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18.1 Estimator based on pairwise comparison: LeCam-Birgé

The idea of constructing estimator based on pairwise tests is due to Le Cam ([LC86], see also [vdV02,
Section 10]) and Birgé [Bir83]. We are given n i.i.d. samples X1, X2, · · · , Xn generated from P ,
where P ∈ P is the density to be estimated. Let the loss function between the true distribution P
and the estimated distribution P̂ be their Hellinger distance, i.e.

`(P, P̂ ) = H2(P, P̂ ).

Then, we have the following results.

Theorem 18.1 (Le Cam-Birgé).
sup
P∈P

EPH2(P, P̂ ) . ε2n,

where
nε2n � logNH(P, ε2n)

and NH(P, ε2n) is the covering number of set P under Hellinger distance.

Note: Recall from Fano’s inequality, we have a minimax lower bound ε2n with KL divergence loss
which satisfies

logNKL(P, ε2n) � nε2n.

Proof. Let P1, · · · , PN be the maximal ε-packing of P under Hellinger distance. Thus, ∀i 6= j,

H(Pi, Pj) ≥ ε,

and for ∀P ∈ P, ∃i ∈ [N ], s.t.
H(P, Pi) ≤ ε,

Consider the following Pairwise test problem, we choose i 6= j, and testing between two ε balls:{
H0 : P ∈ B(Pi, ε)
H1 : P ∈ B(Pj , ε)

i 6= j, s.t. H(Pi, Pj) ≥ δ = 3ε.

Thus, we know that ∀P ∈ B(Pi, ε), ∀Q ∈ B(Pj , ε),

H(P,Q) ≥ H(Pi, Pj)− 2ε = δ − 2ε = ε.

Suppose we have an optimal test ψij , and ψij = 0 corresponding to H0, ψij = 1 corresponding to
H1. For this optimal test, we have the following large deviation bound,

sup
P∈B(Pi,ε)

P(ψij = 1) ≤ exp(−n
2
ε2),

sup
P∈B(Pj ,ε)

P(ψij = 0) ≤ exp(−n
2
ε2).
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We construct our density estimator as follows. For i ∈ [N ], consider,

Ti =

{
maxi∈[N ]H

2(Pi, Pj) s.t. ψij = 1.H(Pi, Pj) > δ;

0, no such j exists.

Basically, Ti records the maximum distance that the optimal test φij will confuse between Pi and
Pj from the true underlying distribution P , with the constraint H(Pi, Pj) > δ. And our estimator
is set to be

P̂ = Pi∗ , where i∗ ∈ arg min
i∈[N ]

Ti.

In our analysis, we assume that P ∈ B(P1, ε). Typically,

T1 = 0, Tj ≥ δ2, ∀ j s.t. H(P1, Pj) ≥ δ.

So the probability that the loss function is bigger than 4ε can be bounded as,

P(H(P̂ , P ) > 4ε) ≤ P(i∗ ∈ {j : H(P1, Pj) > δ})
≤ P(T1 > 0),

where

P(T1 > 0) = P(∃ j, H(P1, Pj) > δ and ψ1j = 1)

≤ N(ε) sup
j:H(P1,Pj)>δ

P( ψ1j = 1)

≤ N(ε) exp(−nε
2

2
).

We used the union bound and the large deviation bound in the last inequality. Here, we can see
if we choose nε2 � logNH(P, ε2), the probability that the bias is bigger than ε is bounded by a
exponential bound, thus we can conclude that supP∈P EPH2(P, P̂ ) . ε2n.

Remark 18.1. The result on N(ε) can be improved by using local metric entropy (doubling), which
means using the different radius balls for different j to pack the set P.

18.2 Structured estimation problem

Let’s begin this section with our favourite example, the Gaussian Location model.

Example 18.1 (GLM). Consider the p-dimensional n-sample GLM. We have

Yi = θ + Zi,

where θ ∈ Θ ⊆ Rp, i ∈ [n]. We have n i.i.d copies of Y , and the noise Z ∼ N (0, Ip). We consider
the quadratic minimax loss for this estimation problem,

R∗n(Θ) = inf
θ̂

sup
θ∈Θ

Eθ‖θ̂ − θ‖22.
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Here, we add some structure for the parameter space Θ to study the so called denoising by
sparsity problem, let

Θ = {all k-sparse vectors} = B0(k) = {θ ∈ Rp, ‖θ‖0 ≤ k}, k ∈ [p],

where ‖θ‖0 = |{i : θi 6= 0}| is the number of nonzero entries of θ, indicating the sparsity of θ. We
want to analysis the asymptotic behavior of R∗n(B0(k)).

Remark 18.2. The set B0(k) can be written as a union of linear subspace of Rp.

B0(k) =
⋃

S⊆[p],|S|≤k

{θ, θSC = 0}.

Remark 18.3. To study the behavior of R∗n(B0(k)), it is sufficient to consider one sample and the
risk R∗1(B0(k)). Indeed, we have

R∗n(B0(k)) =
1

n
R∗1(B0(k)).

Proof. Since Ȳ = 1
n

∑n
i=1 Yi is the sufficient statistics of this problem, and Ȳ ∼ N (θ, 1

nIp). Given n
i.i.d. samples, it is sufficient to solve the following one-dimensional problem,

Ȳ = θ +
1√
n
Z ⇔

√
nȲ =

√
nθ + Z,

where Z ∼ N (0, Ip). Since
√
nB0(k) = B0(k), estimating

√
nθ has the same minimax risk for

estimating θ given one sample. Thus,

R∗1(B0(k)) = inf
θ̂

sup√
nθ∈
√
nB0(k)

Eθ‖
√
nθ̂ −

√
nθ‖22

= n inf
θ̂

sup
θ∈B0(k)

Eθ‖θ̂ − θ‖22

= nR∗n(B0(k)).

Thus, in the following discussion, we only consider the case of n = 1.

Claim 18.1 (The Oracle Lower bound). Note that for n = 1, given the information of the position
of nonzero entries, we have the following lower bound which has been proved before

R∗1(B0(k)) ≥ k.

Theorem 18.2. Actually, the minimax risk for this sparsity problem is

R∗1(B0(k)) � k + log

(
p

k

)
� k log

ep

k
.

Note: If k = o(p) and p→∞, we have the following results (proved in homework)

R∗1(B0(k)) =
(
2 + o(1)

)
k log

p

k
.
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18.2.1 Lower bound for denoising by sparsity

We will prove the lower bound in 18.2 by mutual information method. Consider the following binary
sequences set:

B = {b ∈ {0, 1}p : wH(b) = k},

where wH(b) is the Hamming weights of b. Suppose that b is drawn uniformly from the set B, and
θ = τb. Here τ > 0 and will be specified later. Thus, we have the following Markov chain which
represents our problem model,

b→ θ → Y → θ̂ → b̂.

Denote the set G = τB, so θ ∈ G. The mutual information is upper bounded by the radius of set G,

I(θ; θ̂) ≤ I(θ;Y ) ≤ radkL(N (θ, Ip), θ ∈ G)

≤ sup
θ∈G

D(Pθ‖P0)

= sup
θ∈G

1

2
‖θ‖22 =

kτ2

2
.

To give a lower bound for I(θ; θ̂), we need a bound for minE‖θ−θ̂‖22
I(θ; θ̂). Consider

b̂ = arg min
b∈B

‖θ̂ − τb‖22.

Since b̂ is the minimizer of ‖θ̂ − τb‖22, we have,

‖τ b̂− θ‖2 ≤ ‖τ b̂− θ̂‖2 + ‖θ − θ̂‖2 ≤ 2‖θ − θ̂‖2.

Thus,
τ2dH(b, b̂) = ‖τ b̂− θ‖22 ≤ 4‖θ − θ̂‖22,

where dH denotes the Hamming distance between b and b̂. Suppose that E‖θ̂ − θ‖ ≤ ετ2k, then we
have EdH(b, b̂) ≤ 4εk, and

I(b̂; b) ≥ min
EdH(b,b̂)≤4εk

I(b̂; b)

= H(b)− max
EdH(b,b̂)≤4εk

H(b|b̂)

= log

(
p

k

)
− max

EdH(b,b̂)≤4εk
H(b− b̂|b̂)

≥ log

(
p

k

)
− max

EdH(b,b̂)≤4εk
H(b− b̂).

Since this optimization problem has the solution1,

max
EwH(W )=m,W∈{0,1}p

H(W ) = ph(
m

p
),

1It can be easily verified that the maximum is achieved with the distribution Bern(m
p

)⊗p, write this distribution as

q(w) = (m
p

)wH (w)(1− m
p

)p−wH (w). For any p(w) satisfies E(wH(W )) = m, we have H(W ) = −D(p‖q) +Ep[log 1
q(w)

] ≤
Ep[log 1

q(w)
] = m log p

m
+ (p−m) log p

p−m
= ph(m

p
).

4



where h(α) = −α logα − ᾱ log ᾱ is the binary entropy function. If α < 1
4 , h(α) � −α logα. For

ε = 1
16 and let k ≤ p

10 , then 4εk/p ≤ 1/4, we can use the asymptotic results for h(α). Combine this
with the previous bound, we get

I(b̂; b) ≥ log

(
p

k

)
− ph(

4εk

p
) � k log

p

k
.

Thus, we have the following bound by mutual information method,

k log
p

k
. I(θ;Y ) . kτ2.

Remember we choose R∗ = ετ2k, thus we can conclude that

R∗ = ετ2k & k log
p

k
.

Combining with the result in the oracle lower bound, we have

R∗ & k + k log
p

k
.

Note: This problem can not be solved by letting each coordinate of θ to be i.i.d. Bernoulli random
variable, i.e. θi ∈ Bern( kP ). Since in this case, ‖θ‖0 ∼ Binomial(p, kp ). As for large p and k, we know
that the Binomial distribution can be approximated by a Poisson distribution. With a constant
probability Poi(1) > 1, thus θ is not k sparse.

Remark 18.4. For the case k = o(p), we can show

R∗k,p ≥ (2 + op(1))k log
p

k
.

To prove this result, we need to first show that for the case k = 1,

R∗1,p ≥ (2 + op(1)) log p.

Next, show that for any k, the minimax risk is lower bounded by the Bayesian risk with the block
prior. The block prior is that we divide the p-coordinate into k blocks, and pick one coordinate
from each p/k-coordinate uniformly. With this prior, one can show

R∗k,p ≥ kR∗1,p/k � k log
p

k
.

18.2.2 Upper bound for denoising by sparsity

In this subsection, we will prove the upper bound for 18.2. We will use the following results on the
maxima of Gaussian, proved in our homework.

Y = θ + Z, Z ∼ N (0, Ip),

then,
‖Z‖∞ ≤

√
2 log p+ op(1).

Given this result, it is natural to consider the following minimization problem,
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• `0-minimization
θ̂ = arg min ‖θ‖0, s.t. ‖y − θ‖∞ ≤ τ =

√
2 log p.

• `1-minimization
θ̂ = arg min ‖θ‖1, s.t. ‖y − θ‖∞ ≤ τ =

√
2 log p.

However, the estimator given by these two constraint minimization problem only can show

sup
‖θ‖0≤k

Eθ‖θ − θ̂‖ . k log p,

which does not meet the desired result. Thus, we will look at the Maximum Likelihood estimator.
For Gaussian distribution,

Pθ(y) ∝ exp

(
−‖y − θ‖

2
2

2

)
.

Thus, the MLE is equivalent to the minimum distance rule,

θ̂MLE = arg min
‖θ‖0≤k

‖y − θ‖22.

We can show for this constraint Least squared problem,

sup
‖θ‖0≤k

Eθ‖θ − θ̂MLE‖ . k log
ep

k
.

Proof. Let h = θ̂MLE − θ. Thus,

‖Z − h‖22 = ‖θ̂MLE − y‖22 ≤ ‖θ − y‖22 = ‖z‖22.

It is equivalent to

‖h‖22 ≤ 2〈h, z〉
≤ 2 sup

‖u‖0≤2k
〈u, z〉

= 2‖h‖2 sup
‖u‖0≤2k,u∈Sp−1

〈u, z〉,

where Sp−1 is the unit sphere in Rp. Let A = Sp−1 ∩ B0(2k), then E supu∈A〈u, z〉 , w(A) is the
Gaussian width defined before. We have shown

E‖h‖2 ≤ 2w(A).
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[Bir83] L. Birgé. Approximation dans les espaces métriques et théorie de l’estimation. Zeitschrift
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