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Lecture 19: Denoising sparse vectors - Risk upper bound

Lecturer: Yihong Wu Scribe: Ravi Kiran Raman, Apr 12, 2016

This lecture focuses on the problem of denoising for a sparse vector and upper bound of the minimax
risk corresponding to the problem.

Let θ ∈ Θ = B0(k) = {θ ∈ Rp : ‖θ‖0 ≤ k}, be a sparse vector. We observe Y = θ + Z, where
Z ∼ N (0, Ip). Recall that the last lecture obtains the upper bound on the minimax risk for the
problem using the mutual information method as

R∗n(Θ) = inf
θ̂

sup
θ∈Θ

Eθ[‖θ̂ − θ‖22] & k log
(p
k

)
.

This lecture focuses on obtaining the upper bound to the minimax error by analyzing the risk
corresponding to the maximum likelihood estimator.

Remark 19.1. Estimators, θ̂ are typically efficiently computable for the denoising problem defined
above. Further, adaptive estimators that function in the absence of knowledge of k can be defined.

19.1 Maximum Likelihood estimator and risk upper bound

19.1.1 MLE and Basic Inequality

The maximum likelihood estimator for the denoising problem under additive Gaussian noise is given
by

θ̂MLE(y) ∈ arg min
θ̃∈B0(k)

‖y − θ̃‖22. (19.1)

We now show that ∀θ ∈ B0(k),

‖θ̂MLE − θ‖22 . k log
(p
k

)
holds both, under expectation and with high probability. For ease of notation, we shall henceforth
refer to the ML estimator as θ̂.

We observe that the ground truth θ is a feasible solution of (19.1). Since the estimator minimizes
the `2 distance, we have

‖Z − h‖22 = ‖y − θ̂‖22 ≤ ‖y − θ‖22 = ‖Z‖22,

where h = θ̂ − θ. Thus ‖h‖0 ≤ 2k. Hence we have

‖h‖22 ≤ 2 〈h, Z〉 = 2‖h‖2
〈
Z,

h

‖h‖2

〉
≤ 2‖h‖2 sup

u∈Sp−1∩B0(2k)

〈Z, u〉

⇔ ‖h‖2 ≤ 2 sup
u∈Sp−1∩B0(2k)

〈Z, u〉 . (19.2)
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19.1.2 Risk upper bound through Gaussian width

Let G = Sp−1 ∩B0(2k). Thus, from (19.2), we have

E [‖h‖2] ≤ 2E
[

sup
u∈G
〈u, Z〉

]
= 2w(G),

where w(·) is the Gaussian width. We know that Sudakov minorization lower bounds the Gaussian
width as

w(G) & ε
√

log (N(G, ‖ · ‖2, ε)) �
√
k log

(ep
k

)
,

as long as ε � 1. The above result follows from the Gilbert-Varshamov lower bound via packing
Hamming spheres.

However we are interesting in an upper bound for the Gaussian width here. One way to obtain this
is using Dudley’s entropy integral method [? ],

w(G) .
∫ rad(G)

0

√
log(N(G, ‖ · ‖2, ε))dε

.
∫ 1

0

√
log

(
1

ε

)k ( p
2k

)
dε (19.3)

�
√
k log

pe

k
,

where (19.3) follows from the fact that the vectors projected onto the set of support vectors lie on
S2k−1 and the fact that there are

(
p
2k

)
possible support vector combinations.

19.1.3 Risk upper bound through Covering argument

We now provide an alternate proof to show that the upper bound is held with high probability
(consequently in expectation). Let J represent a set of indices. Let us partition G as

G = ∪|J |=2kGJ = ∪|J |=2k

{
x ∈ Rp : supp(x) = J, xJ ∈ S2k−1

}
.

Hence, we have
sup
u∈G
〈u, Z〉 = max

|J |=2k
sup
u∈GJ

〈u, Z〉 = max
|J |=2k

‖ZJ‖2.

Fix an index set J such that |J | = 2k. Let U = {u1, . . . , uN} be an ε-net of GJ . Thus, the set of
vectors form a cover of a 2k dimensional sphere. Thus,

N = N(S2k−1, ‖ · ‖2, ε) ≤
(

3

ε

)2k

.

Now, ∀u ∈ GJ , ∃i ∈ [N ] such that ‖u− ui‖2 ≤ ε. Thus, ∃r ∈
√

2GJ such that u = ui + r. Thus we
have

sup
u∈GJ

〈u, Z〉 ≤ max
i∈[N ]

〈ui, Z〉+ sup
r∈
√

2GJ

〈r, Z〉 .
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Now, we know that
sup

r∈
√

2GJ

〈r, Z〉 ≤
√

2ε sup
u∈GJ

〈u, Z〉 .

Using this, we have
sup
u∈GJ

〈u, Z〉 . max
i∈[N ]

〈ui, Z〉 ,

when ε is an appropriately chosen constant. Here 〈ui, Z〉 ∼ N (0, 1) as ‖ui‖2 = 1.

Since
(
p
2k

)
choices of index sets are possible, we bound the tail probability using union bound as

P
[

sup
u∈G
〈u, Z〉 > t

]
≤
∑
|J |=2k

P

[
sup
u∈GJ

〈u, Z〉 > t

]

≤
∑
|J |=2k

∑
i∈[N ]

P [〈ui, Z〉 > t]

≤
(
p

2k

)
exp(ck)Q(t) ≤ exp

(
2k log

p

2k

)
exp(ck) exp

(
− t

2

2

)
,

where the last step follows from bounding the size of the ε-net and the Q-function. Thus, for

t �
√
k log ep

k , (scaled by an appropriately large constant), the tail probability is arbitrarily low.

Thus, with high probability,

sup
u∈G
〈u, Z〉 .

√
k log

pe

k
.

19.1.4 Risk upper bound using tail bound for χ2 distribution

As observed earlier,
sup
u∈G
〈u, Z〉 = max

|J |=2k
‖ZJ‖2.

Since Z ∼ N (0, Ip), ‖ZJ‖22 ∼ χ2
2k for a given J . We first study a few properties of the χ2 random

variable.

Let L ∼ χ2
m. Then, E [L] = m, var(L) � m i.e.σL �

√
m.

Theorem 19.1 ([? ]). If L ∼ χ2
m, then

P
[
L−m > S

√
m+ S2

]
≤ exp

(
−S2

2

)
P
[
L−m < −S

√
m
]
≤ exp

(
−S2

2

)
.

Now, applying the above concentration inequality for m = 2k, S =
√
ck log p

k , we have

P
[
‖ZJ‖22 > 2k + k

√
c log

p

k
+ ck log

p

k

]
≤ P

[
‖ZJ‖22 > k log

pe

k

]
≤ exp

(−ck log p
k

2

)
.

Thus, with high probability,

sup
u∈G
〈u, Z〉 .

√
k log

pe

k
.
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19.2 Thresholding schemes and Risk upper bounds

19.2.1 Hard and Soft thresholding

For the denoising problem defined above, the hard thresholding estimate corresponding to the
threshold τ is given by

θ̂HT(y)i =

{
yi, if |yi| > τ

0, if |yi| ≤ τ

Similarly, the soft thresholding estimate is given by

θ̂ST(y)i =


yi − τ, if yi > τ

yi + τ, if yi < −τ
0, if |yi| ≤ τ

The HT estimate is not continuous and the corresponding risk function does not vary monotonically.
On the other hand, the soft thresholding avoids both these issues.

The hard and soft thresholding estimators can alternatively be written in the form of penalized
objective functions. Consider the problem defined as follows:

θ′(y) = arg min
θ̃∈Rp
‖y − θ̃‖22 + λ‖θ̃‖0.

Then, for appropriately chosen penalty factor λ, θ′(y) = θ̂HT(y). Similarly, for the problem

θ′(y) = arg min
θ̃∈Rp
‖y − θ̃‖22 + λ‖θ̃‖1,

for appropriately chosen λ, θ′(y) = θ̂ST (y).

Note: Under such thresholding schemes, we may not necessarily obtain a k-sparse vector as we
desire. However, we shall ignore this fact as we are interested in only the risk upper bounds.

19.2.2 `∞-constrained procedure

Consider the following `∞-constrained formulation of the problem

θ̂(y) ∈ arg min
θ̃∈Rp:‖y−θ̃‖∞≤τ

‖θ̃‖0.

We observe that the hard thresholding estimate is a feasible solution to the above problem. (The set
that minimizes the above objective function is in reality a continuum of points.) The constraint of
interest is that ‖y − θ̃‖∞ ≤ τ . Thus, setting θ̃i = 0 when |yi| ≤ τ and θ̃i = yi when |yi| > τ satisfies
the constraint. Further, this estimate also minimizes the `0 norm and thus θ̂(y) is a feasible solution.

Theorem 19.2. For all θ ∈ B0(k), θ̂ a feasible solution to the above problem, for τ =
√

2 log p,
with high probability,

‖θ̂ − θ‖22 ≤ 16k log p.
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Proof. We shall decompose the proof into three steps.

Step 1: Set τ to ensure feasibility of ground truth.

Since Y = θ + Z,
‖y − θ‖∞ = ‖Z‖∞ .

√
2 log p whp.

Thus we observe that the ground truth is feasible high probability.

Step 2: Analyze structure of error.

The error is given by h = θ̂ − θ. Since θ is a feasible solution,

‖θ̂‖0 ≤ ‖θ‖0 ≤ k.

Thus, ‖h‖0 ≤ 2k.

Step 3: Bound `2 norm.

‖h‖22 ≤ ‖h‖2∞‖h‖0
≤ 2k‖θ̂ − θ‖2∞
≤ 2k(‖θ̂ − y‖∞ + ‖y − θ‖∞)2 (19.4)

≤ 8kτ2 = 16k log p,

where (19.4) follows from the triangle inequality. We note that all the above statements hold with
high probability following the statement of feasibility.

Similarly, consider the problem

θ̂(y) ∈ arg min
θ̃∈Rp:‖y−θ̃‖∞≤τ

‖θ̃‖1.

We observe here that for any θ̃ satisfying the constraint, ‖θ̃‖1 ≥
∑p

i=1(|y| − τ)1 {|y| > τ}. The soft
thresholding estimate satisfies the above bound and the constraint and is thus a feasible solution to
the problem.

Theorem 19.3. For all θ ∈ B0(k), θ̂ a feasible solution to the above problem, for τ =
√

2 log p,
with high probability,

‖θ̂ − θ‖22 ≤ 32k log p.

Proof. We proceed in similar fashion to the earlier proof.

Step 1: Set τ to ensure feasibility of ground truth.

Since Y = θ + Z,
‖y − θ‖∞ = ‖Z‖∞ .

√
2 log p whp.

Thus we observe that the ground truth is feasible with high probability.

Step 2: Analyze structure of error.
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The error is given by h = θ̂ − θ. Thus ‖h‖∞ ≤ 2τ . Let J = supp(θ). Define the cone

C = {x ∈ Rp : ‖xJc‖1 ≤ ‖xJ‖1} .

We now have

‖hJ‖1 − ‖hJc‖1 =
∑
i∈J
|θ̂i − θi| −

∑
i∈Jc

|θ̂i| ≥ ‖θ‖1 − ‖θ̂‖1 ≥ 0,

which follows from the triangle inequality and the feasibility of θ. Thus h ∈ C.

Step 3: Bound `2 norm.

‖h‖22 ≤ ‖h‖1‖h‖∞ (19.5)

≤ 4τ‖hJ‖1
≤ 4τ

√
k‖hJ‖2 (19.6)

≤ 4τ
√
k‖h‖2

⇔ ‖h‖22 ≤ 32k log p,

where (19.5) and (19.6) follow from Holder’s inequality and Cauchy-Schwarz inequality respectively.

Remark 19.2 (Approximate Sparsity). Let J be a set of indices of size k. Let h ∈ C =
{x ∈ Rp : ‖xJc‖1 ≤ ‖xJ‖1}. Consider the set of k largest elements in hJc indexed by the set
K. Then,

‖h(J∪K)c‖22 ≥
1

2
‖h‖22.

Proof. For every element, we have

|h(i)
Jc | ≤

1

i
‖hJc‖1.

Thus,

‖hJc‖22 ≤
p−k∑
i=k+1

|h(i)
Jc |2 ≤

p−k∑
i=k+1

1

i2
‖hJc‖21

≤ 1

k
k‖hJc‖22 ≤ ‖hJ∪K‖22,

which follows from Cauchy-Schwarz inequality and the fact that h ∈ C.

Remark 19.3. 1. When the vector is sufficiently sparse, specifically k = o(p),

R∗ ≤ (2 + o(1))k log
p

k
.

Further, the bound can be achieved in the adaptive case too.

2. If k = Θ(p), i.e, k
p → α ∈ (0, 1] as p→∞, then,

R∗ � p (β(α) + o(1)) ,

where β(α) is a constant dependent on α.
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