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Lecture 23: Functional estimation and testing

Lecturer: Yihong Wu Scribe: Pengkun Yang, April 26, 2016

Outline:

• GLM: estimating θmax. More careful application of χ2-method yields the sharp constant.

• Covariance matrix (independence testing): estimating a scalar functional can require as many
samples needed as estimating the whole parameter.

• Uniformity testing: Is lottery fair?

23.1 GLM: estimating θmax

The model of the observations are the same as before: X = θ + Z where Z ∼ N(0, Ip). We want to
estimate the magnitude of θ, i.e., T (θ) = θmax. We will show the minimax risk with sharp constant
in high dimensions:

inf
T̂

sup
θ∈Rp

Eθ(T̂ − θmax)2 =

(
1

2
+ o(1)

)
log p, p→∞.

Upper bound: Let’s first analyze the maximum likelihood estimator, namely, Xmax. Consider
θ = αe1 Then Xmax = max {α+ Z1, Z2, . . . , Zp} ≈ max

{
α+ Z1,

√
2 log p

}
. The picture is the blue

curve in Fig. 23.1. A better idea in this case is to decrease Xmax by
√

2 log p/2, which will reduce
the worst case error.

Let T̂ = Xmax −
√

2 log p
2 . WLOG, consider θmax = θ1. Then

T̂ − θmax = max
i

{
Xmax −

√
2 log p

2
− θmax

}
≤ max

i
Zi −

√
log p

2

w.h.p.
≤

√
log p

2
(1 + o(1)),

T̂ − θmax ≥ X1 −
√

2 log p

2
− θmax = Z1 −

√
log p

2
≥ OP

(
−
√

log p

2
(1 + o(1))

)
.

Lower bound: Consider two hypotheses:

H0 : θ = 0, H1 : θmax ≥ τ.

Put a prior on H1: θ ∼ Uniform {τe1, τe2, . . . , τep}. Then under H0 the sample X ∼ P0 = N(0, Ip)
and under H1 the sample X ∼ Pπ = 1

p

∑p
i=1N(τei, Ip). The goal is to show that dTV(P0, Pπ)→ 0

when τ =
√

(2− ε) log p for any ε > 0.
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Figure 23.1: Maximum likelihood estimator and improvement via de-biasing.

In this problem, directly applying χ2-method yields the minimax rate but not the sharp constant:

Let θ = τeI and θ̃ = τeĨ , where I, Ĩ
i.i.d.∼ Uniform[p].

χ2(Pπ‖P0) = E exp〈θ, θ̃〉 − 1 = E exp
(
τ21{I 6=Ĩ}

)
− 1 =

exp(τ2)− 1

p
.

Therefore χ2(Pπ‖P0)→ 0⇔ τ√
log p

< 1 and we conclude that R∗ ≥ 1+o(1)
4 log p.

We can apply χ2-method more carefully by conditioning on some high probability event. The main
idea is that low probability event has vanishing contribution on the total variation distance but may
contribute a lot to the χ2 distance. Let τ =

√
(2− ε) log p and let

E =

{
max
i
Xi ≤

√
2 log p

}
.

Since maxi Zi ≤
√

2 log p with high probability, and Zi = OP (1) for any fixed i, E is an high
probability event under both P0 and Pπ. Denote by PE0 and PEπ the probability measure conditioned

on E, that is, PE0 (·) = P0(·∩E)
P0(E) . Note that

dTV(P0, P
E
0 ) = 1− P0(E), dTV(Pπ, P

E
π ) = 1− Pπ(E). (23.1)

By triangle inequality, it suffices to show that dTV(PE0 , P
E
π )→ 0. By the formula for conditional

probability, the likelihood ratio is
PEπ
PE0

=
P0(E)

Pπ(E)

Pπ
P0

1E .
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Applying χ2-method on PE0 and PEπ , we obtain that∫
P 2
π

P0
1E = E

[∫
PθPθ̃
P0

1E

]
= Eθ,θ̃EX∼N(θ̃,Ip)

[
exp

(
−‖θ‖

2
2

2
+ 〈θ,X〉

)
1E

]
= EXEI

[
exp

(
−τ2/2 + τ〈X, eI〉

)
1E
]

=

(
1− 1

p

)
E
[
exp

(
−τ2/2 + τN(0, 1)

)
1E
]

+
1

p
E
[
exp

(
−τ2/2 + τX1

)
1E
]

≤
(

1− 1

p

)
+

1

p
exp

((
−2− ε

2
+
√

2(2− ε)
)

log p

)
.

Note that −(2−ε)/2+
√

2(2− ε) < 1 as long as ε > 0. Therefore
∫ P 2

π
P0

1E = 1+o(1) and consequently

χ2(PEπ ‖PE0 ) = o(1) =⇒ dTV(PEπ , P
E
0 ) = o(1)

(23.1)
=⇒ dTV(Pπ, P0) = o(1)

LeCam
=⇒ R∗ ≥ 1 + o(1)

2
log p,

where we apply LeCam’s method for quadratic risk in Theorem ??.

23.2 Covariance matrix

Let X1, . . . , Xn
i.i.d.∼ N(0,Σ), where Σ is the covariance matrix with size p× p. A sufficient statistic

for Σ is the sample covariance matrix:

S =
1

n

n∑
i=1

XiX
′
i.

Let Θ =
{

Σ : ‖Σ‖op ≤ λ
}

. The minimax risk for estimating Σ under the operator norm is

R∗1 , inf
Σ̂

sup
Σ∈Θ

E‖Σ̂− Σ‖2op � λ2
(

1 ∧ p
n

)
.

Even if we only want to estimate the operator norm, a scalar functional of Σ, the difficulty in terms
of the minimax rate is the same as estimating Σ itself:

R∗2 , inf
‖̂Σ‖op

sup
Σ∈Θ

E
(
‖̂Σ‖op − ‖Σ‖op

)2
� λ2

(
1 ∧ p

n

)
.

Note that ‖Σ̂‖op is a viable estimator for ‖Σ‖op. By the triangle inequality of the operator norm,

R∗2 . R∗1.

It suffices to show an upper bound for estimating Σ and the same lower bound for estimating ‖Σ‖op.
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Upper bound for estimating Σ: Note a trivial upper bound that R∗1 ≤ λ2. It remains to
show that R∗1 . λ2p/n when n & p. Consider the sufficient statistic S. We want to show that for
any ‖Σ‖op ≤ λ,

‖S − Σ‖op
w.h.p
≤ λ

√
p

n
,

when n & p. Let Xi = Σ1/2Zi then Zi
i.i.d.∼ N(0, Ip) and S = Σ1/2( 1

n

∑n
i=1 ZiZ

′
i)Σ
′1/2. Let S̃ ,

1
n

∑n
i=1 ZiZ

′
i then

‖S − Σ‖op = ‖Σ1/2(S̃ − Ip)Σ′1/2‖op ≤ ‖Σ1/2‖op‖S̃ − Ip‖op‖Σ′1/2‖op = λ‖S̃ − Ip‖op.

We use the result that, with high probability,

‖S̃ − Ip‖2op .
√
p

n
+
p

n
.

The intuition for the above result is that

‖S̃ − Ip‖2op ≤ sup
‖v‖=1

‖S̃v‖2 + 1− 2 inf
‖v‖=1

‖S̃v‖ ≈ (1 +
√
p/n)2 + 1− 2(1−

√
p/n) = 4

√
p

n
+
p

n
.

When n & p we have ‖S̃ − Ip‖op
w.h.p.

.
√
p/n.

Lower bound for estimating ‖Σ‖op: Let a, b > 0 be two parameters to be specified in the end.
Consider two hypotheses:

H0 : Σ = Σ0 = aI, H1 : Σ = Σv = aI + bvv′,

where under the alternative Σ is a rank-one perturbation from the identity matrix. Then the

operator norms under H0 and H1 are separated by b. Put a prior on H1 that v ∼ Uniform
{
±1√
p

}p
.

Applying the χ2-method, we obtain that

χ2 + 1 = Ev,ṽ
∫
N(0,Σv)

⊗nN(0,Σṽ)
⊗n

N(0,Σ0)⊗n
= Ev,ṽ

(∫
N(0,Σv)N(0,Σṽ)

N(0,Σ0)

)n
= Ev,ṽ

(√
|Σ0|

|Σv||Σṽ||Σ−1
v + Σ−1

ṽ − Σ−1
0 |

)n
= Ev,ṽ

(
det

(
Ip −

b2

a2
vv′ṽṽ′

))−n/2
= Ev,ṽ

(
det

(
Ip −

b2

a2
〈v′, ṽ〉vṽ′

))−n/2
.

Applying matrix determinant lemma that det(A+ uv′) = (1 + v′A−1u) det(A) yields that

χ2 + 1 = Ev,ṽ
(

1− b2

a2
〈v′, ṽ〉2

)−n/2
≤ Ev,ṽ exp

(
nb2

2a2
〈v′, ṽ〉2

)
.

Note that the distribution of 〈v′, ṽ〉 is the same as 1
p

∑p
i=1Ri where Ri is an i.i.d. Rademacher

random variable taking values ±1 with probability 1/2. Then 〈v′, ṽ〉 is concentrated on [− 1√
p ,

1√
p ]
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(this can be made rigorous through Hungarian coupling). The problem boils down to the following
simple optimization:

max b

s.t. 0 ≤ a ≤ a+ b ≤ λ,
nb2

a2p
≤ c,

for some constant c. The optimal solution is

b =
λ

1 +
√
n/cp

� λ
(

1 ∧
√
p

n

)
.

23.3 Uniformity testing: Is the lottery fair?

Let X1, . . . , Xn
i.i.d.∼ P where P is a distribution on [k]. Consider two hypotheses:

H0 : P = Uniform[k], H1 : dTV(P,Uniform[k]) ≥ ε.

A test is a function ψ : [k]n → {0, 1} and we want the probability of error to be

P⊗n0 (ψ = 1) + sup
P∈H1

P⊗n(ψ = 0) ≤ 1%.

The sample complexity n∗(k, ε) is defined by the minimum sample size n such that a satisfactory
test exists.

Theorem 23.1 ([Pan08]).

n∗(k, ε) �
√
k

ε2
.

Remark 23.1. Estimating P by P̂ such that dTV(P, P̂ ) ≤ ε requires � k/ε2 samples.

To estimate any functional of a distribution, a sufficient statistic is the histogram (N1, . . . , Nk)
where Ni records the number of appearances of symbol i. Since the total variation distance is
permutation invariant (symmetric), a further sufficient statistic is the profile/histogram of histogram
(ϕ1, . . . , ϕn), where ϕi counts the number of symbols that appear exactly i times.

Upper bound: Our test statistic is ϕ1. This is connected to “birthday paradox”: consider k
days and n people,

P[no coincident birthday] =
k

k

k − 1

k
. . .

k − n+ 1

k
= exp

(
n−1∑
i=1

log(1− i/k)

)
≈ exp(−n2/2k).

When n .
√
k then ϕ1 ≈ n. The intuition is that the coincidence is least likely under uniform

distribution: ϕ1 is large (close to n) under H0 and ϕ1 is small under H1.

By definition ϕ1 =
∑k

i=1 1Ni=1. We can compute that E0[ϕ1] − E1[ϕ1] & n2ε2

k and var0[ϕ1] . n2

k .

If n &
√
k
ε2

then
√

var0[ϕ1] . E0[ϕ1] − E1[ϕ1]. Under H1 we can also compute that
√

var0[ϕ1] .
E0[ϕ1]− E1[ϕ1]. The picture is shown as below and the detailed computation is referred to [Pan08].
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E1[ϕ1] E0[ϕ1]Threshold

x

y

Lower bound: Consider two hypotheses:

H0 : P = Uniform[k], H1 : P = PI = (p1, . . . , pk),

where I ⊆ [k] is of size k/2 and

pi =

{
1+ε
k , i ∈ I,

1−ε
k , i 6∈ I.

Put the uniform prior on H1 where I is chosen uniformly at random from all subsets of size k/2.
The goal is to show that

dTV

 1(
k
k/2

) ∑
|I|=k/2

P⊗nI ,Uniform[k]⊗n

 < c

for some constant c < 1. A sufficient condition is that

χ2

 1(
k
k/2

) ∑
|I|=k/2

P⊗nI

∥∥∥∥∥Uniform[k]⊗n

 <∞.

Applying the Ingster-Suslina method (Lemma ??):

χ2 + 1 = EI,Ĩ

∫ P⊗nI P⊗n
Ĩ

P⊗n0

= EI,Ĩ

(∑ PIPĨ
P0

)n
= EI,Ĩ

(
4ε2|I ∩ Ĩ|

k
+ 1− ε2

)n

≤ EI,Ĩ exp

(
nε2

(
4|I ∩ Ĩ|

k
− 1

))
,

where I ∩ Ĩ ∼ HyperGeometric(k, k/2, k/2). Applying the convex stochastic dominance of the
hypergeometric distribution over the binomial distribution, we obtain that

χ2 + 1 ≤ EI,Ĩ exp

(
nε2

(
4Binom(k, 1/2)

k
− 1

))
=

(
exp(2nε2/k) + exp(−2nε2/k)

2

)k/2
≤ exp

(
1

2

(
2nε2

k

)2
k

2

)
<∞,

when n .
√
k
ε2

, where we used the inequality that ex+e−x

2 ≤ ex2/2 (by Taylor expansion).
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