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Graph matching (network alignment)
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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)
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QAP (1)

Given symmetric n X n matrices A, B, solve

Quadratic Assignment Problem (QAP) : Eé%)i;AW(i)W(j)Bij
i<j

¢ Introduced by Koopmans-Beckmann '57 (Yale Econ)
COVLES FOUNDATION DISCUSSION PAPER; NO. ks

Asgignment Problems and the Location of Economic Activities**

by
Tjelling C. Koopmans end Martin Beclwain
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QAP (2)

Noiseless case: QAP <= Graph isomorphism
Given two graphs A and B, decide whether A = B, i.e., there exists a
bijection 7 : V(A) — V(B) such that

(u,v) € E(A) & (n(u),n(v)) € E(B)
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QAP (2)

Noiseless case: QAP <= Graph isomorphism
Given two graphs A and B, decide whether A = B, i.e., there exists a
bijection 7 : V(A) — V(B) such that

(u,v) € E(A) & (n(u),n(v)) € E(B)

® Not known to be solvable in polynomial time in the worst case

® In practice, two graphs are often not exactly isomorphic, but still
want to tell whether their topologies are similar
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QAP (3)

QAP includes many problems as special cases: A = adj matrix of
observed graph

® Planted clique (Part I):
B = adj matrix of a fixed k-clique
e Minumum bisection (Part II):
B=¢¢T, E=(1,...,1,—-1,...,—-1)".
® TSP (Lec 12):

B = adj matrix of a fixed Hamiltonian cycle
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QAP (3)

QAP includes many problems as special cases: A = adj matrix of
observed graph

® Planted clique (Part I):
B = adj matrix of a fixed k-clique
e Minumum bisection (Part II):
B=¢¢T, E=(1,...,1,—-1,...,—-1)".
® TSP (Lec 12):
B = adj matrix of a fixed Hamiltonian cycle

Here we will be dealing with B being Erdés-Rényi as well.
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Application 1: Network de-anonymization

Linked[T}].

® Successfully de-anonymize Netflix dataset by matching it to IMDB
[Narayanan-Shmatikov '08]

e Correctly identify 30.8% of shared users between Twitter and Flickr
[Narayanan-Shmatikov '09]
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Application 2: Protein-Protein Interaction network

 P27986
P55957 PO1127
060271 Q58A65
___Qswuls o QOS3
P064367L P58391 / \ /
QIY365 > _QOIMD3
P62805 pogdod”
00742 # e, OSSAT
Q07890 P46108
Human network Mouse network

[Kazemi-Hassani-Grossglauser-Modarres '16]

Graph matching for aligning PPI networks between different species, to
identify conserved components and genes with common function
[Singh-Xu-Berger '08]
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Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar
objects that undergo different deformations

?

nJ
L "

Shape REtrieval Contest (SHREC) dataset [Lihner et al '16]
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Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar
objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lihner et al '16]

3-D shapes — geometric graphs (features — nodes, distances — edges)
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Two key challenges

e Statistical: two graphs may not be the same

e Computational: # of possible node mappings is n! (100! ~ 10'°%)
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Beyond worst-case intractability

® NP-hard for matching two graphs in worst case

» QAP is hard to approximate within exp(polylog(n)) multiplicative
factor [Makarychev-Manokaran-Sviridenko '15]

® However, real networks are not arbitrary and have latent structures
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Beyond worst-case intractability

® NP-hard for matching two graphs in worst case
» QAP is hard to approximate within exp(polylog(n)) multiplicative
factor [Makarychev-Manokaran-Sviridenko '15]
® However, real networks are not arbitrary and have latent structures

® Recent surge of interests on the average-case analysis of matching
correlated random graphs [Feizi at el.'16, Lyzinski at el'16,
Cullina-Kiyavash'16,17, Ding-Ma-W-Xu'18, Barak-Chou-Lei-Schramm-Sheng’'19,
Fan-Mao-W-Xu'19a,19b, Ganassali-Massoulié¢'20, Hall-Massouli€'20, .. .]
» (CS-style average-case analysis: under null model, aiming to
understand “what's the fraction of bad instances”
> Stat-style average-case analysis: under planted model (meaningful
statistical model).

® Focus on correlated Erd6s-Rényi graphs model [Pedarsani-Grossglauser '11]
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Correlated Erdés-Rényi graphs model G(n, p, s)

A
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Correlated Erdés-Rényi graphs model G(n, p, s)
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Correlated Erdés-Rényi graphs model G(n, p, s)
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Correlated Erdés-Rényi graphs model G(n, p, s)

A ~ G(n,ps)

Permute node labels |

uniform
Sn

by .
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Correlated Erdés-Rényi graphs model G(n, p, s)

A ~ G(n,ps)

SR
2

W%
-~

Permute node labels |

uniform
Sn

by .

® (Ar, (i)m.(j)> Bij) are iid pairs of correlated Bern(ps)
e Key parameter nps’: average degree of intersection graph A A B*;
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Correlated Gaussian model

B = pA™ ++/1—p2Z,

where

® A and Z are independent Gaussian Wigner matrices with iid
standard normal entries;

o AT — (AW*(i)W*(j)) denotes the relabeled version of A

® Conditional on 7, forany 1 <i < j <mn,

(Ar. om0 BN ((9). (55) )
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Two statistical tasks: detection and estimation

® Detection:
» Ho: A and B are independent Erd6és-Rényi graphs G(n, ps)
» Hi: A and B are correlated Erdés-Rényi graphs G(n, p, s)
> Test between 7 and #; based on observation of (A4, B)

® Estimation:

» Observe two correlated Erdés-Rényi graphs A, B ~ G(n, p, s)
» Recover the underlying true vertex correspondence 7,

(Similarly for Gaussian model)
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Two statistical tasks: detection and estimation

® Detection:
» Ho: A and B are independent Erd6és-Rényi graphs G(n, ps)
» Hi: A and B are correlated Erdés-Rényi graphs G(n, p, s)
> Test between 7 and #; based on observation of (A4, B)

® Estimation:

» Observe two correlated Erdés-Rényi graphs A, B ~ G(n, p, s)
» Recover the underlying true vertex correspondence 7,

(Similarly for Gaussian model)

Focus of this lecture

What are the information-theoretic limits of detection and estimation?
(Next Tuesday: Algorithms.)
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Two statistical tasks: detection and estimation

® Detection:
» Ho: A and B are independent Erd6és-Rényi graphs G(n, ps)
» Hi: A and B are correlated Erdés-Rényi graphs G(n, p, s)
> Test between 7 and #; based on observation of (A4, B)

® Estimation:

» Observe two correlated Erdés-Rényi graphs A, B ~ G(n, p, s)
» Recover the underlying true vertex correspondence 7,

(Similarly for Gaussian model)

Focus of this lecture

What are the information-theoretic limits of detection and estimation?
(Next Tuesday: Algorithms.)

Progress in the recent decade: [Pedarsani-Grossglauser '11], [Cullina-Kiyavash
'16,17], [Hall-Massoulié '20], [Ganassali '20], [W-Xu-Yu '20,21], [Ganassali-Lelarge-Massoulié
'21], [Ding-Du '21 22]
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Maximum likelihood estimation as quadratic assignment

Maximum likelihood estimation reduces to quadratic assignment (QAP):

™ML € arg max Z Aﬂ(i)ﬂ(j)Bij .
T gy

® QAP is NP-hard in worst case

® How much does my, have in common with 7*?

{i € n]:m(i) = m(i)}

overlap(m,, T) £ =
n

i.e., fraction of correctly classified nodes
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Sharp threshold for detection: Gaussian

Theorem (W-Xu-Yu '20)
np® > (44 €)logn = TV (P, Q) = 1 — o(1) (test error=o(1))
np® < (4 —€)logn = TV (P, Q) = o(1) (test error=1 — o(1))
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Sharp threshold for detection: Gaussian

Theorem (W-Xu-Yu

np® > (44 €)logn = TV (P, Q) = 1 — o(1) (test error=o(1))
np® < (4 —€)logn = TV (P, Q)

TV (P, Q),
1

20)

o(1) (test error=1 — o(1))

weak detection
impossible

test error=1 — o(1)

strong detection
possible

test error=o(1)

e
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Sharp threshold for recovery: Gaussian model

Theorem (W-Xu-Yu '21)

np2 > (4+¢€)logn = L = 7. whp
np® < (4 — €)logn = overlap (7, 7.) = o(1), whp, ¥V estimator &

E [overlap (7, 7.)]
1

Partial recovery
impossible

“Nothing”

Exact recovery
possible (MLE)

“ALY

3 0

? Togn
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Sharp threshold for recovery: Gaussian model

Theorem (W-Xu-Yu '21)

np2 > (4+¢€)logn = L = 7. whp
np® < (4 — €)logn = overlap (7, 7.) = o(1), whp, ¥V estimator &

E [overlap (7, 7.)]
1

Partial recovery
impossible

“Nothing”

Exact recovery
possible (MLE)

“ATP

3 0

? Togn

® Exact recovery threshold is derived in [Ganassali '20]

® Exhibits a stronger form of “all or nothing” phenomenon

® Only a vanishing amount of correlation allows detection and recovery
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Sharp detection threshold: dense Erds-Rényi graphs
Theorem (W-Xu-Yu '20)
Suppose n=°1) < p <1—Q(1). Then,

2+¢)l
nps? > (feﬂ — TV(P,Q) =1—o0(1) (test error=o(1))

log 5= 1+p
nps? < (2—¢€)logn

< - = TV (P, Q) = o(1) (test error=1 — o(1))
log 5= 1+p
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Sharp detection threshold: dense Erdés-Rényi graphs
Theorem (W-Xu-Yu '20)
Suppose n=°1) < p <1—Q(1). Then,

nps® > —— = TV (P,Q) =1—-o0(1) (test error=o(1))
log 5= 1+
5 _ (2—¢€)logn
nps® < —— = TV (P, Q) = o(1) (test error=1 — o(1))
log 5= 1+
TV (P, Q)4
1

strong detection
possible

weak detection
impossible

test error=1 — o(1) ! test error=0(1)

5 nps®(log(1/p)—1+p)
- logn

[\
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Sharp recovery threshold: dense Erdos-Rényi

Theorem (W-Xu-Yu '21)
Suppose n=°1) < p <1 —Q(1). Then,
2 (2+¢)logn

= overlap (TyL, 7«) = 1 — o(1) wh
_log%—1+p P (7ML, 7«) (1) whp

nps

nps® < i = overlap (7, m.) = o(1), whp, V estimator 7
log=—1+0p
E [overlap (7, 7.)| 4
1
Partial recovery E Almost exact recovery
impossible E possible (MLE)
“Nothing” i “All”
, nps*(log(1/p)—14p)
0 2 ’ logn
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Sharp recovery threshold: dense Erdos-Rényi

Theorem (W-Xu-Yu '21)

Suppose n=°1) < p <1 —Q(1). Then,
9 (2+€)logn .
nps® > ————— = overlap (TMmL, ™) = 1 — o(1) whp

nps? < (2—¢€)logn

< i = overlap (7, 7.) = o(1), whp, ¥V estimator 7
log=—1+0p
P

Interpretation of threshold:

1
° I(m; A B) = (3) x ps? <log1+p)
p

mutual info btw two correlated edges
® H(m) ~nlogn
® Threshold is at I(m; A, B) ~ H(74)

nly a vanishing amount of correlation allows detection and recover
e Only h t of lat Il detect d y
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Sharp detection threshold: sparse Erdds-Rényi

Theorem (Ding-Du '22a)
Suppose p =n~% for a € (0,1) and \* = v~ 1(1/a).

nps? > A\* 4+ e = TV (P, Q) =1 — o(1) (test error=0(1))
nps®* < \* —e = TV (P, Q) = o(1) (test error=1 — o(1))

® Sharpens the earlier threshold of nps? = ©(1) [W-Xu-Yu "20]
® v:[l,00) = [1,00) is given by the densest subgraph problem in
Erdés-Rényi G(n, 2) [Hajek 90, Anantharam-Salez’ 16]

o lew))
o£UCln] U]

= y(A)

® When np = (1), there is no zero-one phase transition.

19/41



Sharp recovery threshold: sparse Erdés-Rényi

Theorem (Ding-Du '22b)
Suppose p =n~% for a € (0,1] and \* =y~ (1 /a).

(1) whp.

nps? > A\* 4+ e = overlap (Fup, 7x) > Q
nps® < \* — e = overlap (7, 7.) = o(1) whp. V7

® The case of & = 1 is proved in [Ganassali-Lelarge-Massoulié '21]
e Sharpen the partial recovery threshold at nps? = ©(1) [W-Xu-Yu '20]

® “All-or-nothing” phenomenon does not exist, as almost exact
recovery (overlap = 1 — o(1)) requires
np32 — 00 [Cullina-Kiyavash-Mittal-Poor '19]
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Exact recovery threshold

Theorem (W-Xu-Yu '21)

Suppose p < 1 —Q(1). Then
(1+¢€)logn

(1-vp)°

nps® > = overlap (Tmr, 7x) = 1 whp.

= overlap (7, 7,) # 1 whp. V7.
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Exact recovery threshold

Theorem (W-Xu-Yu '21)

Suppose p < 1 —Q(1). Then

nps® > % = overlap (Tmr, 7x) = 1 whp.
(1—-vP)
9 _(1—¢€)logn % N
nps® < 5~ == overlap (T, 7«) # 1 whp. V 7.
(1-vp)

® p =o0(1): reduces to the connectivity threshold of the intersection
graph A A B* ~ G(n,ps?) [Cullina-Kiyavash'16,17].
Fact about Erdés-Rényi graph: For G ~ G(n,q),
> Ifg> w&, G is connected.

> If ¢ < (1762&, G has many isolated vertices.
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Exact recovery threshold

Theorem (W-Xu-Yu '21)

Suppose p < 1 —Q(1). Then

nps? > (1+¢€)logn

5~ == overlap (TmL, 7«) = 1 whp.
(1—-vP)
9 _(1—¢€)logn % N
nps* < 5~ == overlap (T, 7«) # 1 whp. V 7.
(1-vp)

® p =o0(1): reduces to the connectivity threshold of the intersection
graph A A B* ~ G(n,ps?) [Cullina-Kiyavash'16,17].
Fact about Erdés-Rényi graph: For G ~ G(n,q),
> Ifg> w&, G is connected.

> If ¢ < (1762&, G has many isolated vertices.

® p = Q(1): strictly higher than the connectivity threshold
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Analysis

® Proof of detection thresholds

® Proof of exact recovery thresholds
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Proof of detection thresholds: Positive results

® Gaussian or dense Erd6s-Rényi: analyzing QAP statistic
Toap = Tax ZAw(i)w(j)Bij
1<J
In Erdds-Rényi model: Tqap = size of maximal common subgraph

® Analysis: standard first-moment computation (next page)
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Proof of detection thresholds: Positive results

® Gaussian or dense Erd6s-Rényi: analyzing QAP statistic
Toap = Tax ZAw(i)w(j)Bij
1<)
In Erdds-Rényi model: Tqap = size of maximal common subgraph

® Analysis: standard first-moment computation (next page)

® Sparse Erdés-Rényi: analyzing densest subgraph statistic

& (U)
max ax ,
TESK UC[n]:|U|>n/logn |U|

where £,(U) is the set of edges induced by vertices in U in
intersection graph A™ A B
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Proof of detection thresholds: Positive results

Gaussian analysis:

Toap = max ; An(iye(j) Bij-
i<j

® Under P (p-correlated):

n
Tqap > ZAm(i)m(j)Bz‘j ~ P(2>

1<J

¢ Under Q (independent):

) <TQAP < p(Z)) < nlexp (— (p(;;))Q) ~ exp (p?n?/4 — nlogn)

2(3)

d p2 = % —> success
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Proof of detection thresholds: Negative results

Second-moment method (Chap 7):

Eo

(
(

P(A, B)
Q(A, B)

P(A, B)
Q(A, B)

>2
)

=0(1) = TV(P,Q) <1-Q(1)
Strong detection is impossible
=1+0(1) = TV(P,Q) = o(1)

Weak detection is impossible
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Proof of detection thresholds: Negative results

Second-moment method (Chap 7):

.
Eg (ggig;) | -ow . TV(P,Q) < 1-0(1)
Strong detection is impossible

_ .
Eo (ggi g;) — 14 0(1) . TV(P,Q) = o(1)

Weak detection is impossible

Here

77( 14, Z3f7r*
(A nlz .

As usual, second moment computation involves two iid replicas 7, and &
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Cycle (orbit) decomposition
* Node permutation o acts on [n]
e Edge permutation o acts on (I2): o&((i,)) 2 (0(),0(5))
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Cycle (orbit) decomposition
* Node permutation o acts on [n]
e Edge permutation o acts on (I2): o&((i,)) 2 (0(),0(5))

Example: n =6 and o = (1)(23)(456):
4

900

6 )
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Cycle (orbit) decomposition
* Node permutation o acts on [n]

e Edge permutation o acts on (I2): o&((i,)) 2 (0(),0(5))

Example: n =6 and o = (1)(23)(456):

2 4
o O
aye
3 6 5)
(2,4)
(1,2) (1,4) (4,5)

E Q O (3,6) (3,5)
Y (1,3) (176;;1,5) (4,6;5,6)(2’5) (2,6)
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Cycle (orbit) decomposition
* Node permutation o acts on [n]
e Edge permutation o acts on (I2): o&((i,)) 2 (0(),0(5))

Example: n =6 and o = (1)(23)(456):

22

(3,5)
O’E
16;15 46;5625 (2,6)

3 5 5

1< 1%6 645 2%4
4 3

2 4 6
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Second moment via orbit decomposition (1)

(aiia) - (- ["es )

=Kz, H X Xij =

1<J
=Ezun [[ Xo Xo2 ] Xy
0e0 (3,7)€0

O: disjoint orbits of edge permutation ¢F with 0 £ 7 1o 7
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Second moment via orbit decomposition (1)

(aiia) - (- ["es )

=Kz, H X Xij =

1<j
=Ezun [[ Xo Xo2 ] Xy
0e0 (3,7)€0
O: disjoint orbits of edge permutation ¢F with 0 £ 7 1o 7
P(A,B))Q
=Ez, . E Xo=Ez ., Eo [ X,
o|(ofa ) | =erBe I Xo=8eus. IT Bol¥ol
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Second moment via orbit decomposition (1)

(aiia) - (- ["es )

=Kz, H X Xij =

1<j
=Ezun [[ Xo Xo2 ] Xy

0e0 (3,7)€0

O: disjoint orbits of edge permutation ¢F with 0 £ 7 1o 7
P(A,B))Q
=Ez, . E Xo=Ez ., Eo [ X,
o|(ofa ) | =erBe I Xo=8eus. IT Bol¥ol

We will show )

Eo [Xo] = 17— 200 (1)
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Proof of (1)

Xij & L(Ar.ym.()s Big) L (As(iyaiys Big) -

where for Gaussian model

_ P(a,b) 1 —p? (b* + a?) + 2pab
L(a,b) = = 2 exp ( 0= .
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Proof of (1)

Xij 2 L (Ar. iy (5)s Big) L (Azyz() Bij) -

where for Gaussian model

2 b2 2 20ab
L(a,b):P(a’b): ! exp( P a) + ,oa).

Qa,b) /1= p? 2(1— p?)

Example: 7, =id, @ = o as previously. Consider O = {14,15,16}:

Xo = L(A14, B1a)L(A1s, B1a) L(A15, B15)L(A16, B1s) L(A16, Bi6)L(A14, B1s)

For an edge orbit |O| = k, computing Eg[Xo] boils down to

k
iid
H (ar,be) L (ar, b(e11) mod k)] , ag,bp~N(0,1)
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Proof of (1)

Two ways:

©® Write E[exp(x Cz)], where
x=(ay,...,ag,b1,...,b;) ~ N(0, Is;). Find MGF of Gaussian
quadratic form determined by eigenvalues of C.

@ Slicker way: view L as a kernel
(L)) 2 By g [L(e, V) (V)] = Egxyyep [f(Y) | X =]
and L2 = Lo L. Then
k k
E H L (ag,be) L (ag, ber+1) mod k):l =E [H L? (ag, a(e41) mod k):|
— £=1

£=1
(1) = 3

where \; = pt (L is Mehler kernel, diagonalized by Hermite polynomials).
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Second moment via orbit decomposition (2)

Overall, we get

(5) N
A,B)\? 1 ;
Eo M =FE, H -
Q<A7 B) k=1 1- p2k
where
® g =, ! o7 is a uniform random permutation on [n]

e Cycle length of o: ni,na,...
e Cycle length of oF: Ni, Ny, ...

2

n n
N1:(21)+TL2, N2:(2)><2+n1n2+n4
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Second moment via orbit decomposition (2)

Overall, we get

(3)

P(A,B)\* 1\
Eo|(22)) | =E, -
© <Q<A,B>> kH L= p?
where
® g =, ! o7 is a uniform random permutation on [n]
e Cycle length of o: ni,na,...
e Cycle length of oF: Ni, Ny, ...

n n
N1:(21)+TL2, N2:(2)><2+n1n2+n4

® Poisson approximation [Arratia-Tavaré '92]: n}'s are approximated
independent Poi(1) (we will need their joint MGF)
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Second moment via orbit decomposition (3)

1p2 = p2(1+o(1). We get

Let 7 = log 1=

N
E, H <1> ~ E, [exp(TNy)] = E, [exp(Tn%/Z)}

Q

E [exp(TPOi(1)2/2)1{Poi(1)§n}]

_ " exp(T£2/2) — 14 o0(1)

¢!
=0
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Second moment via orbit decomposition (3)

Let 7 = log 1_1p2 = p?(1 +o(1). We get
() 1AM
o (I (1= ) | = Beloxplri)] ~ B, [exp(rnd/2)
k=1
~ E [eXp(TPOi(1)2/2)1{p0i(1)§n}]
B n exp(7£2/2) B
= T 1+ 0(1)
=0
if = (2—e¢) logn.
Summary: We have shown
2 —¢€)logn P(A,B)\?
2 < ( — .
P = Eo <Q(A,B) 1+o0(1)

But we want p? < %...
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Limitation of vanilla second-moment method

(a33)

® Gaussian: suboptimal by a factor of 2

It turns out that

(24¢€)logn
n

;)2 > = [Eo — 0

® ER graphs: suboptimal by an unbounded factor when p = o(1)
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Limitation of vanilla second-moment method

(P

® Gaussian: suboptimal by a factor of 2

It turns out that

(24¢€)logn
n

p* > = Eo

® ER graphs: suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits

(Gany

Ea,B)~0 =Erux

IT Eo [Xo]] S % (1+ p2)(3)

0ecO
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Limitation of vanilla second-moment method

(a33)

® Gaussian: suboptimal by a factor of 2

It turns out that

(24¢€)logn
n

;)2 > = [Eo — 0

® ER graphs: suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits

(aik3)

Atypically large magnitude of HOeO:|O\:k Xo for short orbits of length
k < logn = second-moment blows up

Ea,B)~0 =Erux

IT Eo [Xo]] S % (1+ p2)(3)

0ecO
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Truncated second-moment method

Let £ denote a typical event under P, i.e., P((A, B, m.) € £) =1 —o0(1).

Truncated 2nd moment = E, ;> [IEQ [H XOl{(A,Bﬂr)GE}1{(A,Bﬁ)€5}]]
(0110

Then

Truncated 2nd moment = O(1) = TV(P(A4,B),Q(A,B)) <1—-Q(1)
Truncated 2nd moment = 1+ 0o(1) = TV(P(A4,B),Q(A, B)) =0(1)
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Truncated second-moment method

Let £ denote a typical event under P, i.e., P((A, B, m.) € £) =1 —o0(1).

Truncated 2nd moment = E, ;> [IEQ [H XOl{(A,B,w)eg}1{(A,B,%)e£}]]
(0110

Then

Truncated 2nd moment = O(1) = TV(P(A4,B),Q(A,B)) <1—-Q(1)
Truncated 2nd moment = 1+ 0o(1) = TV(P(A4,B),Q(A, B)) =0(1)

Caveat:
® The event £ must be measurable wrt (A, B, ).

® Although m, = 7 is a rare event, we cannot truncate on anything
involving the interaction between two replicas (7., 7).
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Truncated second-moment method

Let £ denote a typical event under P, i.e., P((A, B, m.) € £) =1 —o0(1).

Truncated 2nd moment = E, ;> [IEQ [H XOl{(A,B,w)eg}1{(A,B,%)e£}]]
(0110

Then

Truncated 2nd moment = O(1) = TV(P(A4,B),Q(A,B)) <1—-Q(1)
Truncated 2nd moment = 1+ 0o(1) = TV(P(A4,B),Q(A, B)) =0(1)

Caveat:
® The event £ must be measurable wrt (A, B, ).

® Although m, = 7 is a rare event, we cannot truncate on anything
involving the interaction between two replicas (7., 7).

Let's see why.
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Details of truncated second-moment
Goal: bound TV(P(A, B), Q(A, B)) from above.
® |ntroduce conditional planted model:

P (Av B7 7T) 1{(A B,m)eE}
P’ (A,B,m) & =

= (140(1)) P (A, B,7) 1{(a,Bmee}
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Details of truncated second-moment
Goal: bound TV(P(A, B), Q(A, B)) from above.
® |ntroduce conditional planted model:

P (Av B, 7T) 1{(A B,m)eE}
P’ (A,B,m) & =
= (1 +o (1)) P (A7 B7 ﬂ-) 1{(A,B,7r)€5})
® Triangle inequality of TV
TV(P(A, B),Q(A, B)) < TV(P'(A, B), Q(A, B)) + TV(P(A, B), P’ (A, B))
<P((A,B,m)¢E)=0(1)
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Details of truncated second-moment
Goal: bound TV(P(A, B), Q(A, B)) from above.
® |ntroduce conditional planted model:

P (Av B, 7T) 1{(A B,m)eE}
P’ (A,B,m) & =
= (1 +o (1)) P (A7 B7 ﬂ-) 1{(A,B,7r)€5})
® Triangle inequality of TV
TV(P(A, B),Q(A, B)) < TV(P'(A, B), Q(A, B)) + TV(P(A, B), P’ (A, B))
<P((A,B,m)¢E)=0(1)

® Apply second-moment method
P’ (A, B)\?
Fe K Q(A,B)> }

=(1+01)Er, 17 |Eqg

P(AB|m)P(AB|T)
Q(A,B) Q(A,B)

[Moco Xo

1¢a,B,meeyl{a,B7)ee}
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Truncated second-moment: Gaussian model
Major contribution comes from k = 1 (fixed points):

n
y £ H Xo ~ exp <—p2 ( 21> + QpCAW*AB(F)>

O€O|O‘:1

® [ is the set of fixed points of ¢ £ 7!

® esmpp(F) & Z(i,j)eF Az, ()m () Big

o7 and ny = |F|
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Truncated second-moment: Gaussian model
Major contribution comes from k = 1 (fixed points):

n
y £ H Xo ~ exp <—p2 ( 21> + 2pe,4mAB(F)>

O€O|O‘:1

® [ is the set of fixed points of ¢ £ 7!

® eamnp(F) £ Z(i,j)eF Ar.(iym. () Bij
|S]

® Under P: eqrap(S) concentrates on its mean p(';') uniformly over
all S with large |S| (Hanson-Wright)

o7 and ny = |F|
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Truncated second-moment: Gaussian model
Major contribution comes from k = 1 (fixed points):

n
y £ H Xo ~ exp <—p2 ( 21> + 2pe,4mAB(F)>

O€O|O‘:1

1

F is the set of fixed points of ¢ £ 7
earnB(F) = 32 jyer Am.(ym. () Bid

Under P: earap(S) concentrates on its mean ,0(
all S with large |S| (Hanson-Wright)

On this typical (under P) event &, when |F| is large,

o7 and ny = |F|

5]
2

) uniformly over

Bo[V1g) S e (Mg [reamns®r, i)
ANBg = 2

~exp (2 (™)) (Gain a factor of
~exp (S| (Gain a factor of 2 over (2))

by truncated MGF
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Truncated second-moment: sparse Erdos-Rényi

Need to consider k = ©(logn). It can be shown

® | ong orbits:

n2

Eo | [[ Xo| < (1+p’“>7 —1+0(1)
|O|>k
® Short incomplete orbits:
EQ[XO ’ OgZE(A/\BTr)] <1

® Short complete orbits:

1\ 20
Xo:<p) , YO C E(AAB")

Suffices to consider subgraph H}. = Up.ioj<k,0c B(an5m)O
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Truncated second-moment: sparse Erdos-Rényi
o If nps? <1 —w(n=1/3):

E £ {A™ A B is a pseudoforest}
o Ifnps? < \* —¢

& = {The subgraph density of A™ A B is smaller than y(\*)}

Then
1 2e(Hy,)
Eo H XO]-E'] < (1 + 0(1))EQ [<) 1{Hk is admissible}
0co p
(14 o Z g2¢ (generating function)
HeHy,

Hy: The set of all admissible H,
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Truncated second-moment: sparse Erdos-Rényi
o If nps? <1 —w(n=1/3):

E £ {A™ A B is a pseudoforest}
o Ifnps? < \* —¢

& = {The subgraph density of A™ A B is smaller than y(\*)}

Then
1) 2¢(Hk)
Eo H XO]-c‘Z] < (1 + 0(1))EQ [<) 1{Hk is admissible}
0e0 p
(14 o Z g2¢ (generating function)
HeHy,

Hy: The set of all admissible H,

Key remaining challenge: enumerate Hj, using orbit structure

37/41



Analysis

® Proof of detection thresholds

® Proof of exact recovery thresholds
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Exact recovery: Positive results

® Decompose the difference of objectives via edge orbits

<A7r _ Aﬂ'* >
Z Z A”(l ) (5) U Z Z A7r* ) ])BZ]
0€O\0:1 (i,5)€0 0€0\0; (i,5)€0

Xo Yo

® Apply large deviation analysis:

» For 7 far away from 7*: bound )", X and ), Yo separately
» For 7 close to 7*: bound 3, (X0 — Yo) directly

® The contribution of longer edge orbits can be effectively bounded by
that of the 2-edge orbits

Mo 2 Efexp(tXo)] < My°*, ¥|0| > 2
Computation of Mg, is similar to (1)
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Exact recovery: Negative results

¢ Suffices to show MLE fails (WLOG 7, = id)
® Bottleneck: 7 is a transposition swapping i and j, for which

Aij= (A" =A™, B) = = Y (A — Aji) (Bik — Bji)
ki

® Prove the existence of (4, j) for which A;; > 0 whp
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Exact recovery: Negative results

Suffices to show MLE fails (WLOG 7, = id)
Bottleneck: 7 is a transposition swapping ¢ and j, for which

Az‘j = <A7T - ATF*,B> = — Z (Azk - A]k) (sz - Bj )
k+#i,j
Prove the existence of (4, j) for which A;; > 0 whp
Since B = pA + /1 — p?Z, conditioned on variance parameter
Vij = Zk;ﬁi,j(Aik — Ajp)?,
Aij ~ N(=puij, 2(1 = p*)vij)
Whp, all v;; concentrates on E[v;;] =~ 2n. So
P{A;; > 0} ~ exp(— 24",
Total number of transpositions: (Z) So
—e)l
p? < U=l — R[S 1a, s0y] = 0.
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Exact recovery: Negative results

Suffices to show MLE fails (WLOG 7, = id)
Bottleneck: 7 is a transposition swapping ¢ and j, for which

Az‘j = <A7T - ATF*,B> = — Z (Azk - A]k) (sz - Bj )
k+#i,j
Prove the existence of (4, j) for which A;; > 0 whp
Since B = pA + /1 — p?Z, conditioned on variance parameter
Vij = Zk;ﬁi,j(Aik — Ajp)?,
Aij ~ N(=puij, 2(1 = p*)vij)
Whp, all v;; concentrates on E[v;;] =~ 2n. So
P{A;; > 0} ~ exp(— 24",
Total number of transpositions: (Z) So
—e)l
p? < U=l — R[S 1a, s0y] = 0.

Since A;; are not independent, need to compute 2nd moment
applying Paley-Zymund (Chap 1)
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Concluding remarks

Partial
Almost exact
rzzcz;/:;); fé recovery Exact recovery
—o(1 2 _ _ 2logn
n—ol) "PS™ = Tog(1/p)—1+p . —
P (1—y/p)?logn
n—¢o np82 — \* np$2 = w(l)
Gaussian npt
logn
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Concluding remarks

Partial
Almost exact
rzzc;;/:»:i}; fé recovery Exact recovery
—o(1 2 _ _ 2logn
n—o@ nPS™ = Tog(i/p)—1+p LS; =
P (1—y/p)?logn
e | mps= A | nps? = w(l)
. 2
Gaussian =4

logn
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