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In this chapter, we will be interested in analyzing the sample complexity and minimax rates for
the functional estimation problem introduced earlier. We will also consider the hypothesis testing
paradigm so that we can utilize important tools such as LeCam’s method for proving bounds and
analyzing the minimax rate.

Formally, the setting is as follows: Assume that θ is an unknown parameter in the parameter space
Θ and θ generates the data X according to the distribution Pθ. For a fixed real valued functional T
on θ, i.e, T : Θ→ R, we wish to estimate T based on the observations through the estimator T̂ (X).

In the estimation paradigm, the setting can be pictorially represented as follows:

θ X

T = T (θ) T̂ (X)

Pθ

In the hypothesis testing paradigm, we are interested in determining the class of parameters that
gave rise to the observations. Formally, given t0, t1 ∈ R, the problem is formulated as:

H0 : T ≤ t0,
H1 : T ≥ t1.

Equivalently, we can also think of the above hypothesis testing as a composite hypothesis testing of
θ as follows:

H0 : θ ∈ Θ0 = {θ : T (θ) ≤ t0},
H1 : θ ∈ Θ1 = {θ : T (θ) ≥ t1}.

Example 21.1. Consider the Gaussian location model X ∼ N (θ, Ip) , θ ∈ Rp. Let T : Rp → R be
given by T (θ) = ‖θ‖. A possible test would be determining if ‖θ‖ is too small or too large given
some thresholds. Specifically,

H0 : ‖θ‖ ≤ 1,

H1 : ‖θ‖ ≥ 3.

21.1 Lower bounds on minimax risk for functional estimation

Since T takes only real values where as Θ can be arbitrary high dimensional space, such as Euclidean
space Rp, T can be thought of as a low dimensional representation of the parameter space Θ. Thus
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Figure 21.1: ‖θ‖ ≤ 1 vs. ‖θ‖ ≥ 3.

it suggests if we can employ techniques such as LeCam’s two-point argument to prove lower bounds
on the minimax risk estimation of T (θ).

To this end, recall the LeCam’s two-point method discussed in Lecture 9. The key idea in the
two-point argument is the fact that if we can estimate a parameter, we can also test it efficiently.
We reduced the task of estimation to that of the binary hypothesis testing, i.e, for fixed θ0, θ1 ∈ Θ,

H0 : θ = θ0,

H1 : θ = θ1

to derive lower bounds on the minimax risk R∗ (under quadratic loss). In particular, we showed that

R∗ = inf
θ̂

sup
θ∈Θ

Eθ
[
(θ − θ̂)2

]
& sup

θ0 6=θ1
‖θ0 − θ1‖2 (1− dTV (Pθ0 , Pθ1)) .

In a similar vein, we can consider the following binary hypothesis testing for T (for some t0, t1 ∈ R)

H0 : T ≤ t0, (21.1)

H1 : T ≥ t1

to obtain a lower bound on the minimax risk for estimation of T . Specifically, if π0 ∈M(Θ0), π1 ∈
M(Θ1) are any two priors on Θ0 and Θ1 respectively, we obtain

R∗ = inf
θ̂

sup
θ∈Θ

Eθ
[
(T (θ)− T̂ (X))2

]
& (t0 − t1)2 (1− dTV (Pπ0 , Pπ1)) . (21.2)

Thus our task reduces to finding two priors π0, π1 so that the lower bound in (21.2) would be
maximized, or roughly speaking, we want to pick two priors that would ensure maximum confusion
in testing of the two hypothesis.

Now we study a closely related concept of sample complexity for the analysis of the same.

21.2 Estimation of ‖θ‖ in GLM

Our aim is to prove that for the p-dimensional GLM where the data X ∼ N (θ, 1
nIp), θ ∈ Rp, the

minimax risk R∗ for the estimation of T (θ) = ‖θ‖ obeys R∗ �
√
p
n .
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First we give a preview of this result and other estimation tasks in terms of a closely related concept:
sample complexity. The proofs of these results is similar to that of those concerning average and
minimax risk. Recall from Lecture 3, where we defined the sample complexity to be the minimum
number of samples required to achieve a prescribed estimation error, either in expectation or in
probability with high confidence.

Estimation tasks Sample complexity

T (θ) = θ n∗ � p
T (θ) = θ1 n∗ � 1

T (θ) = θmax n∗ � log p

T (θ) = ‖θ‖2 n∗ � √p

One important observation is the fact that to estimate ‖θ‖2, one can employ a plug-in estimator
where we first estimate θ and then compute ‖θ‖2. However, this naive procedure requires as many
samples as that are required to estimate θ. Instead, we can perform much better by using only

√
p

samples to estimate ‖θ‖2.

Instead of the setting in (21.1), where both the hypotheses are composite, we consider a simplified
testing scenario where only one of the hypotheses is composite and hence more tractable.

H0 : θ = 0,

H1 : ‖θ‖2 ≥ ρ

Pictorially,

H0

H1

Figure 21.2: θ = 0 vs. ‖θ‖ ≥ ρ.

We can further simplify this to the observation of one sample case making use of the fact that, to
incur a minimum probability of error (say 0.01), max ρ for n-sample GLM =max ρ for 1 sample GLM√

n
.

Thus our model reduces to

X ∼ N (θ, Ip), θ ∈ Rp.
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21.2.1 Draw backs of two-point argument

A naive application of LeCam’s two-point argument for the estimation of ‖θ‖ through the binary
hypothesis testing of H0 : θ = θ0 vs. H1 : θ = θ1 would yield

R∗ & (‖θ0‖ − ‖θ1‖)2 (1− dTV (N (θ0, Ip),N (θ1, Ip)))

= 2 (‖θ0‖ − ‖θ1‖)2Q

(
‖θ0 − θ1‖

2

)
.

Since ‖θ0‖−‖θ1‖ ≤ ‖θ0−θ1‖ by triangle inequality and sup ‖θ0 − θ1‖2Q
(
‖θ0−θ1‖2

2

)
� 1, we see that

this approach does not yield any useful lower bound. Thus we lose the much needed dependence of
the minimax risk R∗ on the dimension of our data, p.

Forgoing the two-point approach wherein we assume uniform distribution on two fixed parameters
θ0, θ1, we want to choose a prior π supported on {θ : ‖θ‖2 ≥ t} such that the total variation distance
dTV (P0, Pπ) is bounded away from 1. In other words, we want to choose a prior π so that Pπ
closely resembles P0 in the sense that the probability of error for testing is bounded away from 0.
Note that Pπ denotes the distribution on the data X which is given by Pπ = π ∗ N (0, Ip) whereas
P0 = N (0, Ip).

Recall from Lecture 5, the following chain of inequalities for KL divergence, χ2 distance and total
variation obtained using the concept of joint range. We have

χ2(P‖Q) ≥ log
(
χ2(P‖Q) + 1

)
≥ D(P‖Q) ≥ dTV(P,Q) log

1 + dTV(P,Q)

1− dTV(P,Q)

for any two distributions P,Q. This relation suggests that a sufficient condition to ensure dTV (P0, Pπ)
to be bounded away from 1, or equivalently 1− dTV (P0, Pπ) & 0, is to make χ2(P0, Pπ) . 1. In this
regard, we need the following lemma which gives an alternative characterization of χ2-distance.

Lemma 21.1 (Ingster-Suslina method). Let Θ be a parameter space and for each θ ∈ Θ, let Pθ be a
family of probability distributions on a measure space X and let Q also be a distribution on X . Then

χ2(Pπ‖Q) = E[G(θ, θ̃)]− 1,

where θ, θ̃
i.i.d.∼ π, G(θ, θ̃) =

∫ PθPθ̃
Q and Pπ =

∫
Pθπ(dθ) =

∫
Pθ̃π(dθ̃).

Proof. For any two distributions P and Q, we have

χ2(P‖Q) =

∫
(P −Q)2

Q
= VarQ

(
P

Q

)
= EQ

(
P

Q

)2

− 1 =

∫
P 2

Q
− 1.

Thus, χ2 (Pπ‖Q) =
∫ P 2

π
Q − 1 and∫
P 2
π

Q
=

∫
PπPπ
Q

=

∫ ∫
Pθ(x)π(dθ)

∫
Pθ̃(x)π(dθ̃)

Q(x)
µ(dx)

Fubini
=

∫ ∫
π(dθ)π(dθ̃)

∫
PθPθ̃
Q

µ(dx)

= E[G(θ, θ̃)],
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In the case of GLM, E[G(θ, θ̃)] can be computed explicitly and hence we obtain the following
corollary.

Corollary 21.1. If Pθ = N (θ, Ip) and Q = N (0, Ip), then

E[G(θ, θ̃)] = E[exp〈θ, θ̃〉].

Proof. Since Pθ = N (θ, Ip), we have

G(θ, θ̃) =

∫ 1√
(2π)p

exp
(
−‖x−θ‖2

2

)
1√

(2π)p
exp

(
−‖x−θ̃‖2

2

)
1√

(2π)p
exp

(
−‖x‖2

2

)
=

∫
1√

(2π)p
exp

(
−1

2

(
‖x− θ‖2 + ‖x− θ̃‖2 − ‖x‖2

))
=

∫
1√

(2π)p
exp

(
−1

2

(
‖x‖2 − 2〈x, θ + θ̃〉+ ‖θ + θ̃‖2 − 2〈θ, θ̃〉

))
= exp(〈θ, θ̃〉)

∫
1√

(2π)p
exp

(
−‖x− θ − θ̃‖2

2

)
= exp(〈θ, θ̃〉).
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