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12.1 Recap: Mutual Information Method

We have several equivalent definitions of mutual information from last class, capturing a measure of
how far X and Y are from independence, or how much information about Y is provided by X:

I(X;Y ) = D(PXY ‖PXPY )

= D(PY |X‖PY |PX) = Ex∼PX [D(PY |X=x‖PY )]

= inf
Q:X⊥Y under Q

D(PXY ‖QXY )

Given the normal model θ → X → θ̂, where θ generates the data X which generates an estimate θ̂,
we can use the mutual information method to bound I(θ; θ̂). In particular, as we saw last time, the
following chain of inequalities always holds:

min
Pθ̂|θ:E`(θ,θ̂)≤R∗π

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ max
Pθ∈M(θ)

I(θ;X)

We like to think of the left-most lower bound as the ”cost” of an estimation task, which depends
only on the prior and the loss function, but not on how the data is collected. We think of
maxPθ∈M(θ) I(θ;X) as the ”capacity” of the model, which depends only on the model itself. Last
lecture, we were able to compute the cost and capacity exactly for the Gaussian Location Model. In
general, we may not be able to exactly compute the cost and capacity, so we will focus on methods
for bounding them in this lecture.

12.2 Tensorization of Mutual Information

First, we would like to develop tools for bounding the mutual information of not just random
variables, but random vectors as well. The chain rule for mutual information gives us an intuitive
way to express the mutual information of a random vector as a sum of the mutual information of
one-dimensional random variables:

Theorem 12.1 (Mutual Information Chain Rule). Let the random vector X = (X1, . . . , Xk) be
jointly distributed with Y . Then:

I(X;Y ) = I(X1, X2, . . . , Xk;Y )

= I(X1;Y ) + I(X2;Y |X1) + . . .+ I(Xk;Y |Xk−1)
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The proof of the chain rule follows from telescoping logs. For more information, see section 2.5 of
[CT06]. In general, we cannot remove the conditioning and bound I(X;Y ) from above or below by∑

i I(Xi;Y ). However, in some situations it is possible.

Example 12.1 (Tensorization in extremization problem). Suppose X = (X1, . . . , Xk) and Y =
(Y1, . . . , Yk) are random vectors, and each coordinate of Y depends only on the corresponding
coordinate of X:

X1 → Y1

X2 → Y2

...

Xk → Yk

Then the conditional distribution of Y given X factors:

PY |X =
k∏
i=1

PYi|Xi

So long as the channels are decoupled like this, we have:

I(X;Y ) ≤
k∑
i=1

I(Xi, Yi)

with equality if the Xi are independent from each other. Therefore, in particular:

max
PX

I(X;Y ) =
k∑
i=1

max
PXi

I(Xi, Yi)

We can also consider a minimization problem for I(X;Y ). For example, if the coordinates of X are
independent, i.e.:

PX =

k∏
i=1

PXi

then we get can a lower bound on the mutual information:

I(X;Y ) ≥
k∑
i=1

I(Xi, Yi)

Equality holds when the coordinates of Y depend only on the corresponding coordinates of X, so
minPY |X I(X;Y ) is achieved at the product of minimizers:

min
PY |X

I(X;Y ) =

k∑
i=1

min
PYi|Xi

I(Xi;Yi)

In GLM, we could get nice bounds through the product structure. Otherwise, if there is no product
structure, we would need to use the chain rule, which can be more difficult.
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12.3 Capacity as Information Radius

To start, let us consider another way of thinking about mutual information.

Theorem 12.2 (Another Representation of Mutual Information).

I(X;Y ) = min
Q

D(PY |X‖Q|PX)

Proof. For any Q we have:

I(X;Y ) = D(PY |X‖PY |PX)

= E log
PY |X

Q

Q

PY

= D(PY |X‖Q|PX)−D(PY ‖Q)

We get the desired result by noting that D(PY ‖Q) ≥ 0 and optimizing over Q. In particular, we can
bound the mutual information using a convenient choice of Q, as we will see in the next example:

Example 12.2 (GLM). Suppose X ∼ Pθ = N (θ, 1). Then, choosing the best possible Gaussian Q
and applying the above bound, we have:

I(θ,X) ≤ EθD(Pθ‖Q)

= inf
µ∈R,s≥0

D(N (θ, 1)‖N (µ, S))

=
1

2
log(1 + Var(X))

where the solution to the minimization problem comes from the well-known formula for Gaussian
channel capacity [PW15, p. 28].

Geometric Interpretation

The above representation of mutual information has a nice geometric picture, as follows: Let X be
some space, let ` : X × X → R be a loss function, and let A be a subset of X .

Definition 12.1 (Radius of a Set). The radius of A is the smallest ball that covers A. Note that
we do not require the center y of the ball to be contained in A:

rad(A) , inf
y∈X

sup
x∈A

`(x, y)

Definition 12.2 (Diameter of a Set). The diameter of A is the largest loss between two points in
A:

diam(A) , sup
x,y∈A

`(x, y)

Remark 12.1. Note that rad(A) ≤ diam(A). If ` satisfies the triangle inequality, then we further
have rad(A) ≥ 1

2diam(A).
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Nothing above required ` to be a valid metric. In fact, we will be examining the following case
where ` is not symmetric and does not satisfy the triangle inequality:

• A = {Pθ : θ ∈ Θ} , P

• `(P,Q) = D(P‖Q)

• rad(P) = infQ supP∈P D(P‖Q)

• diam(P) = supP,Q∈P D(P‖Q)

By bounding the radius of P, we can now upper bound the capacity of P.

Theorem 12.3 (Capacity Bounded by Radius). Suppose we have the model θ → X, where P = {Pθ}
is defined as above. Let C(P) be the capacity of P. Then:

C(P ) ≤ rad(P) ≤ diam(P)

Proof. Using Theorem 12.2, we have:

C(P) = sup
Pθ∈M(θ)

I(θ;X)

= sup
Pθ∈M(θ)

inf
Q
D(PX|θ‖Q|Pθ)

≤ inf
Q

sup
Pθ∈M(θ)

D(PX|θ‖Q|Pθ)

= inf
Q

sup
θ∈Θ

D(Pθ‖Q)

= rad(P)

≤ diam(P) = sup
θ,θ′∈Θ

D(Pθ‖Pθ′)

Note: In fact, if P is convex, then we have equality in the third step, which would give us
C(P) = rad(P). This is a result of Kemperman (cf. [PW15, Theorem 4.5]).

Example 12.3 (GLM, bounded mean). Let P = {Pθ} = {N (θ, n−1) : |θ| ≤ δ}. We can compute
the radius of Pθ, taking Q ∼ N (0, n−1):

rad(P) = inf
Q

sup
|θ|≤δ

D
(
N (θ, n−1)‖Q

)
≤ sup
|θ|≤δ

D
(
N (θ, n−1)‖N (0, n−1)

)
= sup
|θ|≤δ

n

2
θ2

=
nδ2

2

4



We have used the fact that the KL divergence between two normal distributions with mean u and v
and identical variance σ2 is 1

2σ2 |u− v|2. We can also compute the diameter quite easily:

diam(P) = sup
θ,θ′∈[±δ]

D(N (θ, n−1)‖N (θ′, n−1))

=
n

2
sup

θ,θ′∈[±δ]
|θ − θ′|2

= 2nδ2

Note that in this case, using the diameter instead of the radius only loses a factor of 4.

Now, we can proceed to the more general bounded GLM:

Theorem 12.4 (Bounded GLM). Let X ∼ Pθ = N (θ, 1
nIp). Let `(θ, θ′) = ‖θ − θ′‖22 (quadratic

loss), and let Θ = B2(0, ρ) ⊂ Rp. Then:

R∗ � p

n
∧ ρ2

Remark 12.2. The interpretation is that if ρ2 is small and either we do not have enough samples
or dimension is very high so that p

n is smaller than ρ2, then we should discard all the your data
and declare zero as the estimate, because data do not provide better resolution than the prior
information.

Proof. (Upper bound) We are already done here. Using X as an estimator, we have from previous
lectures that (up to constant factors for these bounds):

R∗ ≤ p

n

Using 0 as an estimator, we just showed:

R∗ ≤ ρ2

Therefore R∗ ≤ p
n ∧ ρ

2.

(Lower bound) First, to make things simpler, we will consider the case where p = 1. Before, when
obtaining a lower bound on minimax risk, we used a Gaussian prior. However, we cannot use such a
prior in this case because the Gaussian distribution is not supported on a ball of radius ρ. Instead,
we will choose a uniform prior π ∼ Uniform(−r, r), with r < ρ. As before, we have:

min
Pθ̂|θ:E`(θ,θ̂)≤D

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ rad({N (θ,
1

n
) : |θ| ≤ r})

We already have that the radius above is bounded by nr2

2 . However, the cost C = minPθ̂|θ:E`(θ,θ̂)≤D I(θ; θ̂)

is much harder to calculate. We will therefore use a trick called the Shannon lower bound to bound
C. The Shannon lower bound says that the cost given a non-Gaussian prior is not too far away from
the cost given a Gaussian prior, provided that the prior is fairly Gaussian-like:

C ≥ C |θ∼Gaussian −D(unif(−r, r)‖N (0,
r2

3
))
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Note: The quantity r2

3 above is the variance of the uniform distribution.

We have (from last lecture) that the cost given a Gaussian prior is 1
2 log r2/3

D . Furthermore, we have

that D(unif(−r, r)‖N (0, r
2

3 )) = D(unif(−1, 1)‖N (0, 1
3)) = c1 is a constant that does not depend on

r. Therefore, for some other constant c:

C ≥ 1

2
log

r2/3

D
− c1

=
1

2
log

r2c

D

To complete the lower bound, remember that 1
2 log r2c2

D ≤ C ≤ nr2

2 , so:

R∗ ≥ R∗π ≥ cr2 exp(−nr2),∀r ∈ [0, ρ]

≥ sup
r∈[0,ρ]

cr2 exp(−nr2)

� 1

n
∧ ρ2

To justify the last step, do a change of variables x = nr2, so the expression becomes 1
n sup0≤x≤nρ2 x exp(−x).

If we examine the function x exp(−x), we see that it achieves a global maximum of 1
e at x = 1.

Therefore, if x < 1 we should choose x exp(−x), and if x ≥ 1 we should choose 1
e . This gives us:

1

n
sup

0≤x≤nρ2
x exp(−x) =

1

n
(nρ2e−nρ

2 ∧ 1

e
)

Recap:

In order to get the upper bound on the minimax risk, we used the radius, which can be thought of as
the maximum distance between a central estimate and any other point in the space of distributions.
The lower bound on the minimax risk came from the Shannon lower bound, which is based on how
different the selected prior distribution is from a Gaussian distribution.

To extend the lower bound to an arbitrary dimension p, start with a uniform prior over a ball of
radius r, calculate its variance, and use the Shannon lower bound again.
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