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Lecture 15: Sudakov, Maurey, and duality of metric entropy

Lecturer: Yihong Wu Scribe: Aolin Xu, Mar 17, 2016 [Ed. Mar 24]

In this lecture we study the upper and lower bounds on N(B1, ‖ · ‖2, ε).

From the last lecture, we know that for any Θ ∈ Rd and any ε > 0,
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where B is the ball of radius 1 measured by ‖ · ‖. Therefore,
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where we have used the fact that B2 ⊂
√
dB1 by Cauchy-Schwarz inequality, vol(B1)1/d � 1
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Note that the lower bound derived above is useful only when ε . 1√
d
.

15.1 Upper bound via Sudakov minorization

Recall that the Gaussian width of Θ ⊂ Rd is defined as1

w(Θ) = E sup
θ∈Θ
〈θ, Z〉, where Z ∼ N(0, Id).

Theorem 15.1 (Sudakov minorization). For any Θ ∈ Rd and any ε > 0,

w(Θ) & ε
√

logM(Θ, ‖ · ‖2, ε).

The proof of Theorem 15.1 relies on Slepian’s Gaussian comparison lemma:

Lemma 15.1 (Slepian’s lemma). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be Gaussian random
vectors. If E(Yi − Yj)2 ≤ E(Xi −Xj)

2 for all i, j, then EmaxYi ≤ EmaxXi.

For a self-contained proof see [Cha05].2 See also [Pis99, Lemma 5.7, p. 70] for a simpler proof of a
weaker version EmaxXi ≤ 2EmaxYi, which suffices for our purposes though.

1To avoid measurability difficulty, w(Θ) should be understood as supT⊂Θ,|T |<∞ Emaxθ∈T 〈θ, Z〉.
2If you took ECE 534 last fall, you should revisit Problem 5 of http://maxim.ece.illinois.edu/teaching/

fall15a/homework/hw4.pdf which follows [Cha05].
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Proof of Theorem 15.1 assuming Slepian. Let {θ1, . . . , θM} be an he optimal ε-packing of Θ. Let

Xi = 〈θi, Z〉 for i ∈ [M ], where Z ∼ N (0, Id). Let Yi
i.i.d.∼ N (0, ε2/2). Then for any pair i, j, Xi and

Xj are jointly Gaussian, and

E(Xi −Xj)
2 = (θi − θj)′E[ZZ ′](θi − θj) = ‖θi − θj‖22 ≥ ε2 = E(Yi − Yj)2.

It follows from Lemma 15.1 that

E max
1≤i≤M

Xi ≥ E max
1≤i≤M

Yi � ε
√

logM.

This completes the proof because E supθ∈Θ〈θ, Z〉 ≥ Emax1≤i≤M Xi.

We can apply this theorem to Θ = B1. In this case, by the definition of the dual norm,

w(B1) = E sup
x∈Rd: ‖x‖1≤1

〈x, Z〉 = E‖Z‖∞ �
√

log d.

The theorem then implies that

logM(B1, ‖ · ‖2, ε) .
log d

ε2
. (15.1)

This bound is almost optimal: When ε� 1/
√
d, this upper bound is (in fact optimal and) much

better than what we get from the volume argument, which is

logM(B1, ‖ · ‖2, ε) . d log

(
1 +

c

ε
√
d

)
.

However, (15.1) is not always sharp. For example, when ε � 1/
√
d, it gives d log d and we know

(even from volume bound) that the correct behavior is d. This suggests we need a more refined
bound that interpolates between volume and Sudakov.

15.2 Upper bound via Maurey’s empirical method

We can construct a covering of B1 using the probabilistic method. Let {ei, i = 1, . . . , d} be the
standard basis of Rd. For an arbitrary x ∈ B1, define a d dimensional random vector Z as

Z =

{
sgn(xi)ei w.p. |xi|
0 w.p. 1− ‖x‖1

Z has the property that EZi = xi for i = 1, . . . , d, hence EZ = x, and Var[Zi] = E(Zi − xi)2 for
i = 1, . . . , d. Let Z(1), . . . , Z(k) be i.i.d. copies of Z, and let Z̄ = 1

k

∑k
j=1 Z(j). Then

E‖Z̄ − x‖22 =

d∑
i=1

E(Z̄i − xi)2 =
d∑
i=1

Var[Z̄i] =
1

k

d∑
i=1

Var[Zi] =
1

k
E‖Z − x‖22 ≤

1

k
E‖Z − x‖21 ≤

1

k
,

where we have used the facts that Var[Z̄i] = 1
kVar[Zi] and ‖Z − x‖2 ≤ ‖Z − x‖1 ≤ 1. If we choose

k = 1/ε2, then E‖Z̄ − x‖2 ≤
√
E‖Z̄ − x‖22 ≤ ε. So there is a realization z̄ of Z̄ such that

‖z̄ − x‖2 ≤ ε.
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Now we examine how many different values Z̄ can take regardless of x. Note that

Z̄ =
1

k

k∑
j=1

Z(j) =
1

k
(K1, . . . ,Kd),

where

d∑
i=1

Ki ≤ k, with Ki ∈ Z, and 0 ≤ |Ki| ≤ k for i = 1, . . . , d. (15.2)

For any (K1, . . . ,Kd) satisfying inequality (15.2), we get a solution for the following inequality

d∑
i=1

K+
i +K−i ≤ k, with K+

i ,K
−
i ∈ Z, and 0 ≤ K+

i ,K
−
i ≤ k for i = 1, . . . , d, (15.3)

by setting K+
i = Ki and K−i = 0 if Ki ≥ 0, and setting K+

i = 0 and K−i = −Ki if Ki < 0. Therefore,
the number of values Z̄ can take is upper bounded by the number of solutions of inequality (15.3).
Note that there are

(
k+2d−1
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)
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d∑
i=1

K+
i +K−i = k, with K+

i ,K
−
i ∈ Z, and 0 ≤ K+

i ,K
−
i ≤ k for i = 1, . . . , d,

because the solutions are all possible types of the sequences of length k with alphabet size 2d. It
follows that the number of solutions of inequality (15.3) is(

0 + 2d− 1

2d− 1

)
+

(
1 + 2d− 1

2d− 1

)
+ . . .+

(
k + 2d− 1

2d− 1

)
=

(
k + 2d

2d

)
=

(
k + 2d

k

)
,

which is an upper bound on the number of Z̄’s regardless of x. We thus have shown the existence of
an ε-covering of B1 in ‖ · ‖2 with cardinality upper bounded by( 1

ε2
+ 2d

2d

)
=

( 1
ε2

+ 2d
1
ε2

)
.

Therefore,

logN(B1, ‖ · ‖2, ε) ≤ 2d log
(

1 +
1

2ε2d

)
∧ 1

ε2
log
(

1 + 2dε2
)
.

We can see that the first upper bound recovers the result from the volume argument, while the
second upper bound is even stronger than the result obtained from Sudakov’s minorization.

15.3 Lower bound via packing Hamming spheres

Let Sk = {x ∈ {0, 1}d : wH(x) = k} be the Hamming sphere of radius k. For the 2ρ-packing of Sk
in Hamming distance ‖ · ‖H, we have

logM(Sk, ‖ · ‖H, 2ρ) ≥ |Sk|
|BH(ρ)|

=

(
d
k

)∑ρ
i=0

(
d
i

) .
This leads to the following lemma.
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Lemma 15.2 (Gilbert-Varshamov). There exist constants c1 and c2 such that for all d ∈ N and
any k ∈ [d],

logM(Sk, ‖ · ‖H, c1k) ≥ c2k log
ed

k
.

Now we construct a packing of B1 based on a packing of Sk. Let {x1, . . . , xM} be a c1k-packing of
Sk. Let θi = xi/k. Then θi ∈ B1 for i = 1, . . . ,M , and

‖θi − θj‖22 =
1

k2
‖xi − xj‖H ≥

c1

k
.

Therefore, {θ1, . . . , θM} is a
√
c1/k-packing of B1 in ‖ · ‖2. Choosing k = 1/ε2, it follows from

Lemma 15.2 that
logM(B1, ‖ · ‖2,

√
c1ε) ≥

c2

ε2
log
(
edε2

)
for some constants c1 and c2.

To summarize, combining the upper and lower bounds, we have

logN(B1, ‖ · ‖2, ε) �


1
ε2

log
(
ε2d
)

ε & 1√
d

d ε � 1√
d

d log 1
ε2d

ε . 1√
d

. (15.4)

15.4 Duality

First we define a more general notoin of covering number. For K,T ⊂ Rd, define the covering
number of K using translates of T as

N(K,T ) = min{N : ∃x1, . . . , XN ∈ Rd such that K = ∪Ni=1T + xi}.

An amazing theorem of Artstein-Milman-Szarek [AMS04] establishes the following duality result for
metric entropy: There exist constants α and β such that for any symmetric convex body K,

1

β
logN

(
B2,

ε

α
K◦
)
≤ logN(K, εB2) ≤ logN(B2, αεK

◦),

where B2 is the usual unit `2-ball,

K◦ =

{
y : sup

x∈K
〈x, y〉 ≤ 1

}
is the polar body of K. For example, B◦p = Bq whenever 1

p + 1
q = 1. Therefore by duality, (15.4)

also applies to logN(B2, ‖ · ‖∞, ε), which is what is needed for application to minimax risk.

15.5 Example

Finally, we use the results in this lecture to derive the minimax lower bound for the p-dimension,
n-sample Gaussian location model with respect to the distortion function ‖θ − θ̂‖2∞.
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We can construct an ε-packing of B2(δ) in ‖ · ‖∞. From the Fano’s method,

R∗ & ε2

(
1−

diamKL({N(θ, 1
nIp), θ ∈ B2(δ)}) + log 2

logM(B2(δ), ‖ · ‖∞, ε)

)

= ε2
(

1− nδ2 + log 2

logM(B2(δ), ‖ · ‖∞, ε)

)
= ε2

(
1− nδ2 + log 2

logM(B1, ‖ · ‖2, ε/δ)

)

& ε2

1− nδ2 + log 2

δ2

ε2
log
(

1 + pε2

δ2

)


where we have used that fact that diamKL({N(θ, 1
nIp), θ ∈ B2(δ)}) = ndiam2

‖·‖2(B2(δ)), the duality

theorem, and the upper bound on logM(B1, ‖ · ‖2, ε/δ). Choosing ε = c1

√
log p
n and δ = c2ε with

appropriate c1 and c2 such that the parenthesis in the lower bound is a positive constant, we obtain

R∗ &
log p

n
.

An alternative proof of this result is by choosing the packing set as τ{e1, . . . , ep} for some τ > 0 to
be determined later. This set is a τ -packing of Rd in ‖ · ‖∞, because ‖τ(ei − ej)‖∞ = τ for all pairs
{i, j}. We also have ‖τ(ei − ej)‖22 = 2τ2. Then by Fano’s method,

R∗ ≥ τ2

(
1− 2nτ2 + log 2

log p

)
.

Choosing τ = c
√

log p
n with some appropriate constant c such that the parenthesis in the above

bound is a positive constant, we obtain

R∗ &
log p

n
.
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