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In the last class, we learned minimax risk bounding technique by data processing inequality of
mutual information such that for θ −X − θ̂,

inf
Pθ̂|θ:E[`(θ,θ̂)]≤R∗π

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ capacity = sup
Pθ

I(θ;X). (13.1)

Because the exact characterization of the LHS is intractable in most cases, we need an appropriate
technique that further lower bounds the LHS, which is called the Shannon lower bound. Another
technique to get a minimax lower bound, called Fano’s method, will be discussed as well.

13.1 Shannon lower bound

13.1.1 Shannon lower bound

Suppose that the loss function is rth power of an arbitrary norm over Rp, i.e., `(θ, θ̂) = ‖θ − θ̂‖r,
and let R∗π = D. Then, the LHS can be written as

inf
Pθ̂|θ:E[`(θ,θ̂)]≤D

I(θ; θ̂) = inf
Pθ̂|θ:E[‖θ−θ̂‖r≤D

I(θ; θ̂)

= inf
Pθ̂|θ:E[‖θ−θ̂‖r≤D

h(θ)− h(θ|θ̂)

= inf
Pθ̂|θ:E[‖θ−θ̂‖r≤D

h(θ)− h(θ − θ̂|θ̂)

≥ inf
Pθ̂|θ:E[‖θ−θ̂‖r≤D

h(θ)− h(θ − θ̂)

= h(θ)− sup
E‖W‖r≤D

h(W ) , SLB.

where W , θ − θ̂ and the very last quantity is called the Shannon lower bound. To evaluate the
supremum term, any convex optimization technique such as Lagrange multiplier can be applied.

A special case of the lower bound for Euclidean norm is given by

SLB = h(θ)− sup
E‖W‖22≤D

h(W ) = h(θ)− h
(
N
(

0,
D

P
IP

))
= h(θ)− P

2
log

(
2πe

D

P

)
,

where we used the fact that Gaussian maximizes differential entropy when the second moment is
bounded.

Theorem 13.1 (Shannon’s Lower Bound). Let ‖ · ‖ be an arbitrary norm on Rp and r > 0. Then

inf
Pθ̂|θ:E‖θ−θ̂‖r≤D

I(θ; θ̂) ≥ h(θ)− log

{
Vp ·

(
Dre

p

) p
r

· Γ
(

1 +
p

r

)}
,
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where Vp is the volume of the unit radius ball, i.e.,

Vp , vol(B‖·‖) = vol({x ∈ Rp : ‖x‖ ≤ 1}).

The proof will be given in homework.

Note: The Shannon lower bound is asymptotically tight as D → 0.

Example 13.1 (GLM). Consider the p-dimensional n-sample GLM, i.e., (X1, · · · , Xn)
iid∼ N (θ, Ip)

or equivalently X̄ ∼ N
(
θ, 1nIp

)
. Then the minimax risk with respect to ‖ · ‖r is

R∗ &
1

(cn)r/2
V −r/pp .

Proof. Take a prior θ ∼ π = N (0, sIp). Then the inequality chain (13.1) is rewritten as

p

2
log(1 + ns) ≥ I(θ,X) ≥ I(θ; θ̂) ≥ inf

Pθ̂|θ:E[`(θ,θ̂)]≤R∗π
I(θ; θ̂)

≥ SLB =
p

2
log(2πes)− log

{
Vp ·

(
R∗πre

p

) p
r

· Γ
(

1 +
p

r

)}
.

Then, rearranging terms, taking limit s→∞, and using the Stirling’s formula we get

R∗π &
1

(cn)r/2
V −r/pp ⇒ R∗ &

1

(cn)r/2
V −r/pp . (13.2)

Note that for r = 2,

R∗ &
1

n
V −2/pp ,

while the exact bound (see Sec. 3.2) is R∗ = E‖Z‖2
n = p

n . In the next example, we will see volumes
for `q norm.

Example 13.2 (`q-norm). Consider `q-norm, i.e., for 1 ≤ q ≤ ∞

‖x‖q =

(
p∑
i=1

|xi|q
)1/q

.

See the volume for several q’s.

• (q = 2) (Cont’d from the previous) Note that R∗ = p
n for the quadratic loss ‖ · ‖22. The

n-dimensional volume of a unit Euclidean ball B2 is given by

Vp(B2)
1/p =

π1/2(
Γ
(
1 + p

2

))1/p � 1
√
p
,
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which follows from the Stirling’s approximation,

(
Γ
(

1 +
p

2

))1/p
�
(( p

2e

)p/2 (p
2

)1/2)1/p

�
( p

2e

)1/2 (p
2

)1/2p
� √p.

Plugging in (13.2) with r = 2,

R∗ &
1

n
V −1/2p =

p

n
.

Hence in this case the SLB is tight.

• (1 ≤ q <∞) Consider `q norm, where 1 ≤ q <∞, the volume of a unit `q ball is given by

Vp(Bq) =

[
2Γ
(

1 + 1
q

)]p
Γ
(

1 + p
q

) .

So using (13.2) and the Stirling’s formula, the minimax bound for a loss function ‖ · ‖2q is given
by

R∗ &
p2/q

n
.

Another way to get the same bound is that

R∗ &
1

n
E‖Z‖2q �

p2/q

n
.

Here the property that if Z ∼ N (0, Ip), ‖Z‖qq = ΘP (p) is used.

• (q =∞) Recall a unit hypercube in Rp. Then, Vp(B∞) = 2p, hence, R∗ & 1
n by the SLB. On

the other hand, we know the exact risk,

R∗ =
1

n
E‖Z‖2∞ �

log p

n
.

So in this case the SLB is not tight. Here, the equality follows from the fact that if Z ∼ N (0, Ip),
‖Z‖∞ = ΘP (

√
log p).

Note: In the case that we have restriction on θ such that θ ∈ Θ ⊂ Rp, where Θ is a convex set
with non-empty interior, the only thing to be changed is the SLB part. Upper bound by capacity
remains unchanged. As an example of uniform prior over some Θ ⊂ Rp,

capacity ≥ SLB = h(θ)− log[· · ·R∗π · · · ] = log vol(Θ)− log[· · ·R∗π · · · ].

We get the bound of minimax risk connecting this SLB with capacity formula.

Also note that the exact characterization of R∗(Θ) is open even for a convex set Θ.
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13.1.2 Gaussian width of a convex body K

Suppose Z ∼ N(0, Ip) and a set K is convex and symmetric. Define the Gaussian width of K

w(K) , E
[

sup
x∈K
〈x, Z〉

]
.

Lemma 13.1 (Urysohn).

vol(K)1/p .
w(K)

p
.

Urysohn’s lemma helps us characterize the bound of minimax risk. In our case, K = B‖·‖, then

w(K) = E
[

sup
x∈K
〈x, Z〉

]
= E

[
sup
‖x‖≤1

〈x, Z〉

]
= E‖Z‖∗,

which is in fact the expected dual norm of Z. From the lemma, we have V
1/p
p . E‖Z‖∗

p . Therefore,

R∗ &
1

n
V −2/pp &

1

n

(
p

E‖Z‖∗

)2

.

13.2 Fano’s method

Recall the inequality chain,

inf
Pθ̂|θ:E‖θ̂−θ‖≤R∗π

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ capacity.

In this section, we discuss Fano’s method that reduces the LHS to multiple hypothesis testing
problem, which is easier to compute.

The steps are followings:

1. (Discretize) Instead of Θ, consider a discrete subset Θ̃ = {θ1, · · · , θn} ⊂ Θ. Points are picked
to satisfy ‖θi − θj‖ ≥ ε for all i 6= j. Figure 13.1 visualizes this discretization.

2. (Reduce to multiple hypothesis testing) Assume uniform prior such that θ ∼ π = unif({θ1, · · · , θn})
and let f be a quantizer that maps θ ∈ Θ to θi ∈ Θ̃, the closest point to θ. Note that f(θ) = θ
because θ is drawn over Θ̃. So by data processing inequality for θ −X − θ̂ − f(θ̂),

I(θ; θ̂) ≥ I(θ; f(θ̂)).

Note that I(θ; f(θ̂)) is a function of joint probability mass over discrete space Θ̃× Θ̃.

Let’s see the error events {θ 6= f(θ̂)}. Let say the true source is θ = θk. If error happens, it
implies our estimate θ̂ closer to θj = f(θ̂) than θk for some j. In other words, if error happens,

‖θ̂ − f(θ̂)‖ ≤ ‖θ̂ − θk‖.
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Figure 13.1: Discretization

So due to triangular inequality, the error event implies

ε ≤ ‖f(θ̂)− θk‖ = ‖f(θ̂)− θ̂ + θ̂ − θk‖ ≤ ‖f(θ̂)− θ̂‖+ ‖θ̂ − θk‖
≤ 2‖θ̂ − θk‖,

⇒ ε

2
≤ ‖θ̂ − θk‖.

Hence,

Pe , Pr(θk 6= f(θ̂)) ≤ Pr
(
‖θ̂ − θk‖ ≥

ε

2

)
≤ E‖θ̂ − θk‖

ε/2
≤ R∗π
ε/2

=
2R∗π
ε

⇒ inf
Pθ̂|θ:E‖θ̂−θ‖≤R∗π

I(θ; θ̂) ≥ inf
Pe≤ 2R∗π

ε

I(θ; θ̂) ≥ inf
Pe≤ 2R∗π

ε

I(θ; f(θ̂)).

So, we reduce the LHS to a multiple hypothesis test problem where θ, f(θ̂) are both discrete.

3. (Apply Fano’s inequality) Recall the data processing inequality for KL divergence by Figure
13.2. Here our processor is 1{θ 6= θ̂}, and we can further lower bound as

I(θ; f(θ̂)) = D
(
Pθ,f(θ̂)‖PθPf(θ̂)

)
≥ D

(
Bern(Pe)‖Bern

(
1− 1

n

))
= Pe log

Pe

1− 1
n

+ (1− Pe) log
1− Pe

1
n

= −h(Pe) + log n− Pe log(n− 1)

≥ − log 2 + log n− Pe log n,

⇒ Pe ≥ 1− I(θ; f(θ̂)) + log 2

log n
,

where h(·) is a binary entropy function. So finally we reach the bound

2R∗

ε
≥ 2R∗π

ε
≥ Pe ≥ 1− I(θ; f(θ̂)) + log 2

log n

⇒ R∗ ≥ ε

2

(
1− I(θ; f(θ̂)) + log 2

log n

)
.
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Figure 13.2: Data processing kernel for Fano’s inequality

Note: The situation of the Fano’s inequality in class is that

1. θ uniformly takes M values.

2. Markov chain θ −X − θ̂ holds.

Then, the Fano’s inequality says that

I(θ;X) ≥ − log 2 + logM − Pe log(M − 1)

≥ − log 2 + (1− Pe) logM,

⇒ Pe ≥ 1− I(θ;X) + log 2

logM
.

The Fano’s inequality intuitively means that when the mutual information is fixed, Pe cannot be
less than a certain value. On the other hand, when Pe is fixed, the mutual information must be
greater than a certain value.

Note: We can also use the Fano inequality as following:

I(θ;X) ≥ min
Pe≤ 2R∗π

ε

I(θ;X),

and similarly as above,

2R∗

ε
≥ 2R∗π

ε
≥ Pe ≥ 1− I(θ;X) + log 2

log n

⇒ R∗ ≥ ε

2

(
1− I(θ;X) + log 2

logM

)
.

Note: If the loss function is ‖ · ‖2,

min
Pe≤ 2R∗π

ε

I(θ;X) ⇒ R∗ ≥
( ε

2

)2(
1− I(θ;X) + log 2

logM

)
.
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