ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Lecture 23: Functional estimation and testing

Lecturer: Yihong Wu Scribe: Pengkun Yang, April 26, 2016

Outline:

e GLM: estimating 6,,.c. More careful application of y?-method yields the sharp constant.

e Covariance matrix (independence testing): estimating a scalar functional can require as many
samples needed as estimating the whole parameter.

e Uniformity testing: Is lottery fair?

23.1 GLM: estimating 6,,,

The model of the observations are the same as before: X = 6 + Z where Z ~ N (0, ). We want to
estimate the magnitude of 0, i.e., T'(0) = Oppax. We will show the minimax risk with sharp constant
in high dimensions:

R 1
inf sup Eg(T — Hmax)z = < + 0(1)> logp, p— oc.
T 9eRrp 2

Upper bound: Let’s first analyze the maximum likelihood estimator, namely, X;,.x. Consider
0 = aeq Then Xyax = max{a+ Z1,2Zs,...,Z,} ~ max {a + 71, \/m} The picture is the blue
curve in Fig. 23.1. A better idea in this case is to decrease Xpmax by v/21logp/2, which will reduce
the worst case error.

Let T = Xypax — 7Vz12°gp. WLOG, consider pax = 01. Then

. V21 /1 w.h.p. /]
T_emax = max {Xmax_ % _emax} < m,aXZi_ ng < ng(1+0(1))a
i i

. 21 1 1
T_emax>X1_@_0max:Z1_ o8P ZOP <_ ng(1+0(1))) .
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Lower bound: Consider two hypotheses:
Hy:0=0, Hi:0pax > 7.

Put a prior on Hy: 6 ~ Uniform {rey, Tes,...,Tep}. Then under Hy the sample X ~ Py = N(0, )
and under H; the sample X ~ P, = % b N(re;,I,). The goal is to show that dpy(Py, Pr) — 0

when 7 = /(2 — €) log p for any € > 0.
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Figure 23.1: Maximum likelihood estimator and improvement via de-biasing.

In this problem, directly applying y2-method yields the minimax rate but not the sharp constant:
Let § = Te; and 6 = Tef, where I, jzl'k?'Uniform[p].

exp(7?) — 1

Y2 (Pr||Py) = Eexp(0,0) — 1 = Eexp (721{174}) —-1= ’

Therefore x?(P, || Py) — 0 < \/12@ < 1 and we conclude that R* > H%(l) log p.

We can apply x?-method more carefully by conditioning on some high probability event. The main
idea is that low probability event has vanishing contribution on the total variation distance but may
contribute a lot to the x? distance. Let 7 = 1/(2 — €) logp and let

E = {maXXi < \/Qlogp} .

Since max; Z; < y/2logp with high probability, and Z; = Op(1) for any fixed i, F is an high
probability event under both Py and P;. Denote by PdE and P the probability measure conditioned

on E, that is, PF(-) = P]%(()'(%?. Note that

drv(Py, PEP) =1 - Py(E), dry(Pr, PP)=1— Py(E). (23.1)

By triangle inequality, it suffices to show that dTV(P({E , PE) — 0. By the formula for conditional
probability, the likelihood ratio is

P _ Py(E) Py

PE~ P(E)P, ™




Applying x*-method on PF and PE, we obtain that

P2 PyP; 19113
FolE =E {/ P, 14 = Eé,éEXwN(é,Ip) [eXp <—2 +(0,X) ) 1k

=ExE; [exp (—7’2/2 —|-7'<X, 6[)) ]—E]

= <1 - ;) E [exp (—7%/2+7N(0,1)) 15] + ;E [exp (—7%/2 + 7X1) 15]

< (1—?}) —i—;exp ((—2;6 n 2(2—6)) logp).

Note that —(2—€)/2++/2(2 — €) < 1 as long as € > 0. Therefore [ %21;; = 1+0(1) and consequently

XP(PLIFY) = o(1) = drv(Pr, Fy') = o(1)

23.1

Y drv(Pr, Py) = o(1)
el am 1 1
Lé R* > +20( ) log p,

where we apply LeCam’s method for quadratic risk in Theorem ?7.

23.2 Covariance matrix

Let X4,..., Xni'%i'N(O, Y)), where ¥ is the covariance matrix with size p x p. A sufficient statistic

for ¥ is the sample covariance matrix:
1 n
§=— Z X; X!
i=1
Let © = {E HZl,, < /\}. The minimax risk for estimating ¥ under the operator norm is
R £ inf sup B[S — 2|2, = \? (1 A 3) .
S o n

Even if we only want to estimate the operator norm, a scalar functional of X, the difficulty in terms
of the minimax rate is the same as estimating 3 itself:

—_— 2
Ry 2 inf supE (2], - [Zl,,) =A% (14 2).
=1, =<0 n

Note that [|3]|sp is a viable estimator for ||| op- BY the triangle inequality of the operator norm,
R < Ry.

It suffices to show an upper bound for estimating > and the same lower bound for estimating ||3|| op*



Upper bound for estimating ¥:  Note a trivial upper bound that R < A2. It remains to
show that R} < A?p/n when n 2 p. Consider the sufficient statistic S. We want to show that for

any [[X|,, < A
1S = 2l S A\[
n

when n > p. Let X; = Y27, then Z'*'N(0,1,) and S = SV2(LS™" 7. 7/)571/2 Tet § £

LS Z Z; then
1S = Zll,, = I1Z2(5 = I)E"2llop < IZY2Nl0p 1S = Tpllopl =2 llop = AlS = Lyllop-

We use the result that, with high probability,

G 2 p p
18~ bl 5 /2 + 2

The intuition for the above result is that

IS —1I ||Op< sup |Sv]|? +1—2 1nf HSUH (1++p/n)*+1-2 1—\/p/n):4\/§+2.

5 w.h.p.
When n 2 p we have ||S — L|lop S p/n.

~

Lower bound for estimating |X[[,,:  Let a,b > 0 be two parameters to be specified in the end.
Consider two hypotheses:

Hy:X=%y=al, leE:ZU:aI+bvv’,

where under the alternative 3 is a rank-one perturbation from the identity matrix. Then the

operator norms under Hy and H; are separated by b. Put a prior on H; that v ~ Uniform { i}%} .

Applying the y2-method, we obtain that

®n
X2+1:Evﬁ/N(°’E> N(0,55)® /Noz 25)\"
—n/2
’20| b2 .
0] < |ZUHZT)||E;1 +E?1 — Eal| = U,{; det Ip _ ?’U’U/’U’U/
2\ "?
=Eus (det <Ip — ?@ , D) vd >> '

Applying matrix determinant lemma that det(A + uv’) = (1 + v’ A=) det(A) yields that

b2 n/2 nb
2 _ B I ~\2 2
X +1—Ev7v <1—a2<v,v>) <Evvexp <2a (v v> )

Note that the distribution of (v/, ) is the same as % P | R; where R; is an i.i.d. Rademacher

random variable taking values +1 with probability 1/2. Then (v/,¥) is concentrated on [—ﬁ, %]
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(this can be made rigorous through Hungarian coupling). The problem boils down to the following
simple optimization:
max b
st.0<a<a+b< A,
a’p — 7

for some constant c. The optimal solution is
A p)
b= —————= =< A[1A4/=].
1+ +/n/cp ( \/;

23.3 Uniformity testing: Is the lottery fair?

Let X, ... ,Xni'iifi "P where P is a distribution on [k]. Consider two hypotheses:
Hj : P = Uniform[k], H, : dpy (P, Uniform[k]) > e.
A test is a function ¢ : [k]™ — {0,1} and we want the probability of error to be

PP (¢ =1) + sup PP"(¢ =0) < 1%.
PeH;
The sample complexity n*(k,€) is defined by the minimum sample size n such that a satisfactory
test exists.

Theorem 23.1 ([Pan08g]).
VEk

n(kye) =< 25

Remark 23.1. Estimating P by P such that dpv (P, P) < € requires =< k/e2 samples.

To estimate any functional of a distribution, a sufficient statistic is the histogram (Ny,..., N)
where N; records the number of appearances of symbol ¢. Since the total variation distance is
permutation invariant (symmetric), a further sufficient statistic is the profile/histogram of histogram
(¢1,.-.,9¢n), where ¢; counts the number of symbols that appear exactly ¢ times.

Upper bound:  Our test statistic is ¢1. This is connected to “birthday paradox”: consider k
days and n people,

n—1
-1 — 1
P[no coincident birthday] = kk e bontl exp (Zlog(l - z/k:)) ~ exp(—n?/2k).
i=1

k k k

When n < vk then ¢; ~ n. The intuition is that the coincidence is least likely under uniform
distribution: ¢ is large (close to n) under Hy and ¢ is small under Hj.

n2

By definition ¢; = Y% 1y,-1. We can compute that Eg[p1] — Ei[p1] = ]:2 and varg[p1] < "—;

Ifn 2> g then y/varg[p1] < Eo[e1] — Ei1[¢1]. Under H; we can also compute that /varg[ei] <
Eo[p1] — Ei[e1]. The picture is shown as below and the detailed computation is referred to [Pan08].
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Lower bound: Consider two hypotheses:

Hj : P = Uniform[k], Hy:P=Pr=(p1,...,Dk)s

o Lie el
PP e, ig L

Put the uniform prior on H; where I is chosen uniformly at random from all subsets of size k/2.
The goal is to show that

where I C [k] is of size k/2 and

1
drv | 7%~ Z PP™, Uniform[k]*" | < ¢
(k/2) |I|=k/2
for some constant ¢ < 1. A sufficient condition is that

% (i) Z pen

k/2) |11=k/2

Uniform[k]®" | < oo.

Applying the Ingster-Suslina method (Lemma ?7):

P®np@n PrP-\" 42[ T n
2 I T 115 6| ﬁI| 2
X+1:El,f/]36®rL:EI,f<Z Pg) :El,f T_}—l_e

4InT
SJEIfeXp<ne2< | ; |1>>,

where I NI ~ HyperGeometric(k, k/2,k/2). Applying the convex stochastic dominance of the
hypergeometric distribution over the binomial distribution, we obtain that

i 2 . 2 k/2
A< E, jexp <n62 <4B1non;€(k, 1/2) 1)) _ (exp(Qne /k) —i—2exp( 2ne /k:))

<e 1 2ne” 26 < 0
S exp B 2 B )

when n < g, where we used the inequality that % < e%°/2 (by Taylor expansion).
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