S&DS 684 Lecture 12: Random Graph Matching: Information-theoretic Limits

Yihong Wu

Department of Statistics and Data Science Yale University

Apr 18, 2023

Graph matching (network alignment)

Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the edges (i.e. minimizes # of adjacency disagreements)

QAP (1)

Given symmetric $n \times n$ matrices A, B, solve

Quadratic Assignment Problem (QAP) : $\max_{\pi \in S_n} \sum_{i < i} A_{\pi(i)\pi(j)} B_{ij}$

Introduced by Koopmans-Beckmann '57 (Yale Econ)

COWLES FOUNDATION DISCUSSION PAPER, NO. 4*

Assignment Problems and the Location of Economic Activities**

Ъy

Tjalling C. Koopmans and Martin Beckmann

QAP (2)

Noiseless case: QAP \iff Graph isomorphism Given two graphs A and B, decide whether $A \cong B$, i.e., there exists a bijection $\pi : V(A) \rightarrow V(B)$ such that

QAP (2)

Noiseless case: QAP \iff **Graph isomorphism** Given two graphs A and B, decide whether $A \cong B$, i.e., there exists a bijection $\pi : V(A) \rightarrow V(B)$ such that

- Not known to be solvable in polynomial time in the worst case
- In practice, two graphs are often not exactly isomorphic, but still want to tell whether their topologies are similar

QAP (3)

QAP includes many problems as special cases: $A = \operatorname{\mathsf{adj}}$ matrix of observed graph

• Planted clique (Part I):

B = adj matrix of a fixed k-clique

• Minumum bisection (Part II):

$$B = \xi \xi^{\top}, \qquad \xi = (1, \dots, 1, -1, \dots, -1)^{\top}.$$

• TSP (Lec 12):

B = adj matrix of a fixed Hamiltonian cycle

QAP (3)

QAP includes many problems as special cases: $A = \operatorname{\mathsf{adj}}$ matrix of observed graph

• Planted clique (Part I):

B = adj matrix of a fixed k-clique

• Minumum bisection (Part II):

$$B = \xi \xi^{\top}, \qquad \xi = (1, \dots, 1, -1, \dots, -1)^{\top}.$$

• TSP (Lec 12):

B = adj matrix of a fixed Hamiltonian cycle

Here we will be dealing with B being Erdős-Rényi as well.

Application 1: Network de-anonymization

- Successfully de-anonymize Netflix dataset by matching it to IMDB [Narayanan-Shmatikov '08]
- Correctly identify 30.8% of shared users between Twitter and Flickr [Narayanan-Shmatikov '09]

Application 2: Protein-Protein Interaction network

[Kazemi-Hassani-Grossglauser-Modarres '16]

Graph matching for aligning PPI networks between different species, to identify conserved components and genes with common function [Singh-Xu-Berger '08]

Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lähner et al '16]

Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lähner et al '16]

3-D shapes \rightarrow geometric graphs (features \rightarrow nodes, distances \rightarrow edges)

Two key challenges

- Statistical: two graphs may not be the same
- Computational: # of possible node mappings is $n! (100! \approx 10^{158})$

Beyond worst-case intractability

- NP-hard for matching two graphs in worst case
 - QAP is hard to approximate within exp(polylog(n)) multiplicative factor [Makarychev-Manokaran-Sviridenko '15]
- However, real networks are not arbitrary and have latent structures

Beyond worst-case intractability

- NP-hard for matching two graphs in worst case
 - QAP is hard to approximate within exp(polylog(n)) multiplicative factor [Makarychev-Manokaran-Sviridenko '15]
- However, real networks are not arbitrary and have latent structures
- Recent surge of interests on the average-case analysis of matching correlated random graphs [Feizi at el.'16, Lyzinski at el'16, Cullina-Kiyavash'16,17, Ding-Ma-W-Xu'18, Barak-Chou-Lei-Schramm-Sheng'19, Fan-Mao-W-Xu'19a,19b, Ganassali-Massoulié'20, Hall-Massoulié'20, ...]
 - CS-style average-case analysis: under null model, aiming to understand "what's the fraction of bad instances"
 - Stat-style average-case analysis: under planted model (meaningful statistical model).
- Focus on correlated Erdős-Rényi graphs model [Pedarsani-Grossglauser '11]

Correlated Erdős-Rényi graphs model $\mathcal{G}(n, p, s)$

 $G\sim \mathcal{G}(n, {\color{black} p})$

Correlated Erdős-Rényi graphs model $\mathcal{G}(n, p, s)$

 $G \sim \mathcal{G}(n, \mathbf{p})$

Correlated Erdős-Rényi graphs model $\mathcal{G}(n,p,s)$

Correlated Erdős-Rényi graphs model $\mathcal{G}(n, p, s)$

Correlated Erdős-Rényi graphs model $\mathcal{G}(n, p, s)$

• $(A_{\pi_*(i)\pi_*(j)}, B_{ij})$ are iid pairs of correlated Bern(ps)

• Key parameter nps^2 : average degree of intersection graph $A \wedge B^*$;

Correlated Gaussian model

$$B = \rho A^{\pi_*} + \sqrt{1 - \rho^2} Z \,,$$

where

- A and Z are independent Gaussian Wigner matrices with iid standard normal entries;
- $A^{\pi_*} = (A_{\pi_*(i)\pi_*(j)})$ denotes the relabeled version of A
- Conditional on π_* , for any $1 \le i < j \le n$,

$$(A_{\pi_*(i)\pi_*(j)}, B_{ij}) \stackrel{\text{iid}}{\sim} \mathcal{N}\left(\left(\begin{smallmatrix} 0\\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1& \rho\\ \rho & 1 \end{smallmatrix} \right) \right).$$

Two statistical tasks: detection and estimation

- Detection:
 - ▶ \mathcal{H}_0 : A and B are independent Erdős-Rényi graphs $\mathcal{G}(n, ps)$
 - ▶ \mathcal{H}_1 : A and B are correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
 - ▶ Test between \mathcal{H}_0 and \mathcal{H}_1 based on observation of (A, B)
- Estimation:
 - \blacktriangleright Observe two correlated Erdős-Rényi graphs $A,B\sim \mathcal{G}(n,p,s)$
 - Recover the underlying true vertex correspondence π_*

(Similarly for Gaussian model)

Two statistical tasks: detection and estimation

- Detection:
 - ▶ \mathcal{H}_0 : A and B are independent Erdős-Rényi graphs $\mathcal{G}(n, ps)$
 - \mathcal{H}_1 : A and B are correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
 - ▶ Test between \mathcal{H}_0 and \mathcal{H}_1 based on observation of (A, B)
- Estimation:
 - \blacktriangleright Observe two correlated Erdős-Rényi graphs $A, B \sim \mathcal{G}(n, p, s)$
 - Recover the underlying true vertex correspondence π_*

(Similarly for Gaussian model)

Focus of this lecture

What are the information-theoretic limits of detection and estimation? (Next Tuesday: Algorithms.)

Two statistical tasks: detection and estimation

- Detection:
 - ▶ \mathcal{H}_0 : A and B are independent Erdős-Rényi graphs $\mathcal{G}(n, ps)$
 - \mathcal{H}_1 : A and B are correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
 - ▶ Test between \mathcal{H}_0 and \mathcal{H}_1 based on observation of (A, B)
- Estimation:
 - \blacktriangleright Observe two correlated Erdős-Rényi graphs $A, B \sim \mathcal{G}(n, p, s)$
 - Recover the underlying true vertex correspondence π_*

(Similarly for Gaussian model)

Focus of this lecture

What are the information-theoretic limits of detection and estimation? (Next Tuesday: Algorithms.)

Progress in the recent decade: [Pedarsani-Grossglauser '11], [Cullina-Kiyavash '16,17], [Hall-Massoulié '20], [Ganassali '20], [W-Xu-Yu '20,21], [Ganassali-Lelarge-Massoulié '21], [Ding-Du '21 22]

Maximum likelihood estimation as quadratic assignment

Maximum likelihood estimation reduces to quadratic assignment (QAP):

$$\widehat{\pi}_{\mathsf{ML}} \in \operatorname*{arg\,max}_{\pi} \sum_{i < j} A_{\pi(i)\pi(j)} B_{ij}.$$

- QAP is NP-hard in worst case
- How much does $\widehat{\pi}_{\mathrm{ML}}$ have in common with π^* ?

$$\operatorname{overlap}(\pi_*, \widehat{\pi}) \triangleq \frac{1}{n} \left| \{i \in [n] : \widehat{\pi}(i) = \pi_*(i) \} \right|$$

i.e., fraction of correctly classified nodes

Sharp threshold for detection: Gaussian

Theorem (W-Xu-Yu '20)

$$n\rho^{2} \ge (4+\epsilon)\log n \implies \text{TV}(\mathcal{P},\mathcal{Q}) = 1 - o(1) (\textit{test error}=o(1))$$
$$n\rho^{2} \le (4-\epsilon)\log n \implies \text{TV}(\mathcal{P},\mathcal{Q}) = o(1) (\textit{test error}=1-o(1))$$

Sharp threshold for detection: Gaussian

Sharp threshold for recovery: Gaussian model

Theorem (W-Xu-Yu '21)

$$n\rho^2 \ge (4+\epsilon)\log n \implies \widehat{\pi}_{\mathsf{ML}} = \pi_* \text{ whp}$$

 $n\rho^2 \le (4-\epsilon)\log n \implies \operatorname{overlap}(\widehat{\pi},\pi_*) = o(1), \text{ whp, } \forall \text{ estimator } \widehat{\pi}$

Sharp threshold for recovery: Gaussian model

Theorem (W-Xu-Yu '21)

$$n\rho^2 \ge (4+\epsilon)\log n \implies \widehat{\pi}_{\mathsf{ML}} = \pi_* \text{ whp}$$

 $n\rho^2 \le (4-\epsilon)\log n \implies \operatorname{overlap}(\widehat{\pi},\pi_*) = o(1), \text{ whp, } \forall \text{ estimator } \widehat{\pi}$

- Exact recovery threshold is derived in [Ganassali '20]
- Exhibits a stronger form of "all or nothing" phenomenon
- Only a vanishing amount of correlation allows detection and recovery

Sharp detection threshold: dense Erdős-Rényi graphs

Theorem (W-Xu-Yu '20)

Suppose
$$n^{-o(1)} \leq p \leq 1 - \Omega(1)$$
. Then,

$$nps^{2} \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1) \text{ (test error} = o(1))$$
$$nps^{2} \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = o(1) \text{ (test error} = 1 - o(1))$$

Sharp detection threshold: dense Erdős-Rényi graphs

Theorem (W-Xu-Yu '20)

Suppose
$$n^{-o(1)} \leq p \leq 1 - \Omega(1)$$
. Then,

$$nps^{2} \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1) \text{ (test error} = o(1))$$
$$nps^{2} \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = o(1) \text{ (test error} = 1 - o(1))$$

Sharp recovery threshold: dense Erdős-Rényi

Theorem (W-Xu-Yu '21) Suppose $n^{-o(1)} \le p \le 1 - \Omega(1)$. Then, $nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{overlap}(\widehat{\pi}_{\text{ML}}, \pi_*) = 1 - o(1) \text{ whp}$ $nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{overlap}(\widehat{\pi}, \pi_*) = o(1), \text{ whp, } \forall \text{ estimator } \widehat{\pi}$

Sharp recovery threshold: dense Erdős-Rényi

Theorem (W-Xu-Yu '21)
Suppose
$$n^{-o(1)} \le p \le 1 - \Omega(1)$$
. Then,
 $nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{overlap}(\widehat{\pi}_{\text{ML}}, \pi_*) = 1 - o(1) \text{ whp}$
 $nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{overlap}(\widehat{\pi}, \pi_*) = o(1), \text{ whp, } \forall \text{ estimator } \widehat{\pi}$

Interpretation of threshold:

•
$$I(\pi_*; A, B) \approx {\binom{n}{2}} \times \underbrace{ps^2\left(\log\frac{1}{p} - 1 + p\right)}$$

mutual info btw two correlated edges

- $H(\pi_*) \approx n \log n$
- Threshold is at $I(\pi; A, B) \approx H(\pi_*)$
- Only a vanishing amount of correlation allows detection and recovery

Sharp detection threshold: sparse Erdős-Rényi

Theorem (Ding-Du '22a) Suppose $p = n^{-\alpha}$ for $\alpha \in (0,1)$ and $\lambda^* = \gamma^{-1}(1/\alpha)$. $nps^2 \ge \lambda^* + \epsilon \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1) \text{ (test error}=o(1))$ $nps^2 \le \lambda^* - \epsilon \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = o(1) \text{ (test error}=1 - o(1))$

- Sharpens the earlier threshold of $nps^2=\Theta(1)$ [W-Xu-Yu '20]
- $\gamma: [1,\infty) \to [1,\infty)$ is given by the densest subgraph problem in Erdős-Rényi $\mathcal{G}(n,\frac{\lambda}{n})$ [Hajek '90, Anantharam-Salez' 16]

$$\max_{\emptyset \neq U \subset [n]} \frac{|\mathcal{E}(U)|}{|U|} \to \gamma(\lambda)$$

• When $np = \Theta(1)$, there is no zero-one phase transition.

Sharp recovery threshold: sparse Erdős-Rényi

Theorem (Ding-Du '22b)

Suppose
$$p = n^{-\alpha}$$
 for $\alpha \in (0,1]$ and $\lambda^* = \gamma^{-1}(1/\alpha)$.

$$nps^{2} \geq \lambda^{*} + \epsilon \implies \text{overlap}\left(\widehat{\pi}_{\text{ML}}, \pi_{*}\right) \geq \Omega(1) \text{ whp.}$$
$$nps^{2} \leq \lambda^{*} - \epsilon \implies \text{overlap}\left(\widehat{\pi}, \pi_{*}\right) = o(1) \text{ whp. } \forall \widehat{\pi}$$

- The case of $\alpha = 1$ is proved in [Ganassali-Lelarge-Massoulié '21]
- Sharpen the partial recovery threshold at $nps^2 = \Theta(1)$ [W-Xu-Yu '20]
- "All-or-nothing" phenomenon does not exist, as almost exact recovery (overlap = 1 o(1)) requires $nps^2 \rightarrow \infty$ [Cullina-Kiyavash-Mittal-Poor '19]

Exact recovery threshold

Theorem (W-Xu-Yu '21)

Suppose
$$p \leq 1 - \Omega(1)$$
. Then
 $nps^2 \geq \frac{(1+\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap}(\widehat{\pi}_{\mathrm{ML}}, \pi_*) = 1 \text{ whp.}$
 $nps^2 \leq \frac{(1-\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap}(\widehat{\pi}, \pi_*) \neq 1 \text{ whp. } \forall \ \widehat{\pi}.$
Exact recovery threshold

Theorem (W-Xu-Yu '21)

Suppose
$$p \leq 1 - \Omega(1)$$
. Then
 $nps^2 \geq \frac{(1+\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap}(\widehat{\pi}_{\mathrm{ML}}, \pi_*) = 1 \text{ whp.}$
 $nps^2 \leq \frac{(1-\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap}(\widehat{\pi}, \pi_*) \neq 1 \text{ whp. } \forall \ \widehat{\pi}.$

• p = o(1): reduces to the connectivity threshold of the intersection graph $A \wedge B^* \sim \mathcal{G}(n, ps^2)$ [Cullina-Kiyavash'16,17].

Fact about Erdős-Rényi graph: For $G \sim \mathcal{G}(n,q)$,

Exact recovery threshold

Theorem (W-Xu-Yu '21)

Suppose
$$p \leq 1 - \Omega(1)$$
. Then
 $nps^2 \geq \frac{(1+\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap}(\widehat{\pi}_{\mathrm{ML}}, \pi_*) = 1 \text{ whp.}$
 $nps^2 \leq \frac{(1-\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap}(\widehat{\pi}, \pi_*) \neq 1 \text{ whp. } \forall \ \widehat{\pi}.$

• p = o(1): reduces to the connectivity threshold of the intersection graph $A \wedge B^* \sim \mathcal{G}(n, ps^2)$ [Cullina-Kiyavash'16,17].

Fact about Erdős-Rényi graph: For $G \sim \mathcal{G}(n,q)$,

▶ If
$$q \ge \frac{(1+\epsilon)\log n}{n}$$
, G is connected.
▶ If $q \le \frac{(1-\epsilon)\log n}{n}$, G has many isolated vertices.

• $p = \Omega(1)$: strictly higher than the connectivity threshold

Analysis

- Proof of detection thresholds
- Proof of exact recovery thresholds

Proof of detection thresholds: Positive results

• Gaussian or dense Erdős-Rényi: analyzing QAP statistic

$$T_{\mathsf{QAP}} = \max_{\pi \in \mathcal{S}_n} \ \sum_{i < j} A_{\pi(i)\pi(j)} B_{ij}$$

In Erdős-Rényi model: T_{QAP} = size of maximal common subgraph

• Analysis: standard first-moment computation (next page)

Proof of detection thresholds: Positive results

• Gaussian or dense Erdős-Rényi: analyzing QAP statistic

$$T_{\mathsf{QAP}} = \max_{\pi \in \mathcal{S}_n} \ \sum_{i < j} A_{\pi(i)\pi(j)} B_{ij}$$

In Erdős-Rényi model: T_{QAP} = size of maximal common subgraph

- Analysis: standard first-moment computation (next page)
- Sparse Erdős-Rényi: analyzing densest subgraph statistic

$$\max_{\pi \in \mathcal{S}_n} \max_{U \subset [n]: |U| \ge n/\log n} \frac{\mathcal{E}_{\pi}(U)}{|U|},$$

where $\mathcal{E}_{\pi}(U)$ is the set of edges induced by vertices in U in intersection graph $A^{\pi}\wedge B$

Proof of detection thresholds: Positive results

Gaussian analysis:

$$T_{\mathsf{QAP}} = \max_{\pi \in \mathcal{S}_n} \sum_{i < j} A_{\pi(i)\pi(j)} B_{ij}.$$

• Under \mathcal{P} (ρ -correlated):

$$T_{\mathsf{QAP}} \ge \sum_{i < j} A_{\pi_*(i)\pi_*(j)} B_{ij} \approx \rho\binom{n}{2}$$

• Under Q (independent):

$$\mathcal{Q}\left(T_{\mathsf{QAP}} \le \rho\binom{n}{2}\right) \lesssim n! \exp\left(-\frac{(\rho\binom{n}{2})^2}{2\binom{n}{2}}\right) \approx \exp\left(\rho^2 n^2/4 - n\log n\right)$$

•
$$\rho^2 = \frac{(4+\epsilon)\log n}{n} \implies$$
 success

Proof of detection thresholds: Negative results

Second-moment method (Chap 7):

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = O(1)$$

$$\implies \mathrm{TV}(\mathcal{P}, \mathcal{Q}) \leq 1 - \Omega(1)$$

Strong detection is impossible

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = 1 + o(1)$$

ο٦

$$\implies \operatorname{TV}(\mathcal{P}, \mathcal{Q}) = o(1)$$

Weak detection is impossible

Proof of detection thresholds: Negative results

Second-moment method (Chap 7):

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = O(1)$$

$$\implies \operatorname{TV}(\mathcal{P}, \mathcal{Q}) \leq 1 - \Omega(1)$$

Strong detection is impossible

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = 1 + o(1)$$

$$\implies \operatorname{TV}(\mathcal{P}, \mathcal{Q}) = o(1)$$

Weak detection is impossible

Here

$$\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)} = \frac{1}{n!} \sum_{\pi_* \in S_n} \frac{\mathcal{P}(A,B|\pi_*)}{\mathcal{Q}(A,B)}.$$

As usual, second moment computation involves two iid replicas π_* and $\tilde{\pi}$

- Node permutation σ acts on [n]
- Edge permutation σ^{E} acts on $\binom{[n]}{2}$: $\sigma^{\mathsf{E}}((i,j)) \triangleq (\sigma(i), \sigma(j))$

- Node permutation σ acts on [n]
- Edge permutation σ^{E} acts on $\binom{[n]}{2}$: $\sigma^{\mathsf{E}}((i,j)) \triangleq (\sigma(i), \sigma(j))$

Example: n = 6 and $\sigma = (1)(23)(456)$:

- Node permutation σ acts on [n]
- Edge permutation σ^{E} acts on $\binom{[n]}{2}$: $\sigma^{\mathsf{E}}((i,j)) \triangleq (\sigma(i), \sigma(j))$

Example: n = 6 and $\sigma = (1)(23)(456)$:

- Node permutation σ acts on [n]
- Edge permutation σ^{E} acts on $\binom{[n]}{2}$: $\sigma^{\mathsf{E}}((i,j)) \triangleq (\sigma(i), \sigma(j))$

Example: n = 6 and $\sigma = (1)(23)(456)$:

Second moment via orbit decomposition (1)

$$\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^{2} = \left(\mathbb{E}_{\pi_{*}}\left[\frac{\mathcal{P}(A,B|\pi_{*})}{\mathcal{Q}(A,B)}\right]\right)^{2}$$
$$= \mathbb{E}_{\widetilde{\pi} \perp \perp \pi_{*}} \prod_{i < j} X_{ij} \quad X_{ij} \triangleq \frac{\mathcal{P}(B_{ij}|A_{\pi_{*}(i)\pi_{*}(j)})\mathcal{P}(B_{ij}|A_{\widetilde{\pi}(i)\widetilde{\pi}(j)})}{\mathcal{Q}(B_{ij})^{2}}$$
$$= \mathbb{E}_{\widetilde{\pi} \perp \perp \pi_{*}} \prod_{O \in \mathcal{O}} X_{O} \quad X_{O} \triangleq \prod_{(i,j) \in O} X_{ij}$$

 $\mathcal{O}:$ disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi_*^{-1} \circ \widetilde{\pi}$

Second moment via orbit decomposition (1)

$$\begin{pmatrix} \mathcal{P}(A,B)\\ \mathcal{Q}(A,B) \end{pmatrix}^2 = \left(\mathbb{E}_{\pi_*} \left[\frac{\mathcal{P}(A,B|\pi_*)}{\mathcal{Q}(A,B)} \right] \right)^2$$

$$= \mathbb{E}_{\widetilde{\pi} \perp \perp \pi_*} \prod_{i < j} X_{ij} \quad X_{ij} \triangleq \frac{\mathcal{P}(B_{ij}|A_{\pi_*(i)\pi_*(j)})\mathcal{P}(B_{ij}|A_{\widetilde{\pi}(i)\widetilde{\pi}(j)})}{\mathcal{Q}(B_{ij})^2}$$

$$= \mathbb{E}_{\widetilde{\pi} \perp \perp \pi_*} \prod_{O \in \mathcal{O}} X_O \quad X_O \triangleq \prod_{(i,j) \in O} X_{ij}$$

 $\mathcal{O}:$ disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi_*^{-1} \circ \widetilde{\pi}$

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^{2}\right] = \mathbb{E}_{\widetilde{\pi} \perp \! \perp \pi_{*}} \mathbb{E}_{\mathcal{Q}} \prod_{O \in \mathcal{O}} X_{O} = \mathbb{E}_{\widetilde{\pi} \perp \! \perp \pi_{*}} \prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{Q}} \left[X_{O}\right]$$

Second moment via orbit decomposition (1)

$$\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^{2} = \left(\mathbb{E}_{\pi_{*}}\left[\frac{\mathcal{P}(A,B|\pi_{*})}{\mathcal{Q}(A,B)}\right]\right)^{2}$$
$$= \mathbb{E}_{\widetilde{\pi} \perp \perp \pi_{*}} \prod_{i < j} X_{ij} \quad X_{ij} \triangleq \frac{\mathcal{P}(B_{ij}|A_{\pi_{*}(i)\pi_{*}(j)})\mathcal{P}(B_{ij}|A_{\widetilde{\pi}(i)\widetilde{\pi}(j)})}{\mathcal{Q}(B_{ij})^{2}}$$
$$= \mathbb{E}_{\widetilde{\pi} \perp \perp \pi_{*}} \prod_{O \in \mathcal{O}} X_{O} \quad X_{O} \triangleq \prod_{(i,j) \in O} X_{ij}$$

 $\mathcal{O}:$ disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi_*^{-1} \circ \widetilde{\pi}$

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^{2}\right] = \mathbb{E}_{\widetilde{\pi} \perp \! \perp \pi_{*}} \mathbb{E}_{\mathcal{Q}} \prod_{O \in \mathcal{O}} X_{O} = \mathbb{E}_{\widetilde{\pi} \perp \! \perp \pi_{*}} \prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{Q}} \left[X_{O}\right]$$

We will show

$$\mathbb{E}_{\mathcal{Q}}\left[X_O\right] = \frac{1}{1 - \rho^{2|O|}} \tag{1}$$

Proof of (1)

$$X_{ij} \triangleq L\left(A_{\pi_*(i)\pi_*(j)}, B_{ij}\right) L\left(A_{\widetilde{\pi}(i)\widetilde{\pi}(j)}, B_{ij}\right).$$

where for Gaussian model

$$L(a,b) = \frac{P(a,b)}{Q(a,b)} = \frac{1}{\sqrt{1-\rho^2}} \exp\left(\frac{-\rho^2 \left(b^2 + a^2\right) + 2\rho ab}{2 \left(1-\rho^2\right)}\right)$$

•

Proof of (1)

$$X_{ij} \triangleq L\left(A_{\pi_*(i)\pi_*(j)}, B_{ij}\right) L\left(A_{\widetilde{\pi}(i)\widetilde{\pi}(j)}, B_{ij}\right).$$

where for Gaussian model

$$L(a,b) = \frac{P(a,b)}{Q(a,b)} = \frac{1}{\sqrt{1-\rho^2}} \exp\left(\frac{-\rho^2 \left(b^2 + a^2\right) + 2\rho ab}{2 \left(1-\rho^2\right)}\right)$$

Example: $\pi_* = id$, $\tilde{\pi} = \sigma$ as previously. Consider $O = \{14, 15, 16\}$:

$$X_O = \underbrace{L(A_{14}, B_{14})L(A_{15}, B_{14})}_{L(A_{15}, B_{15})L(A_{16}, B_{15})}\underbrace{L(A_{16}, B_{16})L(A_{14}, B_{16})}_{L(A_{16}, B_{16})L(A_{14}, B_{16})}$$

For an edge orbit |O| = k, computing $\mathbb{E}_{\mathcal{Q}}[X_O]$ boils down to

$$\mathbb{E}_{\mathcal{Q}}[X_O] = \mathbb{E}\left[\prod_{\ell=1}^k L\left(a_\ell, b_\ell\right) L\left(a_\ell, b_{(\ell+1) \bmod k}\right)\right], \quad a_\ell, b_\ell \stackrel{\mathsf{iid}}{\sim} N(0, 1)$$

Proof of (1)

Two ways:

1 Write $\mathbb{E}[\exp(x^{\top}Cx)]$, where $x = (a_1, \ldots, a_k, b_1, \ldots, b_k) \sim N(0, I_{2k})$. Find MGF of Gaussian quadratic form determined by eigenvalues of C.

2 Slicker way: view L as a kernel

$$(Lf)(x) \triangleq \mathbb{E}_{Y \sim Q} \left[L(x, Y) f(Y) \right] = \mathbb{E}_{(X, Y) \sim P} \left[f(Y) \mid X = x \right].$$

and $L^2 \equiv L \circ L$. Then

$$\mathbb{E}\left[\prod_{\ell=1}^{k} L\left(a_{\ell}, b_{\ell}\right) L\left(a_{\ell}, b_{(\ell+1) \mod k}\right)\right] = \mathbb{E}\left[\prod_{\ell=1}^{k} L^{2}\left(a_{\ell}, a_{(\ell+1) \mod k}\right)\right]$$
$$= \operatorname{tr}\left(L^{2k}\right) = \sum \lambda_{i}^{2k}$$

where $\lambda_i = \rho^i$ (L is Mehler kernel, diagonalized by Hermite polynomials).

Second moment via orbit decomposition (2) Overall, we get

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \mathbb{E}_{\sigma}\left[\prod_{k=1}^{\binom{n}{2}} \left(\frac{1}{1-\rho^{2k}}\right)^{N_k}\right]$$

where

- $\sigma = \pi_*^{-1} \circ \tilde{\pi}$ is a uniform random permutation on [n]
- Cycle length of σ : n_1, n_2, \ldots
- Cycle length of σ^{E} : N_1, N_2, \ldots

$$N_1 = \binom{n_1}{2} + n_2, \quad N_2 = \binom{n_2}{2} \times 2 + n_1 n_2 + n_4$$

Second moment via orbit decomposition (2) Overall, we get

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \mathbb{E}_{\sigma}\left[\prod_{k=1}^{\binom{n}{2}} \left(\frac{1}{1-\rho^{2k}}\right)^{N_k}\right]$$

where

- $\sigma = \pi_*^{-1} \circ \tilde{\pi}$ is a uniform random permutation on [n]
- Cycle length of σ : n_1, n_2, \ldots
- Cycle length of σ^{E} : N_1, N_2, \ldots

$$N_1 = \binom{n_1}{2} + n_2, \quad N_2 = \binom{n_2}{2} \times 2 + n_1 n_2 + n_4$$

• Poisson approximation [Arratia-Tavaré '92]: n_k 's are approximated independent Poi $(\frac{1}{k})$ (we will need their joint MGF)

Second moment via orbit decomposition (3) Let $\tau = \log \frac{1}{1-o^2} = \rho^2 (1+o(1))$. We get $\mathbb{E}_{\sigma}\left[\prod_{k=1}^{\binom{n}{2}} \left(\frac{1}{1-\rho^{2k}}\right)^{N_{k}}\right] \approx \mathbb{E}_{\sigma}\left[\exp(\tau N_{1})\right] \approx \mathbb{E}_{\sigma}\left[\exp(\tau n_{1}^{2}/2)\right]$ (2) $\approx \mathbb{E}\left[\exp(\tau \operatorname{Poi}(1)^2/2)\mathbf{1}_{\{\operatorname{Poi}(1) \leq n\}}\right]$ $= \sum_{l=1}^{n} \frac{\exp(\tau \ell^2/2)}{\ell l} = 1 + o(1)$

if
$$\tau = \frac{(2-\epsilon)\log n}{n}$$

Second moment via orbit decomposition (3)
Let
$$\tau = \log \frac{1}{1-\rho^2} = \rho^2 (1+o(1))$$
. We get

$$\mathbb{E}_{\sigma} \left[\prod_{k=1}^{\binom{n}{2}} \left(\frac{1}{1-\rho^{2k}} \right)^{N_k} \right] \approx \mathbb{E}_{\sigma} \left[\exp(\tau N_1) \right] \approx \mathbb{E}_{\sigma} \left[\exp(\tau n_1^2/2) \right] \qquad (2)$$

$$\approx \mathbb{E} \left[\exp(\tau \mathsf{Poi}(1)^2/2) \mathbf{1}_{\{\mathsf{Poi}(1) \le n\}} \right]$$

$$= \sum_{\ell=0}^n \frac{\exp(\tau \ell^2/2)}{\ell!} = 1 + o(1)$$

if $\tau = \frac{(2-\epsilon)\log n}{n}$.

Summary: We have shown

$$\rho^2 \leq \frac{(\mathbf{2} - \epsilon) \log n}{n} \implies \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^2\right] = 1 + o(1).$$

But we want $\rho^2 \leq \frac{(\mathbf{4}-\epsilon)\log n}{n}...$

Limitation of vanilla second-moment method

It turns out that

$$\rho^2 \ge \frac{(\mathbf{2}+\epsilon)\log n}{n} \implies \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] \to \infty$$

 $\bullet\,$ Gaussian: suboptimal by a factor of $2\,$

• ER graphs: suboptimal by an unbounded factor when p = o(1)

Limitation of vanilla second-moment method

It turns out that

$$\rho^2 \ge \frac{(\mathbf{2}+\epsilon)\log n}{n} \implies \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] \to \infty$$

- $\bullet\,$ Gaussian: suboptimal by a factor of $2\,$
- ER graphs: suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits

$$\mathbb{E}_{(A,B)\sim\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \mathbb{E}_{\pi\perp\!\!\perp\bar{\pi}}\left[\prod_{O\in\mathcal{O}}\mathbb{E}_{\mathcal{Q}}\left[X_O\right]\right] \stackrel{\tilde{\pi}=\pi}{\geq} \frac{1}{n!}\left(1+\rho^2\right)^{\binom{n}{2}}$$

Limitation of vanilla second-moment method

It turns out that

$$\rho^2 \ge \frac{(\mathbf{2}+\epsilon)\log n}{n} \implies \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] \to \infty$$

- Gaussian: suboptimal by a factor of 2
- ER graphs: suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits

$$\mathbb{E}_{(A,B)\sim\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \mathbb{E}_{\pi\perp\!\!\perp\bar{\pi}}\left[\prod_{O\in\mathcal{O}}\mathbb{E}_{\mathcal{Q}}\left[X_O\right]\right] \stackrel{\tilde{\pi}=\pi}{\geq} \frac{1}{n!}\left(1+\rho^2\right)^{\binom{n}{2}}$$

Atypically large magnitude of $\prod_{O \in \mathcal{O}: |O|=k} X_O$ for short orbits of length $k \leq \log n \Rightarrow$ second-moment blows up

Truncated second-moment method

Let \mathcal{E} denote a typical event under \mathcal{P} , i.e., $\mathcal{P}((A, B, \pi_*) \in \mathcal{E}) = 1 - o(1)$.

$$\mathsf{Truncated 2nd moment} = \mathbb{E}_{\pi_* \bot \widetilde{\pi}} \left[\mathbb{E}_Q \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \widetilde{\pi}) \in \mathcal{E}\}} \right] \right]$$

Then

 $\begin{array}{l} \mbox{Truncated 2nd moment} = O(1) \implies \mbox{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B)) \leq 1 - \Omega(1) \\ \mbox{Truncated 2nd moment} = 1 + o(1) \implies \mbox{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B)) = o(1) \end{array}$

Truncated second-moment method

Let \mathcal{E} denote a typical event under \mathcal{P} , i.e., $\mathcal{P}((A, B, \pi_*) \in \mathcal{E}) = 1 - o(1)$.

$$\mathsf{Truncated 2nd moment} = \mathbb{E}_{\pi_* \bot \widetilde{\pi}} \left[\mathbb{E}_Q \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A,B,\pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A,B,\widetilde{\pi}) \in \mathcal{E}\}} \right] \right]$$

Then

 $\begin{array}{l} \mbox{Truncated 2nd moment} = O(1) \implies \mbox{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B)) \leq 1 - \Omega(1) \\ \mbox{Truncated 2nd moment} = 1 + o(1) \implies \mbox{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B)) = o(1) \end{array}$

Caveat:

- The event \mathcal{E} must be measurable wrt (A, B, π_*) .
- Although π_{*} = π̃ is a rare event, we cannot truncate on anything involving the interaction between two replicas (π_{*}, π̃).

Truncated second-moment method

Let \mathcal{E} denote a typical event under \mathcal{P} , i.e., $\mathcal{P}((A, B, \pi_*) \in \mathcal{E}) = 1 - o(1)$.

$$\mathsf{Truncated 2nd moment} = \mathbb{E}_{\pi_* \bot \widetilde{\pi}} \left[\mathbb{E}_Q \left[\prod_{O \in \mathcal{O}} X_O \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \widetilde{\pi}) \in \mathcal{E}\}} \right] \right]$$

Then

 $\begin{array}{l} \mbox{Truncated 2nd moment} = O(1) \implies \mbox{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B)) \leq 1 - \Omega(1) \\ \mbox{Truncated 2nd moment} = 1 + o(1) \implies \mbox{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B)) = o(1) \end{array}$

Caveat:

- The event \mathcal{E} must be measurable wrt (A, B, π_*) .
- Although π_{*} = π̃ is a rare event, we cannot truncate on anything involving the interaction between two replicas (π_{*}, π̃).

Let's see why.

Details of truncated second-moment

Goal: bound $\mathsf{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B))$ from above.

• Introduce conditional planted model:

$$\mathcal{P}'(A, B, \pi) \triangleq \frac{\mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}}{\mathcal{P}(\mathcal{E})}$$
$$= (1 + o(1)) \mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}},$$

Details of truncated second-moment

Goal: bound $\mathsf{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B))$ from above.

• Introduce conditional planted model:

$$\mathcal{P}'(A, B, \pi) \triangleq \frac{\mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}}{\mathcal{P}(\mathcal{E})}$$
$$= (1 + o(1)) \mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}},$$

• Triangle inequality of TV

$$\mathsf{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B)) \le \mathsf{TV}(\mathcal{P}'(A,B),\mathcal{Q}(A,B)) + \underbrace{\mathsf{TV}(\mathcal{P}(A,B),\mathcal{P}'(A,B))}_{\le \mathcal{P}((A,B,\pi_*)\notin\mathcal{E})=o(1)}$$

Details of truncated second-moment

Goal: bound $\mathsf{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B))$ from above.

• Introduce conditional planted model:

$$\mathcal{P}'(A, B, \pi) \triangleq \frac{\mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}}{\mathcal{P}(\mathcal{E})}$$
$$= (1 + o(1)) \mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}},$$

• Triangle inequality of TV

$$\mathsf{TV}(\mathcal{P}(A,B),\mathcal{Q}(A,B)) \le \mathsf{TV}(\mathcal{P}'(A,B),\mathcal{Q}(A,B)) + \underbrace{\mathsf{TV}(\mathcal{P}(A,B),\mathcal{P}'(A,B))}_{\le \mathcal{P}((A,B,\pi_*)\notin \mathcal{E})=o(1)}$$

• Apply second-moment method

$$\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}'\left(A,B\right)}{\mathcal{Q}\left(A,B\right)}\right)^{2}\right]$$

= $(1 + o(1)) \mathbb{E}_{\pi_{*} \perp \tilde{\pi}}\left[\mathbb{E}_{Q}\left[\underbrace{\frac{\mathcal{P}\left(A,B \mid \pi\right)}{\mathcal{Q}\left(A,B\right)} \frac{\mathcal{P}\left(A,B \mid \tilde{\pi}\right)}{\mathcal{Q}\left(A,B\right)}}_{\prod_{O \in \mathcal{O}} X_{O}} \mathbf{1}_{\{(A,B,\pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A,B,\tilde{\pi}) \in \mathcal{E}\}}\right]\right]$

Truncated second-moment: Gaussian model Major contribution comes from k = 1 (fixed points):

$$Y \triangleq \prod_{O \in \mathcal{O}: |O|=1} X_O \approx \exp\left(-\rho^2 \binom{n_1}{2} + 2\rho e_{A^{\pi_*} \wedge B}(F)\right)$$

• F is the set of fixed points of $\sigma \triangleq \pi_*^{-1} \circ \widetilde{\pi}$ and $n_1 = |F|$

•
$$e_{A^{\pi_*} \wedge B}(F) \triangleq \sum_{(i,j) \in F} A_{\pi_*(i)\pi_*(j)} B_{ij}$$

Truncated second-moment: Gaussian model Major contribution comes from k = 1 (fixed points):

$$Y \triangleq \prod_{O \in \mathcal{O}: |O|=1} X_O \approx \exp\left(-\rho^2 \binom{n_1}{2} + 2\rho e_{A^{\pi_*} \wedge B}(F)\right)$$

- F is the set of fixed points of $\sigma \triangleq \pi_*^{-1} \circ \widetilde{\pi}$ and $n_1 = |F|$
- $e_{A^{\pi_*} \wedge B}(F) \triangleq \sum_{(i,j) \in F} A_{\pi_*(i)\pi_*(j)} B_{ij}$
- Under \mathcal{P} : $e_{A^{\pi_*} \wedge B}(S)$ concentrates on its mean $\rho\binom{|S|}{2}$ uniformly over all S with large |S| (Hanson-Wright)

Truncated second-moment: Gaussian model Major contribution comes from k = 1 (fixed points):

$$Y \triangleq \prod_{O \in \mathcal{O}: |O|=1} X_O \approx \exp\left(-\rho^2 \binom{n_1}{2} + 2\rho e_{A^{\pi_*} \wedge B}(F)\right)$$

• F is the set of fixed points of $\sigma \triangleq \pi_*^{-1} \circ \widetilde{\pi}$ and $n_1 = |F|$

•
$$e_{A^{\pi_*} \wedge B}(F) \triangleq \sum_{(i,j) \in F} A_{\pi_*(i)\pi_*(j)} B_{ij}$$

- Under \mathcal{P} : $e_{A^{\pi_*} \wedge B}(S)$ concentrates on its mean $\rho\binom{|S|}{2}$ uniformly over all S with large |S| (Hanson-Wright)
- On this typical (under \mathcal{P}) event \mathcal{E} , when |F| is large,

$$\mathbb{E}_{\mathcal{Q}}\left[Y\mathbf{1}_{\mathcal{E}}\right] \lesssim e^{-\rho^{2}\binom{n_{1}}{2}} \mathbb{E}_{\mathcal{Q}}\left[e^{2\rho e_{A^{\pi_{*}}\wedge B}(F)}\mathbf{1}_{\left\{e_{A\wedge B_{\pi}}(F) \leq \rho\binom{n_{1}}{2}\right\}}\right]$$
$$\approx \exp\left(\frac{\rho^{2}}{2}\binom{n_{1}}{2}\right) \quad \text{(Gain a factor of 2 over (2))}$$

by truncated MGF

Truncated second-moment: sparse Erdős-Rényi

Need to consider $k = \Theta(\log n)$. It can be shown

• Long orbits:

$$\mathbb{E}_{\mathcal{Q}}\left[\prod_{|O|>k} X_O\right] \le \left(1+\rho^k\right)^{\frac{n^2}{k}} = 1+o(1)$$

• Short incomplete orbits:

$$\mathbb{E}_{\mathcal{Q}}\left[X_O \mid O \not\subset E\left(A \land B^{\pi}\right)\right] \le 1$$

• Short complete orbits:

$$X_O = \left(\frac{1}{p}\right)^{2|O|}, \quad \forall O \subset E\left(A \wedge B^{\pi}\right)$$

Suffices to consider subgraph $H_k \triangleq \bigcup_{O:|O| \le k, O \subset E(A \land B^{\pi})} O$

Truncated second-moment: sparse Erdős-Rényi

• If
$$nps^2 \le 1 - \omega(n^{-1/3})$$
:

 $\mathcal{E} \triangleq \{A^{\pi} \land B \text{ is a pseudoforest}\}\$

• If
$$nps^2 \leq \lambda^* - \epsilon$$
:

Then

 $\mathcal{E} \triangleq \{ \text{The subgraph density of } A^{\pi} \wedge B \text{ is smaller than } \gamma(\lambda^*) \}$

$$\mathbb{E}_{\mathcal{Q}}\left[\prod_{O\in\mathcal{O}} X_O \mathbf{1}_{\mathcal{E}}\right] \le (1+o(1)) \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{1}{p}\right)^{2e(H_k)} \mathbf{1}_{\{H_k \text{ is admissible}\}}\right]$$
$$= (1+o(1)) \sum_{H\in\mathcal{H}_k} s^{2e(H)} \quad \text{(generating function)}$$

 \mathcal{H}_k : The set of all admissible H_k
Truncated second-moment: sparse Erdős-Rényi

• If
$$nps^2 \le 1 - \omega(n^{-1/3})$$
:

 $\mathcal{E} \triangleq \{A^{\pi} \land B \text{ is a pseudoforest}\}\$

• If
$$nps^2 \leq \lambda^* - \epsilon$$
:

Then

 $\mathcal{E} \triangleq \{ \text{The subgraph density of } A^{\pi} \wedge B \text{ is smaller than } \gamma(\lambda^*) \}$

$$\mathbb{E}_{\mathcal{Q}}\left[\prod_{O\in\mathcal{O}} X_O \mathbf{1}_{\mathcal{E}}\right] \le (1+o(1)) \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{1}{p}\right)^{2e(H_k)} \mathbf{1}_{\{H_k \text{ is admissible}\}}\right]$$
$$= (1+o(1)) \sum_{H\in\mathcal{H}_k} s^{2e(H)} \quad \text{(generating function)}$$

 \mathcal{H}_k : The set of all admissible H_k

Key remaining challenge: enumerate \mathcal{H}_k using orbit structure

Analysis

- Proof of detection thresholds
- Proof of exact recovery thresholds

Exact recovery: Positive results

Decompose the difference of objectives via edge orbits

$$\langle A^{\pi} - A^{\pi_*}, B \rangle$$

$$= \sum_{O \in \mathcal{O} \setminus \mathcal{O}_1} \underbrace{\sum_{(i,j) \in O} A_{\pi(i)\pi(j)} B_{ij}}_{X_O} - \sum_{O \in \mathcal{O} \setminus \mathcal{O}_1} \underbrace{\sum_{(i,j) \in O} A_{\pi^*(i)\pi^*(j)} B_{ij}}_{Y_O}$$

- Apply large deviation analysis:
 - For π far away from π^* : bound $\sum_O X_O$ and $\sum_O Y_O$ separately
 - For π close to π^* : bound $\sum_O (X_O Y_O)$ directly
- The contribution of longer edge orbits can be effectively bounded by that of the 2-edge orbits

$$M_{|O|} \triangleq \mathbb{E}\left[\exp(tX_O)\right] \le M_2^{|O|/2}, \quad \forall |O| \ge 2$$

Computation of $M_{|O|}$ is similar to (1)

Exact recovery: Negative results

- Suffices to show MLE fails (WLOG $\pi_* = id$)
- Bottleneck: π is a transposition swapping i and j, for which

$$\Delta_{ij} \equiv \langle A^{\pi} - A^{\pi_*}, B \rangle = -\sum_{k \neq i,j} \left(A_{ik} - A_{jk} \right) \left(B_{ik} - B_{jk} \right)$$

• Prove the existence of (i, j) for which $\Delta_{ij} > 0$ whp

Exact recovery: Negative results

- Suffices to show MLE fails (WLOG $\pi_* = id$)
- Bottleneck: π is a transposition swapping i and j, for which

$$\Delta_{ij} \equiv \langle A^{\pi} - A^{\pi_*}, B \rangle = -\sum_{k \neq i,j} \left(A_{ik} - A_{jk} \right) \left(B_{ik} - B_{jk} \right)$$

- Prove the existence of (i, j) for which $\Delta_{ij} > 0$ whp
- Since $B = \rho A + \sqrt{1 \rho^2} Z$, conditioned on variance parameter $v_{ij} \equiv \sum_{k \neq i,j} (A_{ik} A_{jk})^2$,

$$\Delta_{ij} \sim N(-\rho v_{ij}, 2(1-\rho^2)v_{ij})$$

- Whp, all v_{ij} concentrates on $\mathbb{E}[v_{ij}] \approx 2n$. So $\mathbb{P} \{\Delta_{ij} > 0\} \approx \exp(-\frac{\rho^2 n}{2}.$
- Total number of transpositions: $\binom{n}{2}$. So $\rho^2 \leq \frac{(4-\epsilon)\log n}{n} \implies \mathbb{E}[\sum \mathbf{1}_{\{\Delta_{ij}>0\}}] \to \infty.$

Exact recovery: Negative results

- Suffices to show MLE fails (WLOG $\pi_* = id$)
- Bottleneck: π is a transposition swapping i and j, for which

$$\Delta_{ij} \equiv \langle A^{\pi} - A^{\pi_*}, B \rangle = -\sum_{k \neq i,j} \left(A_{ik} - A_{jk} \right) \left(B_{ik} - B_{jk} \right)$$

- Prove the existence of (i, j) for which $\Delta_{ij} > 0$ whp
- Since $B = \rho A + \sqrt{1 \rho^2} Z$, conditioned on variance parameter $v_{ij} \equiv \sum_{k \neq i,j} (A_{ik} A_{jk})^2$,

$$\Delta_{ij} \sim N(-\rho v_{ij}, 2(1-\rho^2)v_{ij})$$

- Whp, all v_{ij} concentrates on $\mathbb{E}[v_{ij}] \approx 2n$. So $\mathbb{P} \{\Delta_{ij} > 0\} \approx \exp(-\frac{\rho^2 n}{2}.$
- Total number of transpositions: $\binom{n}{2}$. So $\rho^2 \leq \frac{(4-\epsilon)\log n}{n} \implies \mathbb{E}[\sum \mathbf{1}_{\{\Delta_{ij}>0\}}] \to \infty.$
- Since Δ_{ij} are not independent, need to compute 2nd moment applying Paley-Zymund (Chap 1)

Concluding remarks

		Partial recovery & detection	Almost exact recovery	Exact recovery
p	$n^{-o(1)}$	$nps^2 = \frac{2\log n}{\log(1/p) - 1 + p}$		$\frac{nps^2}{(1-\sqrt{n})^2\log n} = 1$
Γ	$n^{-\alpha}$	$nps^2 = \lambda^*$	$nps^2 = \omega(1)$	$(1 \ \nabla P)$ log N
Gaussian		$\frac{n\rho^2}{\log n} = 4$		

Concluding remarks

		Partial recovery & detection	Almost exact recovery	Exact recovery
p	$n^{-o(1)}$	$nps^2 = \frac{2\log n}{\log(1/p) - 1 + p}$		$\frac{nps^2}{(1-\sqrt{n})^2 \log n} = 1$
	$n^{-\alpha}$	$nps^2 = \lambda^*$	$nps^2 = \omega(1)$	$(1 \ \nabla P)$ log n
Gaussian		$\frac{n\rho^2}{\log n} = 4$		

Reference

- Y. Wu, J. Xu, & S. H. Yu, *Testing correlation of unlabeled random graphs*, Annals of Applied Probability, arXiv:2008.10097.
- Y. Wu, J. Xu, & S. H. Yu, Settling the sharp reconstruction thresholds of random graph matching, IEEE Transactions on Information Theory, arXiv:2102.00082.
- J. Ding & H. Du, Detection threshold for correlated Erdős-Rényi graphs via densest subgraphs. arXiv:2203.14573.
- J. Ding & H. Du, *Matching recovery threshold for correlated random graphs*. arXiv:2205.14650.