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18.1 Estimator based on pairwise comparison: LeCam-Birgé

The idea of constructing estimator based on pairwise tests is due to Le Cam ([LC86], see also [vdV02,
Section 10]) and Birgé [Bir83]. We are given n i.i.d. samples X1, Xo,- -, X,, generated from P,
where P € P is the density to b(? estimated. Let the loss function between the true distribution P
and the estimated distribution P be their Hellinger distance, i.e.

((P,P) = H*(P, P).
Then, we have the following results.

Theorem 18.1 (Le Cam-Birgé).

sup EpH?(P, P) < €2,
PcP

where
ne = log Ny (P, €2)

and Ny (P, €2) is the covering number of set P under Hellinger distance.

Note: Recall from Fano’s inequality, we have a minimax lower bound €2 with KL divergence loss

which satisfies

log Nk (P, €2) < ne2.

Proof. Let Py,--- , Py be the maximal e-packing of P under Hellinger distance. Thus, Vi # 7,
H(P;, P;) > e,

and for VP € P, 3i € [N], s.t.
H(P,P;) <,

Consider the following Pairwise test problem, we choose i # j, and testing between two e balls:

Hy: P e B(F;¢)
Hi:Pe€ B(PJ,G)

Thus, we know that VP € B(P;,¢€), VQ € B(P},¢),
H(P,Q) > H(P;, Pj) —2e =6 —2e =e.

i#j,st. H(P,Pj)>6=3c

Suppose we have an optimal test 1);;, and v;; = 0 corresponding to Hy, 1;; = 1 corresponding to
H;. For this optimal test, we have the following large deviation bound,

n
sup Py =1) < eXP(—§€2),
PGB(PL',E)

n
sup  P(¢;; =0) < eXp(—§62)-
PEB(P)€)



We construct our density estimator as follows. For i € [N], consider,

T — maxX;e[N] HQ(P“P]) s.t. Q/Jij = 1H(R,Pj> > 6;
! 0, no such j exists.

Basically, T; records the maximum distance that the optimal test ¢;; will confuse between P; and
P; from the true underlying distribution P, with the constraint H(F;, P;) > 0. And our estimator
is set to be
P =Py, where i*e arg min T;.
1€[N]

In our analysis, we assume that P € B(Py,¢). Typically,
Ty =0, Tj > 6% Vjst. H(P,P;)>6.
So the probability that the loss function is bigger than 4e can be bounded as,

P(H (P, P) > 4¢) <P(i* € {j : H(P1, P;) > §})

<
< P(Tl > 0),

where

P(T) > 0) =P(3 j, H(Py, P;) > 6 and 15 = 1)

<N(e) sup P(i;=1)
j:H(Pl,Pj)>6
2

< N(e)exp(~"2-).

We used the union bound and the large deviation bound in the last inequality. Here, we can see
if we choose ne? < log N (P, €?), the probability that the bias is bigger than € is bounded by a
exponential bound, thus we can conclude that suppcp EpH 2(P,P) < éE. ]

Remark 18.1. The result on N(e) can be improved by using local metric entropy (doubling), which
means using the different radius balls for different j to pack the set P.

18.2 Structured estimation problem

Let’s begin this section with our favourite example, the Gaussian Location model.

Example 18.1 (GLM). Consider the p-dimensional n-sample GLM. We have

where § € © C RP, ¢ € [n]. We have n i.i.d copies of Y, and the noise Z ~ N(0,1,). We consider
the quadratic minimax loss for this estimation problem,

R(6) = inf supEq||d — 63
6 0O



Here, we add some structure for the parameter space © to study the so called denoising by
sparsity problem, let

© = {all k-sparse vectors} = By(k) = {6 € R ||0]|o < k}, k € [p],

where ||0lo = [{7 : 0; # 0}| is the number of nonzero entries of #, indicating the sparsity of . We
want to analysis the asymptotic behavior of R} (By(k)).

Remark 18.2. The set By(k) can be written as a union of linear subspace of RP.

Bo(k)= |J {6.05c =0}

SClpl,|S|<k
Remark 18.3. To study the behavior of R} (By(k)), it is sufficient to consider one sample and the
risk R} (Bo(k)). Indeed, we have

R (Bok) = R (Bo(k)).

Proof. Since Y = % Yo, Y; is the sufficient statistics of this problem, and Y ~ N(6, %Ip). Given n
i.i.d. samples, it is sufficient to solve the following one-dimensional problem,

Vo0t 7 o Ju¥ =i+ 2,
NG

where Z ~ N(0,1,). Since /nBy(k) = By(k), estimating \/nf has the same minimax risk for
estimating 6 given one sample. Thus,

Ri(Bo(k)) =inf  sup  Eoll v/ — Vb3
0 /mber/nBo(k)

=ninf sup E(;Hé — 03
6 6eBy(k)
=nR; (Bo(k)).

Thus, in the following discussion, we only consider the case of n = 1. ]

Claim 18.1 (The Oracle Lower bound). Note that for n =1, given the information of the position
of nonzero entries, we have the following lower bound which has been proved before

R} (By(k)) > k.
Theorem 18.2. Actually, the minimax risk for this sparsity problem is

R (Bo(k)) = k + log (i) = klog %.

Note: If k£ = o(p) and p — oo, we have the following results (proved in homework)

R (Bo(k)) = (2 + o(1))klog %



18.2.1 Lower bound for denoising by sparsity

We will prove the lower bound in 18.2 by mutual information method. Consider the following binary

sequences set:
B={be{0,1}" : wy(b) = k},

where wp(b) is the Hamming weights of b. Suppose that b is drawn uniformly from the set B, and
0 = 7b. Here 7 > 0 and will be specified later. Thus, we have the following Markov chain which
represents our problem model,

b—0—Y —0—b

Denote the set G = 7B, so 8 € G. The mutual information is upper bounded by the radius of set G,

1(6;0) < 1(6;Y) <radi(N(6,1,),0 € G)
S sup D(Pg”Po)
0eG
kT2

1
= Z19]12 = 2—
216182|| 13 5

To give a lower bound for I(6;0), we need a bound for minE||9_é||% 1(0;0). Consider

b = argmin || — 7b||3.
beB

Since b is the minimizer of |6 — 7b||2, we have,
lrb = 0ll2 < [l7d — Ol + 16 — 0]z < 2/|6 — B)]2.
Thus, A . .
T2dp (b,b) = [|I7b — 6|3 < 4]0 — 0I5,

where dpy denotes the Hamming distance between b and b. Suppose that E||§ — 0|| < er2k, then we
have Edg (b, b) < 4ek, and

I(b;b) >  min  I(b;b)
Ed gy (b,b)<dek

— H(b)— max H(blb)
Edg (b,b)<4ek

= log (p) —  max H(b—blb)
k) Edy(bb)<ek

> log <p) —  max H(b-Db).
k) Edy(bb)<dek

Since this optimization problem has the solution®,

H(W) :ph(;)»

max
EwH(W)zm,WE{O,l}P

Tt can be easily verified that the maximum is achieved with the distribution Bern(%)@’ , write this distribution as
q(w) = (%)“’H(“’)(l — %)Pﬂ”H(“’). For any p(w) satisfies E(wg (W)) = m, we have H(W) = —D(p||q) + Ep[log ﬁ] <
Epllog ;] = mlog £ + (p — m)log ;2o = ph(’}).




where h(a) = —aloga — alog & is the binary entropy function. If a < i, h(a) < —aloga. For

€= 1—16 and let k& < {5, then 4ek/p < 1/4, we can use the asymptotic results for h(«). Combine this

with the previous bound, we get

4dek

I(b;b) > log (Z) —ph(— ) = klog%

Thus, we have the following bound by mutual information method,

klog% <I1(0:Y) < kr.

Remember we choose R* = e72k, thus we can conclude that
R* = erk > klog%
Combining with the result in the oracle lower bound, we have

R* Zk—l—klog%

Note: This problem can not be solved by letting each coordinate of 8 to be i.i.d. Bernoulli random
variable, i.e. 6; € Bern(%). Since in this case, ||6]|o ~ Binomial(p, %) As for large p and k, we know
that the Binomial distribution can be approximated by a Poisson distribution. With a constant
probability Poi(1) > 1, thus 6 is not k sparse.

Remark 18.4. For the case k = o(p), we can show
* p
Ry, > (24 0p(1))klog T
To prove this result, we need to first show that for the case k =1,
Ri, > (24 0p(1)) logp.

Next, show that for any k, the minimax risk is lower bounded by the Bayesian risk with the block
prior. The block prior is that we divide the p-coordinate into k blocks, and pick one coordinate
from each p/k-coordinate uniformly. With this prior, one can show

* * p
Rlﬁp 2 le,p/k‘ = klog E

18.2.2 Upper bound for denoising by sparsity

In this subsection, we will prove the upper bound for 18.2. We will use the following results on the
maxima of Gaussian, proved in our homework.

Y =0+2 Z~N(OIL),

then,
1Zllo < v/2ogp + 0y(1).

Given this result, it is natural to consider the following minimization problem,

5



e /p-minimization

6 =argmin |[fllo, st [ly— Ol <7 =+/2l0gp.
e /1-minimization
0 =argmin||f]1, st. ||y —0|e <7 =+/2logp.
However, the estimator given by these two constraint minimization problem only can show

sup Eg0 — 0| < klogp,
10]]o <K

which does not meet the desired result. Thus, we will look at the Maximum Likelihood estimator.

For Gaussian distribution,
. v 613
o(y) oc oxp (— 122 ).

Thus, the MLE is equivalent to the minimum distance rule,

Onie = arg min ||y — 0]|3.
16]]o <k

We can show for this constraint Least squared problem,
~ ep
sup Eg||0 — Oell < klog -
0lo<k
Proof. Let h = éMLE — 6. Thus,
2 i 2 2 2
1Z = hllz = 16uee — yllz < 116 — yllz = |22
It is equivalent to

1113 < 2(h, z)

<2 swp (u,2)
[lullo<2k

= 2[|A|2 sup (u, 2),
[lullo<2k,ucSP—1

where SP~1 is the unit sphere in R?. Let A = SP~1 N By(2k), then Esup,c4(u,z) £ w(A) is the
Gaussian width defined before. We have shown

E||hll2 < 2w(A).
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