ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Lecture 23: Functional estimation and testing

Lecturer: Yihong Wu Scribe: Pengkun Yang, April 26, 2016

Outline:

- GLM: estimating θ_{max} . More careful application of χ^2 -method yields the sharp constant.
- Covariance matrix (independence testing): estimating a scalar functional can require as many samples needed as estimating the whole parameter.
- Uniformity testing: Is lottery fair?

23.1 GLM: estimating θ_{\max}

The model of the observations are the same as before: $X = \theta + Z$ where $Z \sim N(0, I_p)$. We want to estimate the magnitude of θ , i.e., $T(\theta) = \theta_{\text{max}}$. We will show the minimax risk with sharp constant in high dimensions:

$$\inf_{\hat{T}} \sup_{\theta \in \mathbb{R}^p} \mathbb{E}_{\theta} (\hat{T} - \theta_{\max})^2 = \left(\frac{1}{2} + o(1)\right) \log p, \quad p \to \infty.$$

Upper bound: Let's first analyze the maximum likelihood estimator, namely, X_{max} . Consider $\theta = \alpha e_1$ Then $X_{\text{max}} = \max \{\alpha + Z_1, Z_2, \ldots, Z_p\} \approx \max \{\alpha + Z_1, \sqrt{2 \log p}\}$. The picture is the blue curve in Fig. 23.1. A better idea in this case is to decrease X_{max} by $\sqrt{2 \log p}/2$, which will reduce the worst case error.

Let $\hat{T} = X_{\max} - \frac{\sqrt{2\log p}}{2}$. WLOG, consider $\theta_{\max} = \theta_1$. Then

$$\hat{T} - \theta_{\max} = \max_{i} \left\{ X_{\max} - \frac{\sqrt{2\log p}}{2} - \theta_{\max} \right\} \le \max_{i} Z_{i} - \sqrt{\frac{\log p}{2}} \stackrel{\text{w.h.p.}}{\le} \sqrt{\frac{\log p}{2}} (1 + o(1)),$$
$$\hat{T} - \theta_{\max} \ge X_{1} - \frac{\sqrt{2\log p}}{2} - \theta_{\max} = Z_{1} - \sqrt{\frac{\log p}{2}} \ge O_{P} \left(-\sqrt{\frac{\log p}{2}} (1 + o(1)) \right).$$

Lower bound: Consider two hypotheses:

$$H_0: \theta = 0, \qquad H_1: \theta_{\max} \ge \tau.$$

Put a prior on H_1 : $\theta \sim \text{Uniform} \{\tau e_1, \tau e_2, \dots, \tau e_p\}$. Then under H_0 the sample $X \sim P_0 = N(0, I_p)$ and under H_1 the sample $X \sim P_{\pi} = \frac{1}{p} \sum_{i=1}^{p} N(\tau e_i, I_p)$. The goal is to show that $d_{\text{TV}}(P_0, P_{\pi}) \to 0$ when $\tau = \sqrt{(2-\epsilon)\log p}$ for any $\epsilon > 0$.

Figure 23.1: Maximum likelihood estimator and improvement via de-biasing.

In this problem, directly applying χ^2 -method yields the minimax rate but not the sharp constant: Let $\theta = \tau e_I$ and $\tilde{\theta} = \tau e_{\tilde{I}}$, where $I, \tilde{I}^{i.i.d.}$ Uniform[p].

$$\chi^2(P_{\pi} \| P_0) = \mathbb{E} \exp\langle \theta, \tilde{\theta} \rangle - 1 = \mathbb{E} \exp\left(\tau^2 \mathbf{1}_{\left\{I \neq \tilde{I}\right\}}\right) - 1 = \frac{\exp(\tau^2) - 1}{p}$$

Therefore $\chi^2(P_{\pi} \| P_0) \to 0 \Leftrightarrow \frac{\tau}{\sqrt{\log p}} < 1$ and we conclude that $R^* \ge \frac{1+o(1)}{4} \log p$.

We can apply χ^2 -method more carefully by conditioning on some high probability event. The main idea is that low probability event has vanishing contribution on the total variation distance but may contribute a lot to the χ^2 distance. Let $\tau = \sqrt{(2-\epsilon)\log p}$ and let

$$E = \left\{ \max_{i} X_i \le \sqrt{2\log p} \right\}.$$

Since $\max_i Z_i \leq \sqrt{2\log p}$ with high probability, and $Z_i = O_P(1)$ for any fixed *i*, *E* is an high probability event under both P_0 and P_{π} . Denote by P_0^E and P_{π}^E the probability measure conditioned on *E*, that is, $P_0^E(\cdot) = \frac{P_0(\cdot \cap E)}{P_0(E)}$. Note that

$$d_{\rm TV}(P_0, P_0^E) = 1 - P_0(E), \quad d_{\rm TV}(P_\pi, P_\pi^E) = 1 - P_\pi(E).$$
 (23.1)

By triangle inequality, it suffices to show that $d_{\text{TV}}(P_0^E, P_{\pi}^E) \to 0$. By the formula for conditional probability, the likelihood ratio is

$$\frac{P_{\pi}^{E}}{P_{0}^{E}} = \frac{P_{0}(E)}{P_{\pi}(E)} \frac{P_{\pi}}{P_{0}} \mathbf{1}_{E}$$

Applying χ^2 -method on P_0^E and P_π^E , we obtain that

$$\int \frac{P_{\pi}^{2}}{P_{0}} \mathbf{1}_{E} = \mathbb{E} \left[\int \frac{P_{\theta}P_{\tilde{\theta}}}{P_{0}} \mathbf{1}_{E} \right] = \mathbb{E}_{\theta,\tilde{\theta}} \mathbb{E}_{X \sim N(\tilde{\theta},I_{p})} \left[\exp\left(-\frac{\|\theta\|_{2}^{2}}{2} + \langle\theta,X\rangle\right) \mathbf{1}_{E} \right]$$
$$= \mathbb{E}_{X} \mathbb{E}_{I} \left[\exp\left(-\tau^{2}/2 + \tau \langle X,e_{I}\rangle\right) \mathbf{1}_{E} \right]$$
$$= \left(1 - \frac{1}{p}\right) \mathbb{E} \left[\exp\left(-\tau^{2}/2 + \tau N(0,1)\right) \mathbf{1}_{E} \right] + \frac{1}{p} \mathbb{E} \left[\exp\left(-\tau^{2}/2 + \tau X_{1}\right) \mathbf{1}_{E} \right]$$
$$\leq \left(1 - \frac{1}{p}\right) + \frac{1}{p} \exp\left(\left(-\frac{2 - \epsilon}{2} + \sqrt{2(2 - \epsilon)}\right) \log p\right).$$

Note that $-(2-\epsilon)/2 + \sqrt{2(2-\epsilon)} < 1$ as long as $\epsilon > 0$. Therefore $\int \frac{P_{\pi}^2}{P_0} \mathbf{1}_E = 1 + o(1)$ and consequently

$$\begin{split} \chi^2(P_\pi^E \| P_0^E) &= o(1) \implies d_{\mathrm{TV}}(P_\pi^E, P_0^E) = o(1) \\ \stackrel{(23.1)}{\Longrightarrow} d_{\mathrm{TV}}(P_\pi, P_0) &= o(1) \\ \overset{\mathrm{LeCam}}{\Longrightarrow} R^* &\geq \frac{1 + o(1)}{2} \log p, \end{split}$$

where we apply LeCam's method for quadratic risk in Theorem ??.

23.2 Covariance matrix

Let $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} N(0, \Sigma)$, where Σ is the covariance matrix with size $p \times p$. A sufficient statistic for Σ is the sample covariance matrix:

$$S = \frac{1}{n} \sum_{i=1}^{n} X_i X_i'.$$

Let $\Theta = \left\{ \Sigma : \|\Sigma\|_{op} \leq \lambda \right\}$. The minimax risk for estimating Σ under the operator norm is

$$R_1^* \triangleq \inf_{\hat{\Sigma}} \sup_{\Sigma \in \Theta} \mathbb{E} \| \hat{\Sigma} - \Sigma \|_{op}^2 \asymp \lambda^2 \left(1 \land \frac{p}{n} \right).$$

Even if we only want to estimate the operator norm, a scalar functional of Σ , the difficulty in terms of the minimax rate is the same as estimating Σ itself:

$$R_2^* \triangleq \inf_{\|\widehat{\Sigma}\|_{op}} \sup_{\Sigma \in \Theta} \mathbb{E} \left(\widehat{\|\Sigma\|_{op}} - \|\Sigma\|_{op} \right)^2 \asymp \lambda^2 \left(1 \land \frac{p}{n} \right).$$

Note that $\|\hat{\Sigma}\|_{op}$ is a viable estimator for $\|\Sigma\|_{op}$. By the triangle inequality of the operator norm,

 $R_2^* \lesssim R_1^*.$

It suffices to show an upper bound for estimating Σ and the same lower bound for estimating $\|\Sigma\|_{op}$.

Upper bound for estimating Σ : Note a trivial upper bound that $R_1^* \leq \lambda^2$. It remains to show that $R_1^* \leq \lambda^2 p/n$ when $n \geq p$. Consider the sufficient statistic S. We want to show that for any $\|\Sigma\|_{op} \leq \lambda$,

$$\|S - \Sigma\|_{op} \stackrel{\text{w.h.p}}{\leq} \lambda \sqrt{\frac{p}{n}},$$

when $n \gtrsim p$. Let $X_i = \Sigma^{1/2} Z_i$ then $Z_i^{\text{i.i.d.}} N(0, I_p)$ and $S = \Sigma^{1/2} (\frac{1}{n} \sum_{i=1}^n Z_i Z'_i) \Sigma'^{1/2}$. Let $\tilde{S} \triangleq \frac{1}{n} \sum_{i=1}^n Z_i Z'_i$ then

$$\|S - \Sigma\|_{op} = \|\Sigma^{1/2} (\tilde{S} - I_p) \Sigma'^{1/2}\|_{op} \le \|\Sigma^{1/2}\|_{op} \|\tilde{S} - I_p\|_{op} \|\Sigma'^{1/2}\|_{op} = \lambda \|\tilde{S} - I_p\|_{op}$$

We use the result that, with high probability,

$$\|\tilde{S} - I_p\|_{op}^2 \lesssim \sqrt{\frac{p}{n}} + \frac{p}{n}$$

The intuition for the above result is that

$$\|\tilde{S} - I_p\|_{op}^2 \le \sup_{\|v\|=1} \|\tilde{S}v\|^2 + 1 - 2\inf_{\|v\|=1} \|\tilde{S}v\| \approx (1 + \sqrt{p/n})^2 + 1 - 2(1 - \sqrt{p/n}) = 4\sqrt{\frac{p}{n}} + \frac{p}{n}.$$

When $n \gtrsim p$ we have $\|\tilde{S} - I_p\|_{op} \stackrel{\text{w.h.p.}}{\lesssim} \sqrt{p/n}$.

Lower bound for estimating $\|\Sigma\|_{op}$: Let a, b > 0 be two parameters to be specified in the end. Consider two hypotheses:

$$H_0: \Sigma = \Sigma_0 = aI, \qquad H_1: \Sigma = \Sigma_v = aI + bvv',$$

where under the alternative Σ is a rank-one perturbation from the identity matrix. Then the operator norms under H_0 and H_1 are separated by b. Put a prior on H_1 that $v \sim \text{Uniform}\left\{\frac{\pm 1}{\sqrt{p}}\right\}^p$.

Applying the χ^2 -method, we obtain that

$$\chi^{2} + 1 = \mathbb{E}_{v,\tilde{v}} \int \frac{N(0,\Sigma_{v})^{\otimes n} N(0,\Sigma_{\tilde{v}})^{\otimes n}}{N(0,\Sigma_{0})^{\otimes n}} = \mathbb{E}_{v,\tilde{v}} \left(\int \frac{N(0,\Sigma_{v})N(0,\Sigma_{\tilde{v}})}{N(0,\Sigma_{0})} \right)^{n}$$
$$= \mathbb{E}_{v,\tilde{v}} \left(\sqrt{\frac{|\Sigma_{0}|}{|\Sigma_{v}||\Sigma_{\tilde{v}}^{-1} + \Sigma_{\tilde{v}}^{-1} - \Sigma_{0}^{-1}|}} \right)^{n} = \mathbb{E}_{v,\tilde{v}} \left(\det \left(I_{p} - \frac{b^{2}}{a^{2}}vv'\tilde{v}\tilde{v}' \right) \right)^{-n/2}$$
$$= \mathbb{E}_{v,\tilde{v}} \left(\det \left(I_{p} - \frac{b^{2}}{a^{2}}\langle v', \tilde{v} \rangle v\tilde{v}' \right) \right)^{-n/2}.$$

Applying matrix determinant lemma that $\det(A + uv') = (1 + v'A^{-1}u) \det(A)$ yields that

$$\chi^2 + 1 = \mathbb{E}_{v,\tilde{v}} \left(1 - \frac{b^2}{a^2} \langle v', \tilde{v} \rangle^2 \right)^{-n/2} \le \mathbb{E}_{v,\tilde{v}} \exp\left(\frac{nb^2}{2a^2} \langle v', \tilde{v} \rangle^2\right).$$

Note that the distribution of $\langle v', \tilde{v} \rangle$ is the same as $\frac{1}{p} \sum_{i=1}^{p} R_i$ where R_i is an i.i.d. Rademacher random variable taking values ± 1 with probability 1/2. Then $\langle v', \tilde{v} \rangle$ is concentrated on $\left[-\frac{1}{\sqrt{p}}, \frac{1}{\sqrt{p}}\right]$

(this can be made rigorous through Hungarian coupling). The problem boils down to the following simple optimization:

$$\begin{array}{l} \max \ b \\ \text{s.t. } 0 \leq a \leq a+b \leq \lambda, \\ \frac{nb^2}{a^2p} \leq c, \end{array}$$

for some constant c. The optimal solution is

$$b = \frac{\lambda}{1 + \sqrt{n/cp}} \asymp \lambda \left(1 \land \sqrt{\frac{p}{n}} \right)$$

23.3 Uniformity testing: Is the lottery fair?

Let $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} P$ where P is a distribution on [k]. Consider two hypotheses:

 $H_0: P = \text{Uniform}[k], \qquad H_1: d_{\text{TV}}(P, \text{Uniform}[k]) \ge \epsilon.$

A test is a function $\psi: [k]^n \to \{0, 1\}$ and we want the probability of error to be

$$P_0^{\otimes n}(\psi = 1) + \sup_{P \in H_1} P^{\otimes n}(\psi = 0) \le 1\%.$$

The sample complexity $n^*(k, \epsilon)$ is defined by the minimum sample size n such that a satisfactory test exists.

Theorem 23.1 ([Pan08]).

$$n^*(k,\epsilon) \asymp \frac{\sqrt{k}}{\epsilon^2}.$$

Remark 23.1. Estimating P by \hat{P} such that $d_{\text{TV}}(P, \hat{P}) \leq \epsilon$ requires $\approx k/\epsilon^2$ samples.

To estimate any functional of a distribution, a sufficient statistic is the histogram (N_1, \ldots, N_k) where N_i records the number of appearances of symbol *i*. Since the total variation distance is permutation invariant (symmetric), a further sufficient statistic is the profile/histogram of histogram $(\varphi_1, \ldots, \varphi_n)$, where φ_i counts the number of symbols that appear exactly *i* times.

Upper bound: Our test statistic is φ_1 . This is connected to "birthday paradox": consider k days and n people,

$$\mathbb{P}[\text{no coincident birthday}] = \frac{k}{k} \frac{k-1}{k} \dots \frac{k-n+1}{k} = \exp\left(\sum_{i=1}^{n-1} \log(1-i/k)\right) \approx \exp(-n^2/2k).$$

When $n \leq \sqrt{k}$ then $\varphi_1 \approx n$. The intuition is that the coincidence is least likely under uniform distribution: φ_1 is large (close to n) under H_0 and φ_1 is small under H_1 .

By definition $\varphi_1 = \sum_{i=1}^k \mathbf{1}_{N_i=1}$. We can compute that $\mathbb{E}_0[\varphi_1] - \mathbb{E}_1[\varphi_1] \gtrsim \frac{n^2 \epsilon^2}{k}$ and $\operatorname{var}_0[\varphi_1] \lesssim \frac{n^2}{k}$. If $n \gtrsim \frac{\sqrt{k}}{\epsilon^2}$ then $\sqrt{\operatorname{var}_0[\varphi_1]} \lesssim \mathbb{E}_0[\varphi_1] - \mathbb{E}_1[\varphi_1]$. Under H_1 we can also compute that $\sqrt{\operatorname{var}_0[\varphi_1]} \lesssim \mathbb{E}_0[\varphi_1] - \mathbb{E}_1[\varphi_1]$. The picture is shown as below and the detailed computation is referred to [Pan08].

Lower bound: Consider two hypotheses:

$$H_0: P = \text{Uniform}[k], \qquad H_1: P = P_I = (p_1, \dots, p_k)_{ij}$$

where $I \subseteq [k]$ is of size k/2 and

$$p_i = \begin{cases} \frac{1+\epsilon}{k}, & i \in I, \\ \frac{1-\epsilon}{k}, & i \notin I. \end{cases}$$

Put the uniform prior on H_1 where I is chosen uniformly at random from all subsets of size k/2. The goal is to show that

$$d_{\mathrm{TV}}\left(\frac{1}{\binom{k}{k/2}}\sum_{|I|=k/2}P_{I}^{\otimes n}, \mathrm{Uniform}[k]^{\otimes n}\right) < c$$

for some constant c < 1. A sufficient condition is that

$$\chi^2\left(\frac{1}{\binom{k}{k/2}}\sum_{|I|=k/2}P_I^{\otimes n}\right\|\operatorname{Uniform}[k]^{\otimes n}\right)<\infty.$$

Applying the Ingster-Suslina method (Lemma ??):

$$\begin{split} \chi^2 + 1 &= \mathbb{E}_{I,\tilde{I}} \int \frac{P_I^{\otimes n} P_{\tilde{I}}^{\otimes n}}{P_0^{\otimes n}} = \mathbb{E}_{I,\tilde{I}} \left(\sum \frac{P_I P_{\tilde{I}}}{P_0} \right)^n = \mathbb{E}_{I,\tilde{I}} \left(\frac{4\epsilon^2 |I \cap \tilde{I}|}{k} + 1 - \epsilon^2 \right)^n \\ &\leq \mathbb{E}_{I,\tilde{I}} \exp\left(n\epsilon^2 \left(\frac{4|I \cap \tilde{I}|}{k} - 1 \right) \right), \end{split}$$

where $I \cap \tilde{I} \sim$ HyperGeometric(k, k/2, k/2). Applying the convex stochastic dominance of the hypergeometric distribution over the binomial distribution, we obtain that

$$\begin{split} \chi^2 + 1 &\leq \mathbb{E}_{I,\tilde{I}} \exp\left(n\epsilon^2 \left(\frac{4\mathrm{Binom}(k, 1/2)}{k} - 1\right)\right) = \left(\frac{\exp(2n\epsilon^2/k) + \exp(-2n\epsilon^2/k)}{2}\right)^{k/2} \\ &\leq \exp\left(\frac{1}{2} \left(\frac{2n\epsilon^2}{k}\right)^2 \frac{k}{2}\right) < \infty, \end{split}$$

when $n \leq \frac{\sqrt{k}}{\epsilon^2}$, where we used the inequality that $\frac{e^x + e^{-x}}{2} \leq e^{x^2/2}$ (by Taylor expansion).

References

[Pan08] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete data. IEEE Trans. Inf. Theory, 54(10):4750–4755, 2008.