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Lecture 11: Mutual Information Method

Lecturer: Yihong Wu Scribe: Jaeho Lee, Mar 1, 2016 [Ed. Mar 9]

Quick review: Assouad’s lemma

In Assouad’s lemma discussed in the last lecture, we made the following assumptions:

• Parameter space is a hypercube embedded in Rp, i.e. Θ = {θ0, θ1}p.

• Loss function l(θ, θ̂) is separable, i.e. l(θ, θ̂) =
∑p

i=1 l(θi, θ̂i), (e.g. Hamming, `2 squared.)

• and satisfies α-triangle inequality, i.e. l(θ0, θ1) ≤ α
[
l(θ0, θ̂) + l(θ1, θ̂)

]
.

Letting π ∼ Unif(Θ), we could proceed as:

R∗ ≥ R∗π = inf
θ̂

p∑
i=1

Eθ∼π[l(θi, θ̂i)] =

p∑
i=1

inf
θ̂i

Eθ∼π[l(θi, θ̂i)]

Le Cam
≥

p∑
i=1

l(θ0, θ1)

4α

[
1− TV(PX|θi=θ0 , PX|θi=θ1)

]
convexity
≥ p · l(θ0, θ1)

4α

[
1− max

dH(θ,θ′)=1
TV(Pθ, Pθ′)

]
.

where the last line could be thought of as a “deteriorated” version.

Example 11.1 (Gaussian Location Model). As usual, let Z ∼ N (0, Ip), Θ =
{

0, 1√
n

}p
, and

l(θ, θ̂) = ‖θ − θ̂‖22 (which satisfies 2-triangle inequality). Then, Assouad’s lemma gives us:

R∗ ≥ p

8n

[
1− max

dH(θ,θ′)=1
TV(Pθ, Pθ′)

]
=

p

8n

[
1− TV

(
N
(

0,
1

n

)
,N
(

1√
n
,

1

n

))]
' 0.3

8

p

n

which is not very good compared to p
n .

Along with the above example, the fact that the loss function is not always separable (e.g. `∞)
necessitates a search a more versatile method. In this lecture, we discuss the “mutual information
method” where the most important measure of information would be, of course, the mutual
information I(X;Y ).

11.1 Mutual Information I(X;Y )

Recall that KL-divergence was defined using the function f(x) = x log x:

D(P‖Q) , EQ
[
P

Q
log

P

Q

]
= EP

[
log

P

Q

]
.

Now, the mutual information can be defined using KL-divergence.
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Definition 11.1 (Mutual Information). Given a joint probability distribution PXY , the mutual
information between X and Y is defined as

I(X;Y ) , D(PXY ‖PXPY ),

the distance between the original distribution and the hypothetical distribution assuming that X
and Y are independent.

Mutual information has the following useful properties:

Proposition 11.1 (Properties of Mutual Information). Followings are true:

1. I(X;Y ) = D(PY |X‖PY |PX) = Ex∼PX [D(PY |X=x‖PY )]

2. (Symmetry) I(X;Y ) = I(Y ;X).

3. (Measure of dependency) I(X;Y ) ≥ 0 with equality iff X ⊥⊥ Y .

4. (I vs H: Y discrete) I(X;Y ) = H(Y )−H(Y |X), where H(Y ) denotes the Shannon entropy
H(Y ) ,

∑
y PY (y) log 1

PY (y) .

5. (I vs h: Y continuous) I(X;Y ) = h(Y )−h(Y |X), where h(Y ) denotes the differential entropy
h(Y ) ,

∫
fY (y) log 1

fY (y)dy.

Example 11.2 (Additive noise: binary). Let Y = X ⊕ Z, where X ∼ Bern(δ), Z ∼ Bern(ε),
X ⊥⊥ Z, and ⊕ denotes the XOR operation (binary addition). Then,

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(X ⊕ Z|X) = H(Y )−H(Z)

= H(Bern(δ ? ε))−H(Bern(ε)) = h(δ ? ε)− h(ε).

where h(t) = t log 1
t + (1− t) log 1

1−t is the binary entropy function (not differential entropy!) and

the convolution operation ? on [0, 1] for Bernoulli random variables is δ ? ε = δε̄+ δ̄ε.

Example 11.3 (Additive noise: Gaussian). Let Y = X + Z where X ∼ N (0, S), Z ∼ N (0, 1),
X ⊥⊥ Z. Then,

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(Z)

= h(N (0, 1 + S))− h(N (0, 1)) =
1

2
log(1 + S).

Alternatively, we could do

I(X;Y ) = D(PY |X‖PY |PX) = Ex∼N (0,S)[D(N (x, 1)‖N (0, 1 + S))].

to arrive the same conclusion.

Like f -divergence, the mutual information has a very useful property when applied on Markov
chains: the data processing inequality. In fact, the data processing inequality of mutual information
is a direct consequence of that of KL-divergence.
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Theorem 11.1 (Data processing inequality for M.I.). Let X → Y → Z forms a Markov chain.
Then,

I(X;Z) ≤ I(X;Y ).

Proof. For the same kernel PZ|Y , we have PY |X=x

PZ|Y−−−→ PZ|X=x for each x and similarly PY
PZ|Y−−−→ PZ .

Hence applying the data processing inequality for KL divergence yield

I(X;Z) = D(PZ|X‖PZ |PX) ≤ D(PY |X‖PY |PX) = I(X;Y ).

Remark 11.1. For the longer Markov chain W → X → Y → Z, we have I(W ;Z) ≤ I(X;Y ).

Remark 11.2. For other f -divergences, we can define If (X;Y ) , Df (PY |X‖PY |PX) which naturally
satisfies the data processing inequality on Markov chain.

For a detailed explanation on the materials presented in this section, please refer to [PW15,
Ch.2.1-2.2] or [CT06].

11.2 Mutual information method: minimax lower bound

Here’s the main idea of the mutual information method: As usual, we are trying to estimate the
parameter θ distributed by some prior π, using the estimator θ̂ using the experiment X as its input.
In other words, we have a Markov chain θ → X → θ̂.

Then we can upper-bound the mutual information between θ and θ̂ as follows:

I(θ, θ̂) ≤ I(θ;X) ≤ sup
π∈M(Θ)

I(θ;X),

where the first inequality is due to the data processing inequality of mutual information. The second
inequality could be used to drop the assumption that we know the prior π, and is useful when the
data X does not provide enough information about θ.

For the lower bound, we have the following:

I(θ, θ̂) ≥ inf
Pθ̂|θ:El(θ,θ̂)≤R∗π

I(θ; θ̂),

for any ‘good’ θ̂ that satisfies El(θ, θ̂) ≤ R∗π. This could be interpreted as a minimum amount of
information required for an estimation task.

Also notice the followings:

• This line of inequalities is very similar to what we call joint-source channel coding, with the
capacity-like upper bound and rate-distortion-like lower bound.

• Only the lower bound is related to the loss function.

• The problem might include a choosing of the prior to make our life easier.
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11.3 Extremization of the mutual information

A good news is that we have the convexity and concavity of the mutual information at hand, which
could help us find the infimum and supremum of the mutual information. In specific, we have the
following property cf. [PW15, p.28]:

Proposition 11.2 (Convexity and Concavity of mutual information). Consider the notation
I(PX , PY |X) = I(X;Y ). Then

• For fixed PY |X , PX 7→ I(PX , PY |X) is concave.

• For fixed PX , PY |X 7→ I(PX , PY |X) is convex.

The upper bound, or the maximization part, is the following task: given PY |X , we want to find
maxPX∈P I(X;Y ) where P is a convex set.

Example 11.4 (GLM, upper bound). Again let Y = X + Z, where Z ∼ N (0, Ip) and X ⊥⊥ Z.
However, in this case we do not know the prior distribution of X. Rather, we consider a convex
set of priors P = {PX : E‖X‖22 ≤ p · S}, the signals with constrained average per-dimension power.
Then, by the well-known formula for Gaussian channel capacity cf. [PW15, p.33]

max
PX∈P

I(X;X + Z) =
p

2
log(1 + S).

The lower bound, or the minimization part, is: given PX , we want to find minPY |X∈P I(X;Y ).

Example 11.5 (GLM, lower bound). We are only assuming that X ∼ N (0, S · Ip). In the case of
the squared distortion, it is known that [PW15, p.33]

min
PY |X :‖Y−X‖2≤p·ε

I(X;Y ) =

{
p
2 log

(
S
ε

)
· · · ε < S

0 · · · otherwise.

For non-Gaussian cases, it is in general difficult to find the bounds exactly, and in the following
lectures we would discuss the further bounding on both bounds. But before that, we provide several
more examples.

Example 11.6 (Bernoulli, lower bound). Let X ∼ Bern(δ)⊗p. Then:

min
PY |X :EdH(X,Y )≤p·ε

I(X;Y ) = p [h(δ)− h(ε)] · · · ε < δ <
1

2
.

Example 11.7 (p-dim, n-sample GLM, quadratic loss, combining bounds). Let θ ∼ N (0, S · Ip),
and θ → X → θ̂ hold. Following the usual assumptions, we have PX|θ ∼ N (θ, 1

nIp). Then, from the
upper bound we know

I(θ, θ̂) ≤ I(θ;X) =
p

2
log(1 + S · n).

From the lower bound, we have:

I(θ, θ̂) ≥ min
Pθ̂|θ:‖θ̂−θ‖22≤R∗π

I(θ; θ̂) =
p

2
log

S

R∗π/p
.
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Combining, we surprisingly have

R∗π ≥
S · p

1 + S · n
which becomes R∗ ≥ p

n as S →∞.

Note: Statistical estimation task could be represented as a Markov chain θ → X → θ̂ where we
do not have a control over PX|θ. On the other hand, communication problem is a Markov chain

θ → C → X → θ̂ where PX|C is not under our control but we can use the “encoder” PC|θ.

11.4 Coming next

Starting from the next lecture, we discuss various methods to further upper and lower bound I(θ, θ̂).
In specific:

• Fano’s method (or Pyramid method) is again about transforming the estimation into test-
ing, thereby forming the Markov chain θ → X → θ̂ → θ̂test, and investigating the value
min I(θ; θ̂test).

• Mutual information would be view as an information radius, and we would use the fact that
radius is upper bounded by diameter, which would be more easily characterized.
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