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In the previous lecture we considered the problem of functional estimation and the idea of using
LeCam’s method by averaging over multiple points to obtain better estimates of the lower bound
for minimax risk. In this lecture, we first use LeCam’s method to obtain the lower bound and later
describe an estimator obtain the matching upper bound for the minimax risk for the estimation of
the `2-norm of GLM.

Consider the p-dimensional GLM. Let θ ∈ Θ = Rp and X ∼ N (θ, 1nIp). Let T (θ) = ‖θ‖2. Then,

R∗(Θ) = inf
T̂

sup
θ∈Rp

Eθ[(T̂ − T )2] �
√
p

n
.

Owing to the scaling property, it suffices to prove the result for the 1-sample GLM.

22.1 LeCam’s Method Lower Bound

In order to employ LeCam’s method, consider the binary detection problem defined by{
H0 : θ = 0

H1 : ‖θ‖2 ≥ ρ
.

Let π(·) be a distribution on {θ : ‖θ‖2 ≥ ρ}, P0 = N (0, Ip) and

Pπ =

∫
N (θ, Ip)π(dθ).

Then by LeCam’s method we saw in the previous lecture that

R∗ ≥ ρ2 (1− dTV(P0, Pπ)) & ρ2,

when 1− dTV(P0, Pπ) & 0. From the bounds on the total variational distance, we know that the
above condition is satisfied when χ2(Pπ, P0) . 1, i.e., the χ2 distance is bounded.

From the Ingster-Suslina method, we know that

χ2(Pπ, P0) = E
[
G(θ, θ̃)

]
− 1,

where θ, θ̃
i.i.d∼ π and

G(θ, θ̃) =

∫
Pθ(dx)Pθ̃(dx)

P0(dx)
.

For the GLM,

G(θ, θ̃) = exp
(〈
θ, θ̃
〉)

.

Remark 22.1. As an aside, we note that

E
[
exp

(〈
θ, θ̃
〉)]
≥ exp

(
E
[〈
θ, θ̃
〉])

= exp
(〈

Eθ,Eθ̃
〉)

= exp
(
‖Eθ‖22

)
> 1.

We now consider three priors and bound the χ2 distance in each case.
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22.1.1 Uniform distribution on sphere

Let θ, θ̃
i.i.d∼ Unif(ρSp−1). Let θ = ρu, θ̃ = ρũ where ‖u‖22 = ‖ũ‖22 = 1. Hence,

E
[
exp

(〈
θ, θ̃
〉)]

= E
[
exp

(
ρ2 〈u, ũ〉

)]
.

We now exploit the fact that the inner product of directions in high dimensions is small. Let

u = Z
‖Z‖2 , ũ = Z̃

‖Z̃‖2
, where Z, Z̃

i.i.d∼ N (0, Ip) and let ρ2 = c
√
p. Then,

E
[
exp

(〈
θ, θ̃
〉)]

= E

exp

c√p
〈
Z, Z̃

〉
‖Z‖2‖Z̃‖2

 = E [exp (cY )] ,

where

Y =

√
p
〈
Z, Z̃

〉
‖Z‖2‖Z̃‖2

.

Now, by the Central Limit Theorem and the fact that ‖Z‖2 = OP (
√
p),〈

Z, Z̃
〉

√
p

D→ N (0, 1),
‖Z‖2√
p

P→ 1,
‖Z̃‖2√
p

P→ 1.

Thus, from Slutsky’s theorem, Y
D→ N (0, 1). Here we are interested in the convergence of the MGF

of Y .

Remark 22.2 (Convergence of MGF). Let Xn be a sequence of random variables such that Xn
D→ X.

Let the tail be T (x) , supn P [|Xn| > x]. If ∀t < α,

T (x) exp (|t|x)→ 0, as x→∞,

then
E [exp (tXn)]→ E [exp (tX)] ,∀t < α.

Here, we have Y ∈ [−√p,√p]. Thus, by Hoeffding’s inequality the tail of Y is exponentially bounded.
Thus, the MGF of Y converges to the MGF of N (0, 1) which is given by

E [exp (sX)] = exp

(
1

2
s2
)
, when X ∼ N (0, 1).

Thus 1− dTV(P0, Pπ) & 0 and R∗ &
√
p.

22.1.2 Uniform distribution on hypercube

Let ρ = cp
1
4 and θ, θ̃

i.i.d∼ Unif
(
cp−

1
4 {±1}p

)
.
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E
[
exp

(〈
θ, θ̃
〉)]

= E
[
exp

(
c2
√
p

〈
W, W̃

〉)]
= E

[
exp

(
c2
√
p
Gp

)]
,

where Gp =
〈
W, W̃

〉
=
∑p

i=1WiW̃i. Now,

E
[
exp

(
WiW̃i

)]
=

1

2

(
exp

(
c2
√
p

)
+ exp

(
− c2
√
p

))
.

Using Taylor’s expansion, we have

exp(x) + exp(−x)

2
= 1 +

x2

2!
+
x4

4!
+ · · · ≤

∑
n

(x2)n

n!
= exp(x2).

Thus we have

E
[
exp

(〈
θ, θ̃
〉)]

=

(
1

2

(
exp

(
c2
√
p

)
+ exp

(
− c2
√
p

)))p
≤ exp(c4).

This consequently implies that for a sufficiently small constant, the χ2 distance is small as well.
Thus, 1− dTV(P0, Pπ) & 0 and R∗ &

√
p.

22.1.3 Uniform prior on sparse vectors

Let us consider the binary hypothesis test given by{
H0 : θ = 0

H1 : ‖θ‖2 ≥ ρ, θ ∈ Rp+
.

Now, the priors considered earlier can’t be used. In this context, we shall use sparse vectors and a
uniform prior to bound the χ2 distance.

Consider the set of k-sparse vectors and let θ, θ̃
i.i.d∼ Unif{θ ∈ {0, ε}p : |supp(θ)| = k}. Let

I = supp(θ), Ĩ = supp(θ̃). Let ρ = cp
1
4 . Then

‖θ‖2 = ε
√
k = ρ = cp

1
4 .

Let k =
√
p. Then ε = c. Then

E
[
exp

(〈
θ, θ̃
〉)]

= E
[
exp

(
c2
〈
1I , 1Ĩ

〉)]
= E

[
exp

(
c2|supp(I ∩ Ĩ|

)]
.

Owing to the symmetry of the problem, it suffices to fix I to be {1, . . . , k} and consider the
expectation with respect to the uniform distribution on Ĩ. Thus B = |supp(I ∩ Ĩ)| is distributed as
hypergeometric(p,

√
p,
√
p).

Theorem 22.1 (Theorem 4, [Hoe63]). Let the population C = {c1, . . . , cN}. Let X1, . . . , Xn

denote a random sample without replacement from C and Y1, . . . , Yn denote a random sample with
replacement. Let f(·) be a continuous and convex function. Then,

E

[
f

(
n∑
i=1

Xi

)]
≤ E

[
f

(
n∑
i=1

Yi

)]
.
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As a corollary of the above theorem, we have

Corollary 22.1. Let B ∼ hypergeometric(p,
√
p,
√
p) and B̃ ∼ binomial(

√
p, 1√

p). Then,

E [exp (sB)] ≤ E
[
exp

(
sB̃
)]

=

(
1− 1
√
p

+
1
√
p

exp(s)

)√p
.

Thus, we have,

E
[
exp

(〈
θ, θ̃
〉)]
≤
(

1 +
1
√
p

(
exp(c2)− 1

))√p
≤ exp

(
exp

(
c2
)
− 1
)
.

Hence for a sufficiently small c, we see that the TV distance is bounded away from 1 and thus
R∗ &

√
p.

22.2 Risk Upper Bound

Having obtained the risk lower bound using LeCam’s method, we now seek an estimator that
achieves the matching upper bound on the risk. That is, given X ∼ N (0, Ip), we seek to obtain an
estimator T̂ = T̂ (X) of T = ‖θ‖2, such that

sup
θ∈Rp

Eθ
[(
T̂ − T

)2]
.
√
p.

We shall first consider the plug-in estimator T̂ = ‖X‖2. Here we note from the triangle inequality
that

|T̂ − T | = |‖X‖2 − ‖θ‖2| ≤ ‖Z‖2 = OP (
√
p).

Consequently, Eθ
[(
T̂ − T

)2]
. p. However, we can verify that this bound is tight - consider the

case where θ = 0. This increased risk can be attributed to the presence of a bias in the estimator.
That is, we have

Eθ
[
‖X‖22

]
= Eθ

[
‖Z + θ‖22

]
= Eθ

[
‖Z‖22

]
+ ‖θ‖22 + Eθ [2 〈Z, θ〉] = p+ ‖θ‖22.

In order to negate this bias, define the estimator T̂ =
√(
‖X‖22 − p

)
+

, where (x)+ = max(x, 0). We

shall split the analysis of risk of the estimator to two cases.

Case 1: ‖θ‖2 ≤ p
1
4

Here we have

Rθ = Eθ
[(
T̂ − ‖θ‖2

)2]
≤ 2Eθ

[
T̂ 2
]

+ 2‖θ‖22 ≤ 2E [|S|] +O(
√
p),

where S = ‖X‖22 − p. We now note that

Eθ
[∣∣‖X‖22 − p∣∣] ≤ ‖θ‖22 + 2Eθ [| 〈θ, Z〉 |] + Eθ

[∣∣‖Z‖22 − p∣∣] = OP (
√
p),
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owing to the Central Limit Theorem and the fact that ‖θ‖22 ≤
√
p. Using this, we have Rθ .

√
p,∀‖θ‖2 ≤ p

1
4 .

Case 2: ‖θ‖2 ≥ p
1
4

In this case, let us rewrite the estimation error as follows

T̂ − T =
√
S+ − ‖θ‖2 =

S+ − ‖θ‖22√
S+ + ‖θ‖2

.

Thus, we have

|T̂ − T | ≤
|
(
‖X‖22 − p

)
+
− ‖θ‖22|

‖θ‖2
≤ |‖X‖

2
2 − p− ‖θ‖22|
‖θ‖2

=
|‖Z‖22 + ‖θ‖22 + 2 〈θ, Z〉 − p− ‖θ‖22|

‖θ‖2

≤ |‖Z‖
2
2 − p|
‖θ‖2

+
|2 〈θ, Z〉 |
‖θ‖2

,

where the last step follows from the triangle inequality. Further, we have

|‖Z‖22 − p| = OP (
√
p)

and
|2 〈θ, Z〉 |
‖θ‖2

= |2
〈

θ

‖θ‖2
, Z

〉
| = OP (1),

as
〈

θ
‖θ‖2 , Z

〉
∼ N (0, 1). Thus, using the fact that ‖θ‖2 ≥ p

1
4 , we have

|T̂ − T | . p
1
4 ⇔ Rθ .

√
p.

Thus, summarizing the two cases, we observe that

sup
θ∈Rp

Eθ
[(
T̂ − T

)2]
.
√
p

and thus R∗ � √p.

Example 22.1 (Covariance model and independence testing). Let X1, . . . , Xn
i.i.d∼ N (0,Σ) where

Σ is a p× p-dimension Covariance matrix which is to be estimated. Under this model,

• estimating Σ with l(Σ̂,Σ) = ‖Σ̂− Σ‖op needs Θ(
√
p) samples;

• estimating T (Σ) = ‖Σ‖op with l(T̂ , T ) = (T̂ − T )2 also needs Θ(
√
p) samples.

Example 22.2 (Looseness of χ2-method and sharp constant by truncated χ2). Let X ∼ N (θ, Ip)

and T = T (θ) = θmax , maxi∈[p] θi. Let l(T̂ , T ) =
(
T̂ − T

)2
. Then,

R∗ = inf
T̂

sup
θ∈Rp

Eθ
[(
T̂ − T

)2]
=

1

2
(1 + o(1)) log p, as p→∞.

The results of the above examples are proved in the next lecture.
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