Outline:

- GLM: estimating θ_{max}. More careful application of χ^2-method yields the sharp constant.
- Covariance matrix (independence testing): estimating a scalar functional can require as many samples needed as estimating the whole parameter.
- Uniformity testing: Is lottery fair?

23.1 GLM: estimating θ_{max}

The model of the observations are the same as before: $X = \theta + Z$ where $Z \sim N(0, I_p)$. We want to estimate the magnitude of θ, i.e., $T(\theta) = \theta_{\text{max}}$. We will show the minimax risk with sharp constant in high dimensions:

$$
\inf_{\hat{T}} \sup_{\theta \in \mathbb{R}^p} \mathbb{E}_\theta (\hat{T} - \theta_{\text{max}})^2 = \left(\frac{1}{2} + o(1) \right) \log p, \quad p \to \infty.
$$

Upper bound: Let’s first analyze the maximum likelihood estimator, namely, X_{max}. Consider $\theta = \alpha e_1$ Then $X_{\text{max}} = \max \{\alpha + Z_1, Z_2, \ldots, Z_p\} \approx \max \{\alpha + Z_1, \sqrt{2 \log p}\}$. The picture is the blue curve in Fig. 23.1. A better idea in this case is to decrease X_{max} by $\sqrt{2 \log p/2}$, which will reduce the worst case error.

Let $\hat{T} = X_{\text{max}} - \frac{\sqrt{2 \log p}}{2}$. WLOG, consider $\theta_{\text{max}} = \theta_1$. Then

$$
\hat{T} - \theta_{\text{max}} = \max_i \left\{ X_{\text{max}} - \frac{2 \log p}{2} - \theta_{\text{max}} \right\} \leq \max_i Z_i - \frac{\log p}{2}, \quad \text{w.h.p.} \leq \sqrt{\frac{\log p}{2}} (1 + o(1)),
$$

$$
\hat{T} - \theta_{\text{max}} \geq X_1 - \frac{\sqrt{2 \log p}}{2} - \theta_{\text{max}} = Z_1 - \frac{\log p}{2} \geq O_P \left(-\sqrt{\frac{\log p}{2}} (1 + o(1)) \right).
$$

Lower bound: Consider two hypotheses:

$$
H_0 : \theta = 0, \quad H_1 : \theta_{\text{max}} \geq \tau.
$$

Put a prior on H_1: $\theta \sim \text{Uniform} \{\tau e_1, \tau e_2, \ldots, \tau e_p\}$. Then under H_0 the sample $X \sim P_0 = N(0, I_p)$ and under H_1 the sample $X \sim P_\tau = \frac{1}{p} \sum_{i=1}^p N(\tau e_i, I_p)$. The goal is to show that $d_{TV}(P_0, P_\tau) \to 0$ when $\tau = \sqrt{(2 - \epsilon) \log p}$ for any $\epsilon > 0$.

Figure 23.1: Maximum likelihood estimator and improvement via de-biasing.

In this problem, directly applying χ^2-method yields the minimax rate but not the sharp constant:

Let $\theta = \tau e_I$ and $\tilde{\theta} = \tau e_{\tilde{I}}$, where $I, \tilde{I} \sim \text{Uniform}[p]$.

$$
\chi^2(P_{\pi} || P_0) = E \exp(\theta, \tilde{\theta}) - 1 = E \exp(\tau^2 1_{\{i \neq I\}}) - 1 = \frac{\exp(\tau^2) - 1}{p}.
$$

Therefore $\chi^2(P_{\pi} || P_0) \to 0 \iff \frac{\tau}{\sqrt{\log p}} < 1$ and we conclude that $R^* \geq 1 + o(1) \frac{1}{\log p}$.

We can apply χ^2-method more carefully by conditioning on some high probability event. The main idea is that low probability event has vanishing contribution on the total variation distance but may contribute a lot to the χ^2 distance. Let $\tau = \sqrt{(2 - \epsilon) \log p}$ and let

$$
E = \left\{ \max_i X_i \leq \sqrt{2 \log p} \right\}.
$$

Since $\max_i Z_i \leq \sqrt{2 \log p}$ with high probability, and $Z_i = O_P(1)$ for any fixed i, E is an high probability event under both P_0 and P_{π}. Denote by P_0^E and P_{π}^E the probability measure conditioned on E, that is, $P_0^E(\cdot) = \frac{P_0(\cdot \cap E)}{P_0(E)}$. Note that

$$
d_{TV}(P_0, P_0^E) = 1 - P_0(E), \quad d_{TV}(P_{\pi}, P_{\pi}^E) = 1 - P_{\pi}(E). \quad (23.1)
$$

By triangle inequality, it suffices to show that $d_{TV}(P_0^E, P_{\pi}^E) \to 0$. By the formula for conditional probability, the likelihood ratio is

$$
\frac{P_{\pi}^E}{P_0^E} = \frac{P_0(E) P_{\pi}}{P_{\pi}(E) P_0} 1_E.
$$
Applying χ^2-method on P_0^E and P_π^E, we obtain that

$$\int \frac{P_2^E}{P_0^E} 1_E = \mathbb{E} \left[\int \frac{P_\theta P_{\hat{\theta}}}{P_0^E} 1_E \right] = \mathbb{E}_{\theta \sim N(\hat{\theta}, I_p)} \left[\exp \left(-\frac{\|\theta\|^2}{2} + \langle \theta, X \rangle \right) 1_E \right]$$

$$= \mathbb{E}_{X \sim E} \left[\exp \left(-\frac{\tau^2}{2} + \tau \langle X, e_I \rangle \right) \right] \left[\exp \left(-\frac{\tau^2}{2} + \tau X_1 \right) \right] \leq \left(1 - \frac{1}{p} \right) + \frac{1}{p} \exp \left(-\frac{2 - \epsilon}{2} + \sqrt{2(2 - \epsilon)} \log p \right).$$

Note that $-(2 - \epsilon)/2 + \sqrt{2(2 - \epsilon)} < 1$ as long as $\epsilon > 0$. Therefore $\int \frac{P_2^E}{P_0^E} 1_E = 1 + o(1)$ and consequently

$$\chi^2(P_\pi^E \| P_0^E) = o(1) \implies d_{TV}(P_\pi^E, P_0^E) = o(1)$$

$$\overset{(23.1)}{\implies} d_{TV}(P_\pi, P_0) = o(1) \overset{\text{LeCam}}{\implies} R^* \geq \frac{1 + o(1)}{2} \log p,$$

where we apply LeCam’s method for quadratic risk in Theorem ??.

23.2 Covariance matrix

Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(0, \Sigma)$, where Σ is the covariance matrix with size $p \times p$. A sufficient statistic for Σ is the sample covariance matrix:

$$S = \frac{1}{n} \sum_{i=1}^n X_i X_i'.$$

Let $\Theta = \left\{ \Sigma : \|\Sigma\|_{op} \leq \lambda \right\}$. The minimax risk for estimating Σ under the operator norm is

$$R^*_1 \triangleq \inf_{\hat{\Sigma}} \sup_{\Sigma \in \Theta} \mathbb{E} \left[\|\hat{\Sigma} - \Sigma\|^2_{op} \right] \asymp \lambda^2 \left(1 \wedge \frac{p}{n} \right).$$

Even if we only want to estimate the operator norm, a scalar functional of Σ, the difficulty in terms of the minimax rate is the same as estimating Σ itself:

$$R^*_2 \triangleq \inf_{\|\Sigma\|_{op}} \sup_{\Sigma \in \Theta} \mathbb{E} \left[\|\hat{\Sigma}\|_{op} - \|\Sigma\|_{op} \right]^2 \asymp \lambda^2 \left(1 \wedge \frac{p}{n} \right).$$

Note that $\|\hat{\Sigma}\|_{op}$ is a viable estimator for $\|\Sigma\|_{op}$. By the triangle inequality of the operator norm,

$$R^*_2 \asymp R^*_1.$$

It suffices to show an upper bound for estimating Σ and the same lower bound for estimating $\|\Sigma\|_{op}$.

3
Upper bound for estimating Σ: Note a trivial upper bound that $R_1^* \leq \lambda^2$. It remains to show that $R_1^* \lesssim \lambda^2 p/n$ when $n \gtrsim p$. Consider the sufficient statistic S. We want to show that for any $\|\Sigma\|_{op} \leq \lambda$,

$$ \|S - \Sigma\|_{op} \leq \lambda \sqrt{\frac{p}{n}}, $$

when $n \gtrsim p$. Let $X_i = \Sigma^{1/2} Z_i$ then $Z_i \overset{i.i.d.}{\sim} N(0, I_p)$ and $S = \Sigma^{1/2} (\frac{1}{n} \sum_{i=1}^n Z_i Z_i^\top) \Sigma^{1/2}$. Let $\tilde{S} \triangleq \frac{1}{n} \sum_{i=1}^n Z_i Z_i^\top$ then

$$ \|S - \Sigma\|_{op} = \|\Sigma^{1/2} (\tilde{S} - I_p) \Sigma^{1/2}\|_{op} \leq \|\Sigma^{1/2}\|_{op} \|\tilde{S} - I_p\|_{op} \|\Sigma^{1/2}\|_{op} = \lambda \|\tilde{S} - I_p\|_{op}.$$

We use the result that, with high probability,

$$ \|\tilde{S} - I_p\|_{op}^2 \lesssim \sqrt{\frac{p}{n}} + \frac{p}{n}. $$

The intuition for the above result is that

$$ \|\tilde{S} - I_p\|_{op}^2 \leq \sup_{\|v\|=1} \|\tilde{S} v\|^2 + 1 - 2 \inf_{\|v\|=1} \|\tilde{S} v\| \approx (1 + \sqrt{p/n})^2 + 1 - 2(1 - \sqrt{p/n}) = 4 \sqrt{\frac{p}{n}} + \frac{p}{n}. $$

When $n \gtrsim p$ we have $\|\tilde{S} - I_p\|_{op} \overset{w.h.p.}{\lesssim} \sqrt{p/n}$.

Lower bound for estimating $\|\Sigma\|_{op}$: Let $a, b > 0$ be two parameters to be specified in the end. Consider two hypotheses:

$$ H_0 : \Sigma = \Sigma_0 = aI, \quad H_1 : \Sigma = \Sigma_v = aI + bwv', $$

where under the alternative Σ is a rank-one perturbation from the identity matrix. Then the operator norms under H_0 and H_1 are separated by b. Put a prior on H_1 that $v \sim \text{Uniform}\left\{ \pm \frac{1}{\sqrt{p}} \right\}^p$.

Applying the χ^2-method, we obtain that

$$ \chi^2 + 1 = \mathbb{E}_{v, \bar{v}} \int \frac{N(0, \Sigma_v) \otimes^n N(0, \Sigma_{\bar{v}}) \otimes^n}{N(0, \Sigma_0) \otimes^n} \mathbb{E}_{\Sigma_0} \left(\int N(0, \Sigma_v) N(0, \Sigma_{\bar{v}}) \right)^n = \mathbb{E}_{v, \bar{v}} \left(\det \left(I_p - \frac{b^2}{a^2} vv' \bar{v} \bar{v}' \right) \right)^{-n/2} $$

$$ = \mathbb{E}_{v, \bar{v}} \left(\det \left(I_p - \frac{b^2}{a^2} \langle v', \bar{v} \rangle v' \bar{v}' \right) \right)^{-n/2}. $$

Applying matrix determinant lemma that $\det(A + uv') = (1 + v' A^{-1} u) \det(A)$ yields that

$$ \chi^2 + 1 = \mathbb{E}_{v, \bar{v}} \left(1 - \frac{b^2}{a^2} \langle v', \bar{v} \rangle \right)^{-n/2} \leq \mathbb{E}_{v, \bar{v}} \exp \left(\frac{-n b^2}{2a^2} \langle v', \bar{v} \rangle^2 \right). $$

Note that the distribution of $\langle v', \bar{v} \rangle$ is the same as $\frac{1}{p} \sum_{i=1}^p R_i$ where R_i is an i.i.d. Rademacher random variable taking values ± 1 with probability $1/2$. Then $\langle v', \bar{v} \rangle$ is concentrated on $[-\frac{1}{\sqrt{p}}, \frac{1}{\sqrt{p}}]$.
(this can be made rigorous through Hungarian coupling). The problem boils down to the following simple optimization:

$$\begin{align*}
\max & \quad b \\
\text{s.t.} & \quad 0 \leq a \leq a + b \leq \lambda, \\
& \quad \frac{nb^2}{a^2p} \leq c,
\end{align*}$$

for some constant c. The optimal solution is

$$b = \frac{\lambda}{1 + \sqrt{n/cp}} \approx \lambda \left(1 + \sqrt{\frac{p}{n}}\right).$$

23.3 Uniformity testing: Is the lottery fair?

Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} P$ where P is a distribution on $[k]$. Consider two hypotheses:

$$H_0 : P = \text{Uniform}[k], \quad H_1 : d_{TV}(P, \text{Uniform}[k]) \geq \epsilon.$$

A test is a function $\psi : [k]^n \rightarrow \{0, 1\}$ and we want the probability of error to be

$$P_0^\otimes n(\psi = 1) + \sup_{P \in H_1} P_0^\otimes n(\psi = 0) \leq 1\%.$$

The sample complexity $n^*(k, \epsilon)$ is defined by the minimum sample size n such that a satisfactory test exists.

Theorem 23.1 ([Pan08]).

$$n^*(k, \epsilon) \asymp \sqrt{\frac{k}{\epsilon^2}}.$$

Remark 23.1. Estimating P by \hat{P} such that $d_{TV}(P, \hat{P}) \leq \epsilon$ requires $\asymp k/\epsilon^2$ samples.

To estimate any functional of a distribution, a sufficient statistic is the histogram (N_1, \ldots, N_k) where N_i records the number of appearances of symbol i. Since the total variation distance is permutation invariant (symmetric), a further sufficient statistic is the profile/histogram of histogram $(\varphi_1, \ldots, \varphi_n)$, where φ_i counts the number of symbols that appear exactly i times.

Upper bound: Our test statistic is φ_1. This is connected to “birthday paradox”: consider k days and n people,

$$P[\text{no coincident birthday}] = \frac{k}{k} \cdots \frac{k-n+1}{k} = \exp\left(\sum_{i=1}^{n-1} \log(1-i/k)\right) \approx \exp(-n^2/2k).$$

When $n \lesssim \sqrt{k}$ then $\varphi_1 \approx n$. The intuition is that the coincidence is least likely under uniform distribution: φ_1 is large (close to n) under H_0 and φ_1 is small under H_1.

By definition $\varphi_1 = \sum_{i=1}^{k} \mathbf{1}_{N_i = 1}$. We can compute that $\mathbb{E}_0[\varphi_1] - \mathbb{E}_1[\varphi_1] \gtrsim \frac{n^2}{k}$ and $\text{var}_0[\varphi_1] \sim \frac{n^2}{k}$.

If $n \gtrsim \sqrt{k}$ then $\sqrt{\text{var}_0[\varphi_1]} \lesssim \mathbb{E}_0[\varphi_1] - \mathbb{E}_1[\varphi_1]$. Under H_1 we can also compute that $\sqrt{\text{var}_0[\varphi_1]} \lesssim \mathbb{E}_0[\varphi_1] - \mathbb{E}_1[\varphi_1]$. The picture is shown as below and the detailed computation is referred to [Pan08].
Lower bound: Consider two hypotheses:

\[H_0 : P = \text{Uniform}[k], \quad H_1 : P = P_I = (p_1, \ldots, p_k), \]

where \(I \subseteq [k] \) is of size \(k/2 \) and

\[p_i = \begin{cases} 1 + \epsilon, & i \in I, \\ 1 - \epsilon, & i \not\in I. \end{cases} \]

Put the uniform prior on \(H_1 \) where \(I \) is chosen uniformly at random from all subsets of size \(k/2 \).

The goal is to show that

\[d_{TV} \left(\frac{1}{k} \sum_{|I|=k/2} P_I^\otimes n, \text{Uniform}[k]^\otimes n \right) < c \]

for some constant \(c < 1 \). A sufficient condition is that

\[\chi^2 \left(\frac{1}{k} \sum_{|I|=k/2} P_I^\otimes n \right \| \text{Uniform}[k]^\otimes n) < \infty. \]

Applying the Ingster-Suslina method (Lemma ??):

\[\chi^2 + 1 = \mathbb{E}_{I,\bar{I}} \int \frac{P_I^\otimes n P_{\bar{I}}^\otimes n}{P_0^\otimes n} = \mathbb{E}_{I,\bar{I}} \left(\sum P_I P_{\bar{I}} \right)^n = \mathbb{E}_{I,\bar{I}} \left(\frac{4\epsilon^2 |I \cap \bar{I}|}{k} + 1 - \epsilon^2 \right)^n \]

\[\leq \mathbb{E}_{I,\bar{I}} \exp \left(n\epsilon^2 \left(\frac{4|I \cap \bar{I}|}{k} - 1 \right) \right), \]

where \(I \cap \bar{I} \sim \text{HyperGeometric}(k, k/2, k/2) \). Applying the convex stochastic dominance of the hypergeometric distribution over the binomial distribution, we obtain that

\[\chi^2 + 1 \leq \mathbb{E}_{I,\bar{I}} \exp \left(n\epsilon^2 \left(\frac{4\text{Binom}(k, 1/2)}{k} - 1 \right) \right) = \left(\frac{\exp(2n\epsilon^2/k) + \exp(-2n\epsilon^2/k)}{2} \right)^{k/2} \]

\[\leq \exp \left(\frac{1}{2} \left(\frac{2n\epsilon^2}{k} \right)^2 \frac{k}{2} \right) < \infty, \]

when \(n \lesssim \sqrt{\frac{k}{\epsilon^2}} \), where we used the inequality that \(\frac{e^x + e^{-x}}{2} \leq e^{x^2/2} \) (by Taylor expansion).
References