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In last lecture, we studied the minimax risk of a parameterized density estimation and its upper
bound. We are given n i.i.d. samples X1, ..., Xn generated from Pθ, where Pθ ∈ P = {Pθ : θ ∈ Θ} is
the density to be estimated. Let the loss function between a true distribution Pθ and an estimated
distribution P̂ be their KL-divergence, i.e.,

`(Pθ, P̂ ) = D(Pθ‖P̂ ).

One can bound the minimax risk R∗ of this estimation problem by,

R∗n = inf
P̂

sup
θ∈Θ

θD(Pθ‖P̂ ) ≤ Cn
n
, (17.1)

where Cn is the capacity over θ and Xn, i.e.,

Cn = sup
π∈M(Θ)

I(θ;Xn) = inf
ε>0
{nε+ logNKL(ε)},

where NKL(ε) is the covering number of P.

Further, we can use the chain rule in mutual information to learn the properties of Cn. For any
prior π over Θ, one has,

R∗π = I(θ;Xn+1|X∗) = I(θ;Xn+1)− I(θ;Xn).

Taking the supremum over π on both sides, one has,

R∗n = supR∗π = sup
π

(
I(θ;Xn+1)− I(θ;Xn)

)
≥ sup

π
I(θ;Xn+1)− sup

π
I(θ;Xn) = Cn+1 − Cn.

Therefore we can have a lower bound over R∗n as well.

Remark 17.1. There are some properties of {Cn}:

• {Cn} is subadditive and increasing, i.e.,

Cn+m ≤ Cn + Cm, ∀m, n ∈ Z+.

and therefore Cn
n has a limit for n→∞. By Fekete’s lemma,

lim
n→∞

Cn
n

= inf
n≥1

Cn
n
.
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• If we let ∆n = Cn+1 − Cn, one can rewrite Cn by,

Cn =

n−1∑
k=1

∆k,

and therefore,

∆n ≤
∑n−1

k=1 ∆k

n
.

In today’s lecture, we use the bound in (17.1) to study the minimax risk of a nonparameterized
density estimation.

17.1 Density Estimation

We are interested in estimating a smooth probability density function. To be precise, we are
interested in estimating a pdf f ∈ Pβ with smoothness parameter β > 0, where f belongs to Pβ iff,

• f is a pdf on [0, 1] and is upper bounded by a constant, say, 2.

• f (m) α-Hölder continuous, i.e.,

|f (m)(x)− f (m)(y)| ≤ |x− y|α, ∀ x, y ∈ (0, 1),

where α ∈ (0, 1], m ∈ Z and β = α+m.

Note: For example, if β = 1, then P1 is simply the set of pdfs which are Lipshitz and bounded by 2.

Theorem 17.1. Given n i.i.d. samples X1, ..., Xn randomly generated from a pdf f ∈ Pβ, the

minimax risk of an estimation f̂ of f under the quadratic loss function `(f, f̂) = ‖f − f̂‖22 =∫ 1
0 (f(x)− f̂(x))2dx satisfies

R∗(Pβ) = inf
f̂

sup
f∈Pβ

‖f − f̂‖22 � n
− 2β

1+β . (17.2)

Before we goes into the proof for Theorem 17.1, we makes some remarks.

Remark 17.2. The larger β is, the smoother the pdfs are, the faster R∗ decays with n.

Remark 17.3. If f is defined over [0, 1]d, the bound turns into,

R∗n(Pβ) = inf
f̂

sup
f∈Pβ

‖f − f̂‖22 � n
− 2β
d+β

Now we prove Theorem 17.1.

Proof. First, we claim we can use the minimax risk over a set of lower bounded pdfs to bound
R∗n(Pβ). The idea is in Lemma 17.1
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Lemma 17.1. Let F be the set of pdfs that are lower bounded, i.e., F =
{
f : f ≥ 1

2

}
. Let P be an

arbitrary set of pdfs on [0, 1] and let P̃ = P ∩ F . Then

R∗n(P) ≤ R∗n(P̃) ≤ 16R∗n(P).

Proof of Lemma 17.1. Since P̃β ⊂ Pβ, the lower bound is obvious,

R∗n(P̃β) ≤ R∗n(Pβ). (17.3)

We will construct an estimator to show,

R∗n(Pβ) ≤ 16R∗n(P̃β). (17.4)

Let X1, ..., Xn be the n i.i.d. samples from f ∈ Pβ we have, and let U1, ..., Un be n i.i.d. samples
uniformly generated from [0, 1]. We define n i.i.d. random variables Z1, ..., Zn as,

Zi =

{
Ui w.p. 1

2 ,
Xi otherwise.

Thus, it is equivalent to think Z1, ..., Zn are i.i.d. samples from g = 1
2(1 + f) ∈ P̃β. Let ĝ be an

estimator of g from Zn. Let g̃ be its projection in F , i.e.,

g̃ = arg min
h∈F
‖h− ĝ‖.

Note g ∈ F , and we can bound the distance between g̃ and g by,

‖g̃ − g‖ ≤ ‖ĝ − g‖+ ‖g̃ − ĝ‖ ≤ 2‖ĝ − g‖.

Let f̂ = 2g̃− 1, which is a valid pdf since g̃ is lower bounded by 1
2 . As a result, for every pdf f ∈ Pβ ,

there is a corresponding g = 1
2(1 + f) ∈ P̃β which has a good estimator ĝ, and one can construct a

good estimator f̂ from ĝ in the sense that,

‖f̂ − f‖ = 2‖g̃ − g‖ ≤ 4‖ĝ − g‖.

Therefore,

R∗n(Pβ) = inf
f̂

sup
f∈Pβ

‖f̂ − f‖22

≤ 16 inf
ĝ

sup
f∈Pβ

∥∥∥∥ĝ − 1

2
(1 + f)

∥∥∥∥2

2

≤ 16 inf
ĝ

sup
g∈P̃β

‖ĝ − g‖22 = R∗n(P̃β),

where the first inequality is due to the construction of f̂ , and the second inequality is due to{
1
2(1 + f) : f ∈ Pβ

}
⊂ P̃β. Therefore from (17.3) and (17.4) Lemma 17.1 follows.

It is then equivalent to prove,

R∗n(P̃β) = inf
f̂

sup
f∈Pβ

‖f − f̂‖22 � n
− 2β
d+β
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Upper bound First we use the capacity to upper bound the minimax risk. On one hand, It is
known that for any bounded pdf f and g,

‖f − g‖21 & ‖f − g‖22,

and the total variation between f and g is bounded by its KL-divergence,

D(f‖g) ≥ 2d2
TV(f, g) =

1

2
‖f − g‖21.

Therefore, we have for any bounded pdf f and g,

‖f − g‖22 . D(f‖g)

As a result,

R∗n(P̃β) = inf
ĝ

sup
g∈P̃β

‖g − ĝ‖22 ≤ inf
ĝ

sup
g∈P̃β

D(g‖ĝ) = R∗n,KL(P̃β). (17.5)

On the other hand, one can bound the minimax risk under KL-divergence by (17.1), where the
capacity between g and Xn can be computed via,

Cn ≤ inf
ε>0
{logNKL(ε) + nε}

� inf
ε>0
{logN2(

√
ε) + nε}

� inf
ε>0
{ε−

1
2β + nε} = n

1
1+2β .

The first equality is due to the connection between the KL-divergence and the L2 distance. The
second equality comes from Kolomogrov-Tikhomirov’s Theorem. Therefore with (17.5), the upper
bound is proved by showing,

R∗n(P̃β) .
Cn
n
≤ n

1
1+2β

−1
= n

− 2β
1+2β . (17.6)

Lower bound Next we lower bound R∗n(Pβ) by Fano’s inequality. Due to the relation between
covering and packing numbers, we know,

logM(P̃β, ‖ · ‖2, ε) � logN(P̃β, ‖ · ‖2, ε) � ε−1/β,

where the second equality is due to Kolomogrov-Tikhomirov’s Theorem. Let ε = n
− β

1+2β . Fano’s
inequality tells us,

R∗n(P̃β) & ε2

(
1− I(g;Xn) + log 2

logM(P̃β, ‖ · ‖2, ε)

)

& ε2

(
1− Cn

logM(P̃β, ‖ · ‖2, ε)

)

& ε2

(
1− n

1
1+2β

ε
− 1
β

)
� ε2 = n

− 2β
1+2β . (17.7)

The proof is done via (17.6) and (17.7).
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We make some remarks on the proof.

Remark 17.4. We have learned two ways to construct a density estimator:

• The mean of predictive density estimators;

• The maximum likelihood estimator.

None of those is computationally efficient. In practice, kernel density estimator (KDE) is proposed:
let X1, ..., Xn be the n samples, one can estimate the density by its histogram,

π̂ =
1

n

n∑
i=1

δXi .

This estimator, however, is not a pdf. To address this issue, one put a kernel instead of a spike over
each sample points, i.e.,

f̂Ω = Ω⊗ π̂,

where Ω is the kernel function and is chosen to satisfy the smooth constraint of the pdfs.

Remark 17.5. The result in Theorem 17.1 can be generalized to Lp for p <∞, following the same
analysis.

17.2 Estimator Based On Pairwise Comparison

When we prove the lower bound in Theorem 17.1, we use the property that if an ε-covering of a
set Θ cannot be tested, then θ ∈ Θ cannot be estimated. On the contrary, if the ε-covering can be
tested, can θ ∈ Θ be estimated? First we study when the ε-covering can be tested.

In a binary classification problem over two distributions, where φ = 0 indicates the data comes from
P and φ = 1 indicates the data comes from Q. The error is lower bounded by the total variation
between P and Q, i.e.,

min
φ̂
p(φ̂ 6= φ) = 1− dTV(P,Q).

In a binary classification problem over two sets of distributions, where φ = 0 indicates the data
comes from P ∈ P and φ = 1 indicates the data comes from Q ∈ Q. The error is lower bounded by
the total variation between P and Q, i.e.,

min
φ̂
p(φ̂ 6= φ) = 1− min

P∈co(P),Q∈co(Q)
dTV(P,Q).

Remark 17.6. In general, the minimization of dTV(P,Q) over the convex hulls of P and Q is a
hard problem.
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