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In last lecture, we studied the minimax risk of a parameterized density estimation and its upper
bound. We are given n i.i.d. samples X7, ..., X,, generated from Py, where Py € P ={Fy:0 € ©} is
the density to be estimated. Let the loss function between a true distribution Py and an estimated
distribution P be their KL-divergence, i.e.,

((Py, P) = D(Py| P).

One can bound the minimax risk R* of this estimation problem by,

R;, = infsupyD(Py|| P) < &

n
P 6co n ( )

where C,, is the capacity over # and X", i.e.,

Cp = sup I(0;X") = inf{ne+ log Ngr(€)},
TEM(O) e>0

where Nk (€) is the covering number of P.

Further, we can use the chain rule in mutual information to learn the properties of C;,. For any
prior 7 over O, one has,

Ry = I(0; X1 | X*) = 1(0; X"*1) — 1(6; X™).
Taking the supremum over 7 on both sides, one has,
R} =sup R, = sup (I(Q;X"+1) —1(6; X™))
™

> sup 1(0; X"*) — sup I(6; X™) = Cpy1 — Ch.

Therefore we can have a lower bound over R} as well.

Remark 17.1. There are some properties of {C), }:

e {C,} is subadditive and increasing, i.e.,
Cn+m < Cn+cm> Vm, n€Z+.

and therefore % has a limit for n — oco. By Fekete’s lemma,

C
. n . n
lim — = inf —.
n—oo 1 n>1n



o If we let A, = C,11 — C),, one can rewrite C,, by,

n—1
Cn = Z Ak?
k=1
and therefore,
n—1
A
A, < Sh=LE
n

In today’s lecture, we use the bound in (17.1) to study the minimax risk of a nonparameterized
density estimation.

17.1 Density Estimation

We are interested in estimating a smooth probability density function. To be precise, we are
interested in estimating a pdf f € Pg with smoothness parameter 8 > 0, where f belongs to Pg iff,

e fisapdfon [0,1] and is upper bounded by a constant, say, 2.
o (™ o-Holder continuous, i.e.,
|F (@) — (@) < e -yl Va,ye(01),

where a € (0,1], m € Z and 8 = o + m.

Note: For example, if 5 = 1, then P; is simply the set of pdfs which are Lipshitz and bounded by 2.

Theorem 17.1. Given n i.i.d. samples X1, ..., X, randomly generated from a pdf f € Pg, the
minimaz risk of an estimation f of f under the quadratic loss function ((f,f) = ||f — fH% =

fol(f($) — f(x))Qdm satisfies

~ 28
R*(Pg) = inf sup ||f — f[I3 = n” 7. (17.2)
f fePﬁ

Before we goes into the proof for Theorem 17.1, we makes some remarks.
Remark 17.2. The larger § is, the smoother the pdfs are, the faster R* decays with n.

Remark 17.3. If f is defined over [0, 1]¢, the bound turns into,

* . £112 —28
Ry (Pg) = inf sup ||f — fllg < n @7
f fE'Pg

Now we prove Theorem 17.1.

Proof. First, we claim we can use the minimax risk over a set of lower bounded pdfs to bound
Ry (Pg). The idea is in Lemma 17.1



Lemma 17.1. Let F be the set of pdfs that are lower bounded, i.e., F = {f f> %} Let P be an
arbitrary set of pdfs on [0,1] and let P =P N F. Then

Ry (P) < R, (P) < 16R;,(P).

Proof of Lemma 17.1. Since 755 C Pg, the lower bound is obvious,
Ry, (Pg) < Ry, (Pp). (17.3)
We will construct an estimator to show,
R:(Ps) < 16R%(Pp). (17.4)

Let X1, ..., X, be the n ii.d. samples from f € Pg we have, and let Uy, ..., U,, be n i.i.d. samples
uniformly generated from [0,1]. We define n i.i.d. random variables Z1, ..., Z, as,

7. _ Ui w.p. %,
¢ X, otherwise.

Thus, it is equivalent to think 7y, ..., Z, are i.i.d. samples from g = %(1 +f)e 755. Let g be an
estimator of g from Z". Let ¢ be its projection in F, i.e.,

- il — ol
g = argmin|lh — g
Note g € F, and we can bound the distance between g and g by,
19 =gl <llg —gll+lg —gll <2[lg -4l

Let f = 2§ — 1, which is a valid pdf since § is lower bounded by % As a result, for every pdf f € Pg,
there is a corresponding g = %(1 + f) € Pg which has a good estimator g, and one can construct a
good estimator f from ¢ in the sense that,

1f = 1l = 2113 — gll < 4llg - glI-

Therefore,

R;(Pg) = inf sup [|f — f[|3
f fE'Pg

1 2
< 16inf sup ||g — = (1 + f)
9 fePg 2 2
< 16inf sup ||§ — gl = Ry (Pp),
9 gePg

where the first inequality is due to the construction of f , and the second inequality is due to
{3(1+ f): f € Ps} C Ps. Therefore from (17.3) and (17.4) Lemma 17.1 follows. O

It is then equivalent to prove,

* (7Y . £112 —28
Ry (Pg) = inf sup ||f — fllg < n @7
f feP,;



Upper bound First we use the capacity to upper bound the minimax risk. On one hand, It is
known that for any bounded pdf f and g,

If = glF 2 1IF = gll3,

and the total variation between f and g is bounded by its KL-divergence,

1
D(fllg) > 2dtv(f.9) = 511 f = gli
Therefore, we have for any bounded pdf f and g,
I1f = gli3 < D(fllg)

As a result,

Ry (Pg) = inf sup ||lg — gll5 < inf sup D(g|§) = Ry, x1.(Pa)- (17.5)
9 gcPg 9 gcPg

On the other hand, one can bound the minimax risk under KL-divergence by (17.1), where the
capacity between g and X" can be computed via,

Cp < igg{log Nkr(€) + ne}
= ir>1£{log No(Ve) + ne}
1 1
= inf{c 25 — 172,
égg{e +net=n

The first equality is due to the connection between the KL-divergence and the Lo distance. The
second equality comes from Kolomogrov-Tikhomirov’s Theorem. Therefore with (17.5), the upper
bound is proved by showing,

< pTm Tl = T, (17.6)

Lower bound Next we lower bound R}, (Pg) by Fano’s inequality. Due to the relation between
covering and packing numbers, we know,

log M(Pg, || - [|2,€) < log N(Pg, || - |2,€) =< e /7,

-
where the second equality is due to Kolomogrov-Tikhomirov’s Theorem. Let ¢ = n 1+28. Fano’s
inequality tells us,

~ I(g; X" log 2
R:;(,Pﬁ) Z 62 1— (ga _ ) + 0g
log M (Pg, || - [|2, €)

( logMP/;,LH 2 >>
()

=€ = (17.7)

l\)

S m
u\H

The proof is done via (17.6) and (17.7). O



We make some remarks on the proof.

Remark 17.4. We have learned two ways to construct a density estimator:

e The mean of predictive density estimators;

e The maximum likelihood estimator.

None of those is computationally efficient. In practice, kernel density estimator (KDE) is proposed:
let X1, ..., X,, be the n samples, one can estimate the density by its histogram,

1 n
==Y dx,
w20

This estimator, however, is not a pdf. To address this issue, one put a kernel instead of a spike over
each sample points, i.e.,

fo=0Qen,
where 2 is the kernel function and is chosen to satisfy the smooth constraint of the pdfs.

Remark 17.5. The result in Theorem 17.1 can be generalized to L, for p < oo, following the same
analysis.

17.2 Estimator Based On Pairwise Comparison

When we prove the lower bound in Theorem 17.1, we use the property that if an e-covering of a
set © cannot be tested, then 6 € © cannot be estimated. On the contrary, if the e-covering can be
tested, can 6 € © be estimated? First we study when the e-covering can be tested.

In a binary classification problem over two distributions, where ¢ = 0 indicates the data comes from
P and ¢ = 1 indicates the data comes from ). The error is lower bounded by the total variation
between P and @, i.e.,

m(gnp(qg #¢)=1—-drv(P,Q).

In a binary classification problem over two sets of distributions, where ¢ = 0 indicates the data
comes from P € P and ¢ = 1 indicates the data comes from @ € Q. The error is lower bounded by
the total variation between P and Q), i.e.,

inp(¢ £ ¢) =1 - i dry (P, Q).
ménp@#cb) peco oo ™v(P,Q)

Remark 17.6. In general, the minimization of dpy (P, Q) over the convex hulls of P and Q is a
hard problem.

References



	17.1 Density Estimation
	17.2 Estimator Based On Pairwise Comparison

