ||22(1− TV (N(0,

1

n
Ip), N(θ,

1

n
Ip)))

where the last step follows from the fact that we can replace θ0 by 0 and θ1 by θ with out any loss of
generality. Therefore, converting the above inequality to one involving standard normals, we have:

⇒ R∗ ≥ sup
θ∈Rp

1

4n
||θ||22(1− TV (N(0, Ip), N(θ, Ip)))

Clearly, the RHS above is independent of p, which is very poor since the lower bound doesn’t scale
with the dimension.

Note: Here it is easy to compute the total variation unlike other cases. We simply rotate the vector
θ to reduce the problem to that of one-dimensional total variation calculation. We have:

⇒ TV (N(0, Ip), N(θ, Ip)) = TV (N(0, Ip), N(||θ||e, Ip)
= TV (N(0, 1), N(||θ||e, 1))
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where ||θ||e is the component of θ left after rotating it. Hence, the calculation of total variation for
this special case reduces to a one-dimensional problem. So we have:

⇒ R∗ ≥ sup
s≥0

1

4n
s2(1− TV (N(0, 1), N(s, 1)))

How to scale R∗ with p? We observe that we have considered a similar model as previous lectures
and hence using tensorization of 1-dimensional n-sample GLM, we can conclude R∗ should linearly
grow in p. Explanation: Since l(θ, θ̂) =

∑p
i=1 l(θi, θ̂i), and each dimension of vector θ is estimated

using corresponding dimension of the vector X̄. Hence, as each dimension has a constant lower
bound, the vector should have a lower bound scaling linearly with p as its lower bound is the sum
of respective one-dimensional lower bounds. Therefore, we have pR∗π1−d ≤ R

∗
p ≤ pR∗1−d.

To improve upon the lower bound obtained using Le Cam’s method, we consider more than
two points to obtain the minimax bound. In next section, we shall discuss Assouad’s Lemma which
consider a hypercube instead of a line.

10.4 Assouad’s Lemma

Lemma 10.1 (Assouad’s Lemma). If each coordinate consists of binary testing, i.e. θ ∈ {0, 1}p ⊂
Θ = Rp and l(θ, θ̂) = ||θ − θ̂||1, then:

⇒ R∗ ≥ p

4
(1− max

d(θ,θ′)=1
TV (Pθ, Pθ′))

Proof. Since minimiax risk is greater than Bayes risk, we have ⇒ R∗ ≥ R∗π. Also we consider a
uniform prior over {0, 1}p. We also define θ̃i as follows:

⇒ θ̃i =

{
0, θ̂i <

1
2

1, otherwise

Therefore, ∀θ̂ : X → Rp, we have:

⇒ E||θ − θ̂||1 =

p∑
i=1

E|θi − θ̂i|

≥ 1

2

p∑
i=1

E|θi − θ̃i|

=
1

2

p∑
i=1

P (θi 6= θ̃i)

≥ 1

2

p∑
i=1

inf
θ̂i=θ̂i(X)

P (θi 6= θ̂i)

Since, θi ∈ {0, 1}, we have:

⇒ E||θ − θ̂||1 ≥
1

4

p∑
i=1

(1− TV (PX|θi=0, PX|θi=1)) (10.5)
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We now try to upper bound the total variation expression in the above inequality. From Bayes rule,
we get:

⇒ TV (PX|θi=0, PX|θi=1) = TV (
1

2p−1

∑
θ:θi=1

Pθ,
1

2p−1

∑
θ:θi=0

Pθ)

Using convexity of total variation, we have:

⇒⇒ TV (PX|θi=0, PX|θi=1) ≤ 1

2p−1

∑
θ\i∈{0,1}p−1

TV (P{θ\i,1}, P{θ\i,0})

≤ max
d(θ,θ′)=1

TV (Pθ, Pθ′)

Using the above result in (10.5) and using the fact that l(θ, θ̂ =
∑p

i=1 l(θi, θ̂i), we get:

⇒ R∗ ≥ l(0, 1)p

4
(1− max

d(θ,θ′)=1
TV (Pθ, Pθ′))

For l1 loss function, l(0, 1) = 1, hence we obtain the result.

Example 10.3 (p-dimensional, n-sample Gaussian Location Model(GLM)). We consider l(θ, θ̂) =∑p
i=1(θi − θ̂i)2, θ ∈ {0, ε}p. Using Assoud’s Lemma, we get:

⇒ R∗ ≥ ε2p

4
{1− max

θ,θ′∈{0,ε}p,d(θ,θ′)=1
TV (N(θ,

1

n
Ip), N(ε,

1

n
Ip))}

=
ε2p

4
{1− TV (N(0,

1

n
Ip), N(ε,

1

n
Ip))}

Using ε = 1√
n

and scaling by 1
n , we get:

⇒ R∗ ≥ kp

n

where k = 1− TV (N(0, 1), N(1, 1)) is a constant (∼ 0.7).

In the next lecture we will talk more about Assouad’s Lemma which considers a hypercube of
parameters. We will also introduce Fano’s Lemma which uses a pyramid of parameters instead of a
hypercube.
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