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Lecture 19: Minimax rates for sparse linear regression

Lecturer: Yihong Wu Scribe: Subhadeep Paul, April 13/14, 2016

In the last lecture we analyzed the k-sparse Gaussian location model in high dimension (the denoising
problem) and proved minimax rate for estimating the location parameter. In this lecture we extend
the earlier ideas to sparse linear regression in high dimension. We prove a minimax lower bound
and then obtain upper bounds on the risk of a few procedures.

19.1 Problem setup: Sparse linear regression

The sparse linear regression model is

Yn×1 = Xn×pθp×1 + Z, Z ∼ N (0, In), (19.1)

where X ∈ Rn×p is the design matrix and θ ∈ Rp is an unknown k-sparse parameter vector. In this
lecture we are concerned with the case when n << p but n ≥ k, i.e., we have more predictors in the
design matrix than we have samples.

Interpretation: Y is a noisy linear combination of the columns of the design matrix X. The goal
here is to estimate θ, given Y and X. Note that the system has more unknowns than the number of
equations and hence is indeterminate even without the noise. Estimation is made possible due to
the k-sparsity structure.

Note: We consider here random design matrices only. More precisely we have

Xij
i.i.d∼ N (0, 1/n),

so that the columns have roughly unit norm.

The next theorem proves a lower bound on the minimax risk for estimating θ in the k-sparse
regression model.

Theorem 19.1. The minimax risk for estimating θ in the model defined by Equation (19.1) is
lower bounded by

R∗ = R∗(p, k, n) = inf
θ̂

sup
‖θ‖0≤k

Eθ‖θ̂ − θ‖22 & k log
ep

k
, ∀n.

Proof. Note that (Xi, Yi)’s are i.i.d sampled from a distribution Pθ. We show that the KL-diameter
for two different θ is exactly same as that in p-dimensional gaussian location model, i.e.,

D(Pθ0‖Pθ1) =
1

2
‖θ0 − θ1‖2.

We derive the result as follows,
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D(PXi,Yi|θ0‖PXi,Yi|θ1) = EXi [D(PYi|Xi,θ0‖PYi|Xi,θ1)]

= EXi [D(N (〈Xi, θ0〉 , 1)‖N (〈Xi, θ1〉 , 1))]

= EXi [
1

2
〈Xi, θ0 − θ1〉2]

=
1

2
EXi [(θ0 − θ1)′X ′iXi(θ0 − θ1)]

=
1

2
(θ0 − θ1)′E[X ′iXi](θ0 − θ1)

=
1

2n
‖θ0 − θ1‖2.

Hence,

D(Pθ0‖Pθ1) = D(P⊗nXi,Yi|θ0‖P
⊗n
Xi,Yi|θ1) =

1

2
‖θ0 − θ1‖2.

The result then follows from the analysis of the gaussian location model from previous lecture.

From the previous discussion we have, R∗ ≥ k log ep
k for any n, which is identical to the minimax

rate of the denoising problem for any n. This is reasonable, because even with full observation
n & p, which roughly corresponds to the denoising problem we cannot beat this rate. Surprisingly,
as long as n & k log ep

k , the denoising rate is attainable and we have R∗ � k log ep
k , achieved by, e.g.,

the maximum likelihood estimator. This is proved in Section 19.2.

Note that MLE is computationally expensive. A computable alternative procedure is the Dantzig
selector [CT07]. As analyzed in Section 19.3 It is guaranteed to achieve the rate R∗ . k log p as
long as n ≥ k log ep

k . This falls slightly sort of the optimal rate. However unlike MLE, the procedure
is completely adaptive and can be cast as a linear programming problem. More recently a procedure
called SLOPE [SC15] has been proposed which achieves the optimal rate. In particular its risk
coincides with the minimax rate with sharp constant, namely, R∗ ≤ (2 + o(1))k log ep

k as p → ∞
and k = o(p), provided that n & k log ep

k .

19.2 Analysis of MLE

The MLE in this case is defined in terms of the solution (may or may not be unique) of an
optimization problem,

θ̂MLE ∈ arg min
‖θ0‖≤k

‖Y −Xθ‖22. (19.2)

Unfortunately the optimization problem can only be solved through exhaustive search which is
NP-hard in the worst case.

Theorem 19.2. Whenever n ≥ Ck log ep
k for some sufficiently large constant C, ∀θ ∈ B0(k).

‖θ̂MLE − θ‖22 . k log
ep

k
, (19.3)

‖X(θ̂MLE − θ)‖22 . k log
ep

k
, (19.4)
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hold with high probability.

Proof. Since θ̂ is a minimizer, we have

‖Y −Xθ̂‖22 ≤ ‖Y −Xθ‖22 = ‖Z‖22.

On the left hand side we have,

‖Y −Xθ̂‖22 = ‖Y −Xθ +Xθ −Xθ̂‖22 = ‖Z −Xh‖22,

where h = θ̂ − θ. Hence we have,
‖Z −Xh‖22 ≤ ‖Z‖22,

which leads to the basic inequality

‖Xh‖22 ≤ 2 〈Z,Xh〉
= 2Z ′Xh

≤ 2‖h‖2 sup
u∈Sp−1∩B0(2k)

Z ′Xu.

Note that the left hand side is not the estimation error, instead it is the prediction error ‖Xh‖22 =
‖Xθ̂−Xθ‖22. Hence to conclude both (19.2) and (19.4) from the basic inequality, it suffices to show

(a) ‖h‖2 . ‖Xh‖2, (Restricted isometry property)

(b) supu∈Sp−1∩B0(2k) Z
′Xu .

√
k log ep

k , with high probability.

We first prove (b).

sup
u∈Sp−1∩B0(2k)

Z ′xu = ‖Z‖w(G) .

√
k log

ep

k
,

where w(G) is the Gaussian width of the set Sp−1 ∩ B0(2k) and from last lecture we know,

w(G) .
√
k log ep

k .

For (a) we will show that

inf
‖h‖0≤k

‖Xh‖2
‖h‖2

& c if n & k log
ep

k
,

where c is a constant. First note that,

inf
u6=0

‖Au‖2
‖u‖2

= σmin(A).

For any feasible h, Xh = XJhJ , where J = supp(h) is the support of h and XJ is the n× k matrix
whose columns are the columns of X that corresponds to the rows in the support J . Then we have

inf
‖h‖0≤k

‖Xh‖2
‖h‖2

= min
|J |≤k

σmin(XJ).

For a fixed J , σmin(XJ) concentrates to 1−
√

k
n . Hence an union bound gives,

P
[

min
|J |≤k

σmin(XJ) < t

]
≤
(
p

k

)
P[σmin(X[k]) < t].
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Using the tail bound

P

[
σmin(X[k]) < 1−

√
k

n
− t√

n

]
≤ exp(−t2/2),

and choosing t = 4k log ep
k and n = 100k log ep

k , we have 1 −
√

k
n −

t√
n
≥ 0.5 and consequently,

P[min|J |≤k σmin(XJ) < 0.5]→ 0. This completes the proof.

19.3 Dantzig selector

The Dantzig selector can written as the following optimization problem,

min ‖θ‖1, s.t ‖X ′(Y −Xθ)‖∞ ≤ τ. (19.5)

This optimization problem can be efficiently solved as a linear programming. Another computable
procedure for k-sparse regression is the Lasso, which can be written as the following optimization
problem

min ‖Y −Xθ‖22 + λ‖θ‖1, θ ∈ Rn. (19.6)

Note that X ′ is added to the constraint in the Dantzig selector in (19.5) to make the solution rotation-
invariant. Precisely, if U ∈ O(n) be a n× n orthogonal rotation matrix, then UY = UXθ + UZ.
Note that in this case, θ̂(X,Y ) = θ̂(UX,UY ).

Theorem 19.3. Let the Dantzig selector θ̂DS denote a minimizer of (19.5) we have

‖θ̂DS − θ‖22 . k log p,

w.h.p as long as n ≥ Ck log ep
k for some sufficiently large constant C.

Proof. Similar to the proof of Theorem ?? in the denoising problem, the proof is divided in three
steps.

• Step 1 : set τ to guarantee θ is feasible

We choose,
‖X ′Z‖∞ ≤ τ =

√
2 log p,

so that ground truth is feasible.

• Step 2: Structure of the error h = θ̂ − θ
Let J be the support of θ. Define the cone

CJ , {h : ‖hJc‖1 ≤ ‖hJ‖1}. (19.7)

Since ‖θ̂‖1 ≤ ‖θ‖1, we have h ∈ CJ .

Claim 19.1.
‖X ′Xh‖∞ ≤ 2τ
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To see this note that,

‖X ′Xh‖∞ = ‖X ′X(θ̂ − θ)‖∞
= ‖X ′(Y −Xθ)−X ′(Y −Xθ̂)‖∞
≤ ‖X ′(Y −Xθ)‖∞ + ‖X ′(Y −Xθ̂)‖∞
≤ 2τ.

• Step 3: The risk

We have,

‖Xh‖22 = 〈Xh,Xh〉
= h′X ′Xh

=
〈
X ′Xh, h

〉
≤ ‖X ′Xh‖∞‖h‖1 (Holder)

≤ 2τ2‖hJ‖1
≤ 4
√
kτ‖hJ‖2 (Cauchy-Schwarz)

≤ 4
√
kτ‖h‖2.

Now we need to show one last thing to complete the proof.

Claim 19.2.
‖h‖22 . ‖Xh‖22 w.h.p ∀h ∈ CJ

To prove this claim we use the special feature of the cone CJ defined in (19.7), that for any
h ∈ CJ , half of the energy of h is on 2k co-ordinates, i.e. h is almost 2k- sparse.

Suppose h is ordered in the following fashion: The vector of length k that corresponds to
J = supp(θ), hJ comes first. The rest of h is ordered in terms of decreasing magnitude. We
divide the remaining h after first block into blocks of size k and name the blocks K1,K2, . . .
and the vectors h1, h2, . . ., such that hKi = hi.

Let a = hJ∪K1 = hJ + h1. By construction, it has more than 1/2 of the energy, i.e.,

‖a‖22 ≥
1

2
‖h‖22

and define,

b , h(J∪K1)c =
∑
i≥2

hi.

Then

‖Xh‖22 = ‖Xa+Xb‖22
≥ ‖Xa‖22 + 2 〈Xa,Xb〉 (19.8)

Since X satisfies the restricted isometry property, for n ≥ ck log ep
k , there exists c1(c) with

c1 → 1 if c→∞, such that

‖Xa‖22 ≥ c1‖a‖22 ≥
c1
2
‖h‖22.

Now we need to just show that the cross term 〈Xa,Xb〉 is small in magnitude. For this we
use the following restricted decorrelation lemma,
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Lemma 19.1. Let n ≥ ck log ep
k . Then, with high probability, for all u, v ∈ B0(2k) we have,

| 〈Xa,Xb〉 | ≤ c2‖u‖‖v‖,

where c2 = c2(c) and c2 → 0 if c→∞.

Then we have,

〈Xa,Xb〉 =
∑
j≥2
〈Xa,Xhj〉

≤
∑
j≥2
〈Xa, hXj〉

≤
∑
j≥2
‖a‖2‖hj‖2 (Lemma 19.1)

≤ c2‖h‖2
∑
j≥2

√
k‖hj‖∞

≤ c2‖h‖2
∑
j≥2

√
k
‖hj−1‖1

k
(By ordering)

≤ c2√
k
‖h‖2(

∑
j≥2
‖hj−1‖1)

≤ c2√
k
‖h‖2‖hJc‖1 Property of cone

≤ c2√
k
‖h‖2‖hJ‖1

≤ c2√
k
‖h‖22.

Reverting back to (19.8) we have,

‖Xh‖22 ≥ (
c1
2
− c2)‖h‖22 & ‖h‖22.

This completes the proof.

Remark 19.1 (Adaptivity issues). Note that the Dantzig selector procedure is adaptive to k, but
not to σ. To see this consider the following high dimensional k-sparse regression problem,

Y = Xθ + Z, Z ∼ N (0, σ2In).

If σ is known then we can set τ = σ
√

2 log p, but typically σ is not known.

A similar problem arises with Lasso as well. In (19.6), if σ is known then the optimal λ = 2σ
√

log p,
but if σ is unknown then λ is a tuning parameter. As a remedy for this another procedure called
square root Lasso was proposed which can be written as the following optimization problem,

min ‖Y −Xθ‖2 + λ‖θ‖1, θ ∈ Rn.

The optimal λ =
√

log p even when σ is unknown. However the downside is that this optimization
problem is not easy to solve.
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