S\&DS 684 Lecture 12: Random Graph Matching: Information-theoretic Limits

Yihong Wu
Department of Statistics and Data Science
Yale University

Apr 18, 2023

Graph matching (network alignment)

Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the edges (i.e. minimizes \# of adjacency disagreements)

QAP (1)
Given symmetric $n \times n$ matrices A, B, solve
Quadratic Assignment Problem (QAP): $\max _{\pi \in S_{n}} \sum_{i<j} A_{\pi(i) \pi(j)} B_{i j}$

- Introduced by Koopmans-Beckmann '57 (Yale Econ)

COWLES FOUNDATION DISCUSSION PAPRA; NO. 4*

Assignment Problems and the Location of Economic Activities**
by

Tjalling C. Koopmans and Martin Beclaman

QAP (2)

Noiseless case: QAP \Longleftrightarrow Graph isomorphism
Given two graphs A and B, decide whether $A \cong B$, i.e., there exists a bijection $\pi: V(A) \rightarrow V(B)$ such that

$$
(u, v) \in E(A) \Leftrightarrow(\pi(u), \pi(v)) \in E(B)
$$

QAP (2)

Noiseless case: QAP \Longleftrightarrow Graph isomorphism
Given two graphs A and B, decide whether $A \cong B$, i.e., there exists a bijection $\pi: V(A) \rightarrow V(B)$ such that

$$
(u, v) \in E(A) \Leftrightarrow(\pi(u), \pi(v)) \in E(B)
$$

- Not known to be solvable in polynomial time in the worst case
- In practice, two graphs are often not exactly isomorphic, but still want to tell whether their topologies are similar

QAP (3)

QAP includes many problems as special cases: $A=$ adj matrix of observed graph

- Planted clique (Part I):

$$
B=\text { adj matrix of a fixed } k \text {-clique }
$$

- Minumum bisection (Part II):

$$
B=\xi \xi^{\top}, \quad \xi=(1, \ldots, 1,-1, \ldots,-1)^{\top} .
$$

- TSP (Lec 12):
$B=$ adj matrix of a fixed Hamiltonian cycle

QAP (3)

QAP includes many problems as special cases: $A=$ adj matrix of observed graph

- Planted clique (Part I):

$$
B=\text { adj matrix of a fixed } k \text {-clique }
$$

- Minumum bisection (Part II):

$$
B=\xi \xi^{\top}, \quad \xi=(1, \ldots, 1,-1, \ldots,-1)^{\top}
$$

- TSP (Lec 12):

$$
B=\text { adj matrix of a fixed Hamiltonian cycle }
$$

Here we will be dealing with B being Erdős-Rényi as well.

Application 1: Network de-anonymization

- Successfully de-anonymize Netflix dataset by matching it to IMDB [Narayanan-Shmatikov '08]
- Correctly identify 30.8% of shared users between Twitter and Flickr [Narayanan-Shmatikov '09]

Application 2: Protein-Protein Interaction network

Human network Mouse network
[Kazemi-Hassani-Grossglauser-Modarres '16]

Graph matching for aligning PPI networks between different species, to identify conserved components and genes with common function
[Singh-Xu-Berger '08]

Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar objects that undergo different deformations

?

Shape REtrieval Contest (SHREC) dataset [Lähner et al '16]

Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lähner et al '16]

3-D shapes \rightarrow geometric graphs (features \rightarrow nodes, distances \rightarrow edges)

Two key challenges

- Statistical: two graphs may not be the same
- Computational: \# of possible node mappings is n ! $\left(100!\approx 10^{158}\right)$

Beyond worst-case intractability

- NP-hard for matching two graphs in worst case
- QAP is hard to approximate within $\exp (\operatorname{poly} \log (n))$ multiplicative factor [Makarychev-Manokaran-Sviridenko '15]
- However, real networks are not arbitrary and have latent structures

Beyond worst-case intractability

- NP-hard for matching two graphs in worst case
- QAP is hard to approximate within $\exp (\operatorname{poly} \log (n))$ multiplicative factor [Makarychev-Manokaran-Sviridenko '15]
- However, real networks are not arbitrary and have latent structures
- Recent surge of interests on the average-case analysis of matching correlated random graphs [Feizi at el.'16, Lyzinski at el'16, Cullina-Kiyavash'16,17, Ding-Ma-W-Xu'18, Barak-Chou-Lei-Schramm-Sheng'19, Fan-Mao-W-Xu'19a,19b, Ganassali-Massoulié'20, Hall-Massoulié'20, ...]
- CS-style average-case analysis: under null model, aiming to understand "what's the fraction of bad instances"
- Stat-style average-case analysis: under planted model (meaningful statistical model).
- Focus on correlated Erdős-Rényi graphs model [Pedarsani-Grossglauser '11]

Correlated Erdős-Rényi graphs model $\mathcal{G}(n, p, s)$

- $\left(A_{\pi_{*}(i) \pi_{*}(j)}, B_{i j}\right)$ are iid pairs of correlated $\operatorname{Bern}(p s)$
- Key parameter $n p s^{2}$: average degree of intersection graph $A \wedge B^{*}$;

Correlated Gaussian model

$$
B=\rho A^{\pi_{*}}+\sqrt{1-\rho^{2}} Z,
$$

where

- A and Z are independent Gaussian Wigner matrices with iid standard normal entries;
- $A^{\pi_{*}}=\left(A_{\pi_{*}(i) \pi_{*}(j)}\right)$ denotes the relabeled version of A
- Conditional on π_{*}, for any $1 \leq i<j \leq n$,

$$
\left(A_{\pi_{*}(i) \pi_{*}(j)}, B_{i j}\right) \stackrel{\mathrm{iid}}{\sim} \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right) .
$$

Two statistical tasks: detection and estimation

- Detection:
- $\mathcal{H}_{0}: A$ and B are independent Erdős-Rényi graphs $\mathcal{G}(n, p s)$
- $\mathcal{H}_{1}: A$ and B are correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
- Test between \mathcal{H}_{0} and \mathcal{H}_{1} based on observation of (A, B)
- Estimation:
- Observe two correlated Erdős-Rényi graphs $A, B \sim \mathcal{G}(n, p, s)$
- Recover the underlying true vertex correspondence π_{*}
(Similarly for Gaussian model)

Two statistical tasks: detection and estimation

- Detection:
- $\mathcal{H}_{0}: A$ and B are independent Erdős-Rényi graphs $\mathcal{G}(n, p s)$
- $\mathcal{H}_{1}: A$ and B are correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
- Test between \mathcal{H}_{0} and \mathcal{H}_{1} based on observation of (A, B)
- Estimation:
- Observe two correlated Erdős-Rényi graphs $A, B \sim \mathcal{G}(n, p, s)$
- Recover the underlying true vertex correspondence π_{*}
(Similarly for Gaussian model)
Focus of this lecture
What are the information-theoretic limits of detection and estimation? (Next Tuesday: Algorithms.)

Two statistical tasks: detection and estimation

- Detection:
- $\mathcal{H}_{0}: A$ and B are independent Erdős-Rényi graphs $\mathcal{G}(n, p s)$
- $\mathcal{H}_{1}: A$ and B are correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
- Test between \mathcal{H}_{0} and \mathcal{H}_{1} based on observation of (A, B)
- Estimation:
- Observe two correlated Erdős-Rényi graphs $A, B \sim \mathcal{G}(n, p, s)$
- Recover the underlying true vertex correspondence π_{*}
(Similarly for Gaussian model)

Focus of this lecture

What are the information-theoretic limits of detection and estimation? (Next Tuesday: Algorithms.)

Progress in the recent decade: [Pedarsani-Grossglauser '11], [Cullina-Kiyavash '16,17], [Hall-Massoulié '20], [Ganassali '20], [W-Xu-Yu '20,21], [Ganassali-Lelarge-Massoulié '21], [Ding-Du '21 22]

Maximum likelihood estimation as quadratic assignment

Maximum likelihood estimation reduces to quadratic assignment (QAP):

$$
\widehat{\pi}_{\mathrm{ML}} \in \underset{\pi}{\arg \max } \sum_{i<j} A_{\pi(i) \pi(j)} B_{i j} .
$$

- QAP is NP-hard in worst case
- How much does $\widehat{\pi}_{\text {ML }}$ have in common with π^{*} ?

$$
\operatorname{overlap}\left(\pi_{*}, \widehat{\pi}\right) \triangleq \frac{1}{n}\left|\left\{i \in[n]: \widehat{\pi}(i)=\pi_{*}(i)\right\}\right|
$$

i.e., fraction of correctly classified nodes

Sharp threshold for detection: Gaussian

Theorem (W-Xu-Yu '20)

$$
\begin{aligned}
& n \rho^{2} \geq(4+\epsilon) \log n \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=1-o(1)(\text { test error }=o(1)) \\
& n \rho^{2} \leq(4-\epsilon) \log n \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=o(1)(\text { test error }=1-o(1))
\end{aligned}
$$

Sharp threshold for detection: Gaussian

Theorem (W-Xu-Yu '20)

$$
\begin{aligned}
& n \rho^{2} \geq(4+\epsilon) \log n \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=1-o(1)(\text { test error }=o(1)) \\
& n \rho^{2} \leq(4-\epsilon) \log n \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=o(1)(\text { test error }=1-o(1))
\end{aligned}
$$

Sharp threshold for recovery: Gaussian model

Theorem (W-Xu-Yu '21)

$$
\begin{aligned}
& n \rho^{2} \geq(4+\epsilon) \log n \Longrightarrow \widehat{\pi}_{\mathrm{ML}}=\pi_{*} \text { whp } \\
& n \rho^{2} \leq(4-\epsilon) \log n \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}, \pi_{*}\right)=o(1), \text { whp, } \forall \text { estimator } \widehat{\pi}
\end{aligned}
$$

Sharp threshold for recovery: Gaussian model

Theorem (W-Xu-Yu '21)
$n \rho^{2} \geq(4+\epsilon) \log n \Longrightarrow \widehat{\pi}_{\mathrm{ML}}=\pi_{*} w h p$
$n \rho^{2} \leq(4-\epsilon) \log n \Longrightarrow$ overlap $\left(\widehat{\pi}, \pi_{*}\right)=o(1)$, whp, \forall estimator $\widehat{\pi}$

- Exact recovery threshold is derived in [Ganassali '20]
- Exhibits a stronger form of "all or nothing" phenomenon
- Only a vanishing amount of correlation allows detection and recovery

Sharp detection threshold: dense Erdős-Rényi graphs

Theorem (W-Xu-Yu '20)
Suppose $n^{-o(1)} \leq p \leq 1-\Omega(1)$. Then,

$$
\begin{aligned}
& n p s^{2} \geq \frac{(2+\epsilon) \log n}{\log \frac{1}{p}-1+p} \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=1-o(1)(\text { test error=o(1)) } \\
& n p s^{2} \leq \frac{(2-\epsilon) \log n}{\log \frac{1}{p}-1+p} \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=o(1)(\text { test error }=1-o(1))
\end{aligned}
$$

Sharp detection threshold: dense Erdős-Rényi graphs

Theorem (W-Xu-Yu '20)
Suppose $n^{-o(1)} \leq p \leq 1-\Omega(1)$. Then,

$$
\begin{aligned}
& n p s^{2} \geq \frac{(2+\epsilon) \log n}{\log \frac{1}{p}-1+p} \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=1-o(1)(\text { test error }=o(1)) \\
& n p s^{2} \leq \frac{(2-\epsilon) \log n}{\log \frac{1}{p}-1+p} \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=o(1)(\text { test error }=1-o(1))
\end{aligned}
$$

Sharp recovery threshold: dense Erdős-Rényi

Theorem (W-Xu-Yu '21)
Suppose $n^{-o(1)} \leq p \leq 1-\Omega(1)$. Then,

$$
\begin{aligned}
& n p s^{2} \geq \frac{(2+\epsilon) \log n}{\log \frac{1}{p}-1+p} \Longrightarrow \text { overlap }\left(\widehat{\pi}_{\mathrm{ML}}, \pi_{*}\right)=1-o(1) \text { whp } \\
& n p s^{2} \leq \frac{(2-\epsilon) \log n}{\log \frac{1}{p}-1+p} \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}, \pi_{*}\right)=o(1), \text { whp, } \forall \text { estimator } \widehat{\pi}
\end{aligned}
$$

Sharp recovery threshold: dense Erdős-Rényi

Theorem (W-Xu-Yu '21)
Suppose $n^{-o(1)} \leq p \leq 1-\Omega(1)$. Then,

$$
n p s^{2} \geq \frac{(2+\epsilon) \log n}{\log \frac{1}{p}-1+p} \Longrightarrow \text { overlap }\left(\widehat{\pi}_{\mathrm{ML}}, \pi_{*}\right)=1-o(1) \text { whp }
$$

$$
n p s^{2} \leq \frac{(2-\epsilon) \log n}{\log \frac{1}{p}-1+p} \Longrightarrow \text { overlap }\left(\widehat{\pi}, \pi_{*}\right)=o(1), \text { whp, } \forall \text { estimator } \widehat{\pi}
$$

Interpretation of threshold:

- $I\left(\pi_{*} ; A, B\right) \approx\binom{n}{2} \times \underbrace{p s^{2}\left(\log \frac{1}{p}-1+p\right)}_{\text {mutual info btw two correlated edges }}$
- $H\left(\pi_{*}\right) \approx n \log n$
- Threshold is at $I(\pi ; A, B) \approx H\left(\pi_{*}\right)$
- Only a vanishing amount of correlation allows detection and recovery

Sharp detection threshold: sparse Erdős-Rényi

Theorem (Ding-Du '22a)

Suppose $p=n^{-\alpha}$ for $\alpha \in(0,1)$ and $\lambda^{*}=\gamma^{-1}(1 / \alpha)$.

$$
\begin{aligned}
& n p s^{2} \geq \lambda^{*}+\epsilon \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=1-o(1)(\text { test error }=o(1)) \\
& n p s^{2} \leq \lambda^{*}-\epsilon \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=o(1)(\text { test error }=1-o(1))
\end{aligned}
$$

- Sharpens the earlier threshold of $n p s^{2}=\Theta(1)$ [W-Xu-Yu '20]
- $\gamma:[1, \infty) \rightarrow[1, \infty)$ is given by the densest subgraph problem in Erdős-Rényi $\mathcal{G}\left(n, \frac{\lambda}{n}\right)$ [Hajek '90, Anantharam-Salez' 16]

$$
\max _{\emptyset \neq U \subset[n]} \frac{|\mathcal{E}(U)|}{|U|} \rightarrow \gamma(\lambda)
$$

- When $n p=\Theta(1)$, there is no zero-one phase transition.

Sharp recovery threshold: sparse Erdős-Rényi

Theorem (Ding-Du '22b)
Suppose $p=n^{-\alpha}$ for $\alpha \in(0,1]$ and $\lambda^{*}=\gamma^{-1}(1 / \alpha)$.

$$
\begin{aligned}
& n p s^{2} \geq \lambda^{*}+\epsilon \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}_{\mathrm{ML}}, \pi_{*}\right) \geq \Omega(1) \text { whp. } \\
& n p s^{2} \leq \lambda^{*}-\epsilon \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}, \pi_{*}\right)=o(1) \text { whp. } \forall \widehat{\pi}
\end{aligned}
$$

- The case of $\alpha=1$ is proved in [Ganassali-Lelarge-Massoulié '21]
- Sharpen the partial recovery threshold at $n p s^{2}=\Theta(1)$ [W-Xu-Yu '20]
- "All-or-nothing" phenomenon does not exist, as almost exact recovery (overlap $=1-o(1)$) requires $n p s^{2} \rightarrow \infty$ [Cullina-Kiyavash-Mittal-Poor '19]

Exact recovery threshold

Theorem (W-Xu-Yu '21)
Suppose $p \leq 1-\Omega(1)$. Then

$$
\begin{aligned}
& n p s^{2} \geq \frac{(1+\epsilon) \log n}{(1-\sqrt{p})^{2}} \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}_{\mathrm{ML}}, \pi_{*}\right)=1 \text { whp. } \\
& n p s^{2} \leq \frac{(1-\epsilon) \log n}{(1-\sqrt{p})^{2}} \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}, \pi_{*}\right) \neq 1 \text { whp. } \forall \widehat{\pi}
\end{aligned}
$$

Exact recovery threshold

Theorem (W-Xu-Yu '21)

Suppose $p \leq 1-\Omega(1)$. Then

$$
\begin{aligned}
& n p s^{2} \geq \frac{(1+\epsilon) \log n}{(1-\sqrt{p})^{2}} \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}_{\mathrm{ML}}, \pi_{*}\right)=1 \text { whp. } \\
& n p s^{2} \leq \frac{(1-\epsilon) \log n}{(1-\sqrt{p})^{2}} \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}, \pi_{*}\right) \neq 1 \text { whp. } \forall \widehat{\pi}
\end{aligned}
$$

- $p=o(1)$: reduces to the connectivity threshold of the intersection graph $A \wedge B^{*} \sim \mathcal{G}\left(n, p s^{2}\right)$ [Cullina-Kiyavash'16,17].
Fact about Erdős-Rényi graph: For $G \sim \mathcal{G}(n, q)$,
- If $q \geq \frac{(1+\epsilon) \log n}{n}, G$ is connected.
- If $q \leq \frac{(1-\epsilon) \log n}{n}, G$ has many isolated vertices.

Exact recovery threshold

Theorem (W-Xu-Yu '21)

Suppose $p \leq 1-\Omega(1)$. Then

$$
\begin{aligned}
& n p s^{2} \geq \frac{(1+\epsilon) \log n}{(1-\sqrt{p})^{2}} \Longrightarrow \text { overlap }\left(\widehat{\pi}_{\mathrm{ML}}, \pi_{*}\right)=1 \text { whp. } \\
& n p s^{2} \leq \frac{(1-\epsilon) \log n}{(1-\sqrt{p})^{2}} \Longrightarrow \operatorname{overlap}\left(\widehat{\pi}, \pi_{*}\right) \neq 1 \text { whp. } \forall \widehat{\pi} .
\end{aligned}
$$

- $p=o(1)$: reduces to the connectivity threshold of the intersection graph $A \wedge B^{*} \sim \mathcal{G}\left(n, p s^{2}\right)$ [Cullina-Kiyavash'16,17].
Fact about Erdős-Rényi graph: For $G \sim \mathcal{G}(n, q)$,
- If $q \geq \frac{(1+\epsilon) \log n}{n}, G$ is connected.
- If $q \leq \frac{(1-\epsilon) \log n}{n}, G$ has many isolated vertices.
- $p=\Omega(1)$: strictly higher than the connectivity threshold

Analysis

- Proof of detection thresholds
- Proof of exact recovery thresholds

Proof of detection thresholds: Positive results

- Gaussian or dense Erdős-Rényi: analyzing QAP statistic

$$
T_{\mathrm{QAP}}=\max _{\pi \in \mathcal{S}_{n}} \sum_{i<j} A_{\pi(i) \pi(j)} B_{i j}
$$

In Erdős-Rényi model: $T_{\text {QAP }}=$ size of maximal common subgraph

- Analysis: standard first-moment computation (next page)

Proof of detection thresholds: Positive results

- Gaussian or dense Erdős-Rényi: analyzing QAP statistic

$$
T_{\mathrm{QAP}}=\max _{\pi \in \mathcal{S}_{n}} \sum_{i<j} A_{\pi(i) \pi(j)} B_{i j}
$$

In Erdős-Rényi model: $T_{\text {QAP }}=$ size of maximal common subgraph

- Analysis: standard first-moment computation (next page)
- Sparse Erdős-Rényi: analyzing densest subgraph statistic

$$
\max _{\pi \in \mathcal{S}_{n}} \max _{U \subset[n]:|U| \geq n / \log n} \frac{\mathcal{E}_{\pi}(U)}{|U|}
$$

where $\mathcal{E}_{\pi}(U)$ is the set of edges induced by vertices in U in intersection graph $A^{\pi} \wedge B$

Proof of detection thresholds: Positive results

Gaussian analysis:

$$
T_{\mathrm{QAP}}=\max _{\pi \in \mathcal{S}_{n}} \sum_{i<j} A_{\pi(i) \pi(j)} B_{i j}
$$

- Under \mathcal{P} (ρ-correlated):

$$
T_{\mathrm{QAP}} \geq \sum_{i<j} A_{\pi_{*}(i) \pi_{*}(j)} B_{i j} \approx \rho\binom{n}{2}
$$

- Under \mathcal{Q} (independent):

$$
\mathcal{Q}\left(T_{\mathrm{QAP}} \leq \rho\binom{n}{2}\right) \lesssim n!\exp \left(-\frac{\left(\rho\binom{n}{2}\right)^{2}}{2\binom{n}{2}}\right) \approx \exp \left(\rho^{2} n^{2} / 4-n \log n\right)
$$

- $\rho^{2}=\frac{(4+\epsilon) \log n}{n} \Longrightarrow$ success

Proof of detection thresholds: Negative results

Second-moment method (Chap 7):

$$
\begin{array}{lr}
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=O(1) & \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q}) \leq 1-\Omega(1) \\
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=1+o(1) & \\
\text { Strong detection is impossible } \\
& \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=o(1)
\end{array}
$$

Weak detection is impossible

Proof of detection thresholds: Negative results

Second-moment method (Chap 7):

$$
\begin{array}{lr}
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=O(1) & \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q}) \leq 1-\Omega(1) \\
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=1+o(1) & \\
\text { Strong detection is impossible } \\
& \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q})=o(1)
\end{array}
$$

Weak detection is impossible
Here

$$
\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}=\frac{1}{n!} \sum_{\pi_{*} \in S_{n}} \frac{\mathcal{P}\left(A, B \mid \pi_{*}\right)}{\mathcal{Q}(A, B)}
$$

As usual, second moment computation involves two iid replicas π_{*} and $\tilde{\pi}$

Cycle (orbit) decomposition

- Node permutation σ acts on $[n]$
- Edge permutation σ^{E} acts on $\binom{[n]}{2}: \sigma^{\mathrm{E}}((i, j)) \triangleq(\sigma(i), \sigma(j))$

Cycle (orbit) decomposition

- Node permutation σ acts on $[n]$
- Edge permutation σ^{E} acts on $\binom{[n]}{2}: \sigma^{\mathrm{E}}((i, j)) \triangleq(\sigma(i), \sigma(j))$

Example: $n=6$ and $\sigma=(1)(23)(456)$:

Cycle (orbit) decomposition

- Node permutation σ acts on $[n]$
- Edge permutation σ^{E} acts on $\binom{[n]}{2}: \sigma^{\mathrm{E}}((i, j)) \triangleq(\sigma(i), \sigma(j))$

Example: $n=6$ and $\sigma=(1)(23)(456)$:

Cycle (orbit) decomposition

- Node permutation σ acts on $[n]$
- Edge permutation σ^{E} acts on $\binom{[n]}{2}: \sigma^{\mathrm{E}}((i, j)) \triangleq(\sigma(i), \sigma(j))$

Example: $n=6$ and $\sigma=(1)(23)(456)$:

Second moment via orbit decomposition (1)

$$
\begin{aligned}
\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2} & =\left(\mathbb{E}_{\pi_{*}}\left[\frac{\mathcal{P}\left(A, B \mid \pi_{*}\right)}{\mathcal{Q}(A, B)}\right]\right)^{2} \\
& =\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \prod_{i<j} X_{i j} \quad X_{i j} \triangleq \frac{\mathcal{P}\left(B_{i j} \mid A_{\pi_{*}(i) \pi_{*}(j)}\right) \mathcal{P}\left(B_{i j} \mid A_{\widetilde{\pi}(i) \widetilde{\pi}(j)}\right)}{\mathcal{Q}\left(B_{i j}\right)^{2}} \\
& =\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \prod_{O \in \mathcal{O}} X_{O} \quad X_{O} \triangleq \prod_{(i, j) \in O} X_{i j}
\end{aligned}
$$

\mathcal{O} : disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi_{*}^{-1} \circ \widetilde{\pi}$

Second moment via orbit decomposition (1)

$$
\begin{aligned}
\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2} & =\left(\mathbb{E}_{\pi_{*}}\left[\frac{\mathcal{P}\left(A, B \mid \pi_{*}\right)}{\mathcal{Q}(A, B)}\right]\right)^{2} \\
& =\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \prod_{i<j} X_{i j} \quad X_{i j} \triangleq \frac{\mathcal{P}\left(B_{i j} \mid A_{\pi_{*}(i) \pi_{*}(j)}\right) \mathcal{P}\left(B_{i j} \mid A_{\widetilde{\pi}(i) \widetilde{\pi}(j)}\right)}{\mathcal{Q}\left(B_{i j}\right)^{2}} \\
& =\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \prod_{O \in \mathcal{O}} X_{O} \quad X_{O} \triangleq \prod_{(i, j) \in O} X_{i j}
\end{aligned}
$$

\mathcal{O} : disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi_{*}^{-1} \circ \widetilde{\pi}$

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \mathbb{E}_{\mathcal{Q}} \prod_{O \in \mathcal{O}} X_{O}=\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{Q}}\left[X_{O}\right]
$$

Second moment via orbit decomposition (1)

$$
\begin{aligned}
\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2} & =\left(\mathbb{E}_{\pi_{*}}\left[\frac{\mathcal{P}\left(A, B \mid \pi_{*}\right)}{\mathcal{Q}(A, B)}\right]\right)^{2} \\
& =\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \prod_{i<j} X_{i j} \quad X_{i j} \triangleq \frac{\mathcal{P}\left(B_{i j} \mid A_{\pi_{*}(i) \pi_{*}(j)}\right) \mathcal{P}\left(B_{i j} \mid A_{\widetilde{\pi}(i) \widetilde{\pi}(j)}\right)}{\mathcal{Q}\left(B_{i j}\right)^{2}} \\
& =\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \prod_{O \in \mathcal{O}} X_{O} \quad X_{O} \triangleq \prod_{(i, j) \in O} X_{i j}
\end{aligned}
$$

\mathcal{O} : disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi_{*}^{-1} \circ \widetilde{\pi}$

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \mathbb{E}_{\mathcal{Q}} \prod_{O \in \mathcal{O}} X_{O}=\mathbb{E}_{\widetilde{\pi} \Perp \pi_{*}} \prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{Q}}\left[X_{O}\right]
$$

We will show

$$
\begin{equation*}
\mathbb{E}_{\mathcal{Q}}\left[X_{O}\right]=\frac{1}{1-\rho^{2|O|}} \tag{1}
\end{equation*}
$$

Proof of (1)

$$
X_{i j} \triangleq L\left(A_{\pi_{*}(i) \pi_{*}(j)}, B_{i j}\right) L\left(A_{\widetilde{\pi}(i) \widetilde{\pi}(j)}, B_{i j}\right)
$$

where for Gaussian model

$$
L(a, b)=\frac{P(a, b)}{Q(a, b)}=\frac{1}{\sqrt{1-\rho^{2}}} \exp \left(\frac{-\rho^{2}\left(b^{2}+a^{2}\right)+2 \rho a b}{2\left(1-\rho^{2}\right)}\right) .
$$

Proof of (1)

$$
X_{i j} \triangleq L\left(A_{\pi_{*}(i) \pi_{*}(j)}, B_{i j}\right) L\left(A_{\widetilde{\pi}(i) \widetilde{\pi}(j)}, B_{i j}\right)
$$

where for Gaussian model

$$
L(a, b)=\frac{P(a, b)}{Q(a, b)}=\frac{1}{\sqrt{1-\rho^{2}}} \exp \left(\frac{-\rho^{2}\left(b^{2}+a^{2}\right)+2 \rho a b}{2\left(1-\rho^{2}\right)}\right) .
$$

Example: $\pi_{*}=\mathrm{id}, \tilde{\pi}=\sigma$ as previously. Consider $O=\{14,15,16\}:$

$$
X_{O}=\underbrace{L\left(A_{14}, B_{14}\right) L\left(A_{15}, B_{14}\right)} \underbrace{L\left(A_{15}, B_{15}\right) L\left(A_{16}, B_{15}\right)} \underbrace{L\left(A_{16}, B_{16}\right) L\left(A_{14}, B_{16}\right)}
$$

For an edge orbit $|O|=k$, computing $\mathbb{E}_{\mathcal{Q}}\left[X_{O}\right]$ boils down to

$$
\mathbb{E}_{\mathcal{Q}}\left[X_{O}\right]=\mathbb{E}\left[\prod_{\ell=1}^{k} L\left(a_{\ell}, b_{\ell}\right) L\left(a_{\ell}, b_{(\ell+1) \bmod k}\right)\right], \quad a_{\ell}, b_{\ell}{ }^{\mathrm{iid}} N(0,1)
$$

Proof of (1)

Two ways:
(1) Write $\mathbb{E}\left[\exp \left(x^{\top} C x\right)\right]$, where
$x=\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right) \sim N\left(0, I_{2 k}\right)$. Find MGF of Gaussian quadratic form determined by eigenvalues of C.
(2) Slicker way: view L as a kernel

$$
(L f)(x) \triangleq \mathbb{E}_{Y \sim Q}[L(x, Y) f(Y)]=\mathbb{E}_{(X, Y) \sim P}[f(Y) \mid X=x]
$$

and $L^{2} \equiv L \circ L$. Then

$$
\begin{aligned}
\mathbb{E}\left[\prod_{\ell=1}^{k} L\left(a_{\ell}, b_{\ell}\right) L\left(a_{\ell}, b_{(\ell+1) \bmod k}\right)\right] & =\mathbb{E}\left[\prod_{\ell=1}^{k} L^{2}\left(a_{\ell}, a_{(\ell+1) \bmod k}\right)\right] \\
& =\operatorname{tr}\left(L^{2 k}\right)=\sum \lambda_{i}^{2 k}
\end{aligned}
$$

where $\lambda_{i}=\rho^{i}$ (L is Mehler kernel, diagonalized by Hermite polynomials).

Second moment via orbit decomposition (2)

Overall, we get

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=\mathbb{E}_{\sigma}\left[\prod_{k=1}^{\binom{n}{2}}\left(\frac{1}{1-\rho^{2 k}}\right)^{N_{k}}\right]
$$

where

- $\sigma=\pi_{*}^{-1} \circ \tilde{\pi}$ is a uniform random permutation on $[n]$
- Cycle length of $\sigma: n_{1}, n_{2}, \ldots$
- Cycle length of $\sigma^{\mathrm{E}}: N_{1}, N_{2}, \ldots$

$$
N_{1}=\binom{n_{1}}{2}+n_{2}, \quad N_{2}=\binom{n_{2}}{2} \times 2+n_{1} n_{2}+n_{4}
$$

Second moment via orbit decomposition (2)

Overall, we get

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=\mathbb{E}_{\sigma}\left[\prod_{k=1}^{\binom{n}{2}}\left(\frac{1}{1-\rho^{2 k}}\right)^{N_{k}}\right]
$$

where

- $\sigma=\pi_{*}^{-1} \circ \tilde{\pi}$ is a uniform random permutation on $[n]$
- Cycle length of $\sigma: n_{1}, n_{2}, \ldots$
- Cycle length of $\sigma^{\mathrm{E}}: N_{1}, N_{2}, \ldots$

$$
N_{1}=\binom{n_{1}}{2}+n_{2}, \quad N_{2}=\binom{n_{2}}{2} \times 2+n_{1} n_{2}+n_{4}
$$

- Poisson approximation [Arratia-Tavaré '92]: n_{k} 's are approximated independent $\operatorname{Poi}\left(\frac{1}{k}\right)$ (we will need their joint MGF)

Second moment via orbit decomposition (3)

Let $\tau=\log \frac{1}{1-\rho^{2}}=\rho^{2}(1+o(1)$. We get

$$
\begin{aligned}
\mathbb{E}_{\sigma}\left[\prod_{k=1}^{\binom{n}{2}}\left(\frac{1}{1-\rho^{2 k}}\right)^{N_{k}}\right] & \approx \mathbb{E}_{\sigma}\left[\exp \left(\tau N_{1}\right)\right] \approx \mathbb{E}_{\sigma}\left[\exp \left(\tau n_{1}^{2} / 2\right)\right] \\
& \approx \mathbb{E}\left[\exp \left(\tau \operatorname{Poi}(1)^{2} / 2\right) \mathbf{1}_{\{\operatorname{Poi}(1) \leq n\}}\right] \\
& =\sum_{\ell=0}^{n} \frac{\exp \left(\tau \ell^{2} / 2\right)}{\ell!}=1+o(1)
\end{aligned}
$$

if $\tau=\frac{(2-\epsilon) \log n}{n}$.

Second moment via orbit decomposition (3)

$$
\text { Let } \tau=\log \frac{1}{1-\rho^{2}}=\rho^{2}(1+o(1) . \text { We get }
$$

$$
\begin{aligned}
& \begin{aligned}
& \mathbb{E}_{\sigma}\left[\prod_{k=1}^{\binom{n}{2}}\left(\frac{1}{1-\rho^{2 k}}\right)^{N_{k}}\right] \approx \mathbb{E}_{\sigma}\left[\exp \left(\tau N_{1}\right)\right] \approx \mathbb{E}_{\sigma}\left[\exp \left(\tau n_{1}^{2} / 2\right)\right] \\
& \approx \mathbb{E}\left[\exp \left(\tau \operatorname{Poi}(1)^{2} / 2\right) \mathbf{1}_{\{\operatorname{Poi}(1) \leq n\}}\right] \\
&=\sum_{\ell=0}^{n} \frac{\exp \left(\tau \ell^{2} / 2\right)}{\ell!}=1+o(1) \\
& \text { if } \tau=\frac{(2-\epsilon) \log n}{n} .
\end{aligned}
\end{aligned}
$$

Summary: We have shown

$$
\rho^{2} \leq \frac{(2-\epsilon) \log n}{n} \Longrightarrow \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=1+o(1)
$$

But we want $\rho^{2} \leq \frac{(4-\epsilon) \log n}{n} \ldots$

Limitation of vanilla second-moment method

It turns out that

$$
\rho^{2} \geq \frac{(2+\epsilon) \log n}{n} \Longrightarrow \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right] \rightarrow \infty
$$

- Gaussian: suboptimal by a factor of 2
- ER graphs: suboptimal by an unbounded factor when $p=o(1)$

Limitation of vanilla second-moment method

It turns out that

$$
\rho^{2} \geq \frac{(2+\epsilon) \log n}{n} \Longrightarrow \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right] \rightarrow \infty
$$

- Gaussian: suboptimal by a factor of 2
- ER graphs: suboptimal by an unbounded factor when $p=o(1)$

Obstruction from short orbits

$$
\mathbb{E}_{(A, B) \sim \mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=\mathbb{E}_{\pi \Perp \widetilde{\pi}}\left[\prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{Q}}\left[X_{O}\right]\right] \stackrel{\tilde{\pi}=\pi}{\geq} \frac{1}{n!}\left(1+\rho^{2}\right)^{\binom{n}{2}}
$$

Limitation of vanilla second-moment method

It turns out that

$$
\rho^{2} \geq \frac{(2+\epsilon) \log n}{n} \Longrightarrow \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right] \rightarrow \infty
$$

- Gaussian: suboptimal by a factor of 2
- ER graphs: suboptimal by an unbounded factor when $p=o(1)$

Obstruction from short orbits

$$
\mathbb{E}_{(A, B) \sim \mathcal{Q}}\left[\left(\frac{\mathcal{P}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right]=\mathbb{E}_{\pi \Perp \widetilde{\pi}}\left[\prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{Q}}\left[X_{O}\right]\right] \stackrel{\tilde{\pi}=\pi}{\geq} \frac{1}{n!}\left(1+\rho^{2}\right)^{\binom{n}{2}}
$$

Atypically large magnitude of $\prod_{O \in \mathcal{O}:|O|=k} X_{O}$ for short orbits of length $k \lesssim \log n \Rightarrow$ second-moment blows up

Truncated second-moment method

Let \mathcal{E} denote a typical event under \mathcal{P}, i.e., $\mathcal{P}\left(\left(A, B, \pi_{*}\right) \in \mathcal{E}\right)=1-o(1)$.
Truncated 2nd moment $=\mathbb{E}_{\pi_{*} \Perp \tilde{\pi}}\left[\mathbb{E}_{Q}\left[\prod_{O \in \mathcal{O}} X_{O} \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \widetilde{\pi}) \in \mathcal{E}\}}\right]\right]$
Then
Truncated 2nd moment $=O(1) \Longrightarrow \mathrm{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) \leq 1-\Omega(1)$
Truncated 2nd moment $=1+o(1) \Longrightarrow \operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B))=o(1)$

Truncated second-moment method

Let \mathcal{E} denote a typical event under \mathcal{P}, i.e., $\mathcal{P}\left(\left(A, B, \pi_{*}\right) \in \mathcal{E}\right)=1-o(1)$.
Truncated 2nd moment $=\mathbb{E}_{\pi_{*} \Perp \widetilde{\pi}}\left[\mathbb{E}_{Q}\left[\prod_{O \in \mathcal{O}} X_{O} \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \widetilde{\pi}) \in \mathcal{E}\}}\right]\right]$
Then
Truncated 2nd moment $=O(1) \Longrightarrow \operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) \leq 1-\Omega(1)$
Truncated 2nd moment $=1+o(1) \Longrightarrow \operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B))=o(1)$
Caveat:

- The event \mathcal{E} must be measurable wrt $\left(A, B, \pi_{*}\right)$.
- Although $\pi_{*}=\tilde{\pi}$ is a rare event, we cannot truncate on anything involving the interaction between two replicas $\left(\pi_{*}, \tilde{\pi}\right)$.

Truncated second-moment method

Let \mathcal{E} denote a typical event under \mathcal{P}, i.e., $\mathcal{P}\left(\left(A, B, \pi_{*}\right) \in \mathcal{E}\right)=1-o(1)$.
Truncated 2nd moment $=\mathbb{E}_{\pi_{*} \Perp \widetilde{\pi}}\left[\mathbb{E}_{Q}\left[\prod_{O \in \mathcal{O}} X_{O} \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \widetilde{\pi}) \in \mathcal{E}\}}\right]\right]$
Then
Truncated 2nd moment $=O(1) \Longrightarrow \mathrm{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) \leq 1-\Omega(1)$
Truncated 2nd moment $=1+o(1) \Longrightarrow \operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B))=o(1)$
Caveat:

- The event \mathcal{E} must be measurable wrt $\left(A, B, \pi_{*}\right)$.
- Although $\pi_{*}=\tilde{\pi}$ is a rare event, we cannot truncate on anything involving the interaction between two replicas $\left(\pi_{*}, \tilde{\pi}\right)$.
Let's see why.

Details of truncated second-moment

Goal: bound $\operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B))$ from above.

- Introduce conditional planted model:

$$
\begin{aligned}
\mathcal{P}^{\prime}(A, B, \pi) & \triangleq \frac{\mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}}{\mathcal{P}(\mathcal{E})} \\
& =(1+o(1)) \mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}
\end{aligned}
$$

Details of truncated second-moment

Goal: bound $\operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B))$ from above.

- Introduce conditional planted model:

$$
\begin{aligned}
\mathcal{P}^{\prime}(A, B, \pi) & \triangleq \frac{\mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}}{\mathcal{P}(\mathcal{E})} \\
& =(1+o(1)) \mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}
\end{aligned}
$$

- Triangle inequality of TV

$$
\operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) \leq \operatorname{TV}\left(\mathcal{P}^{\prime}(A, B), \mathcal{Q}(A, B)\right)+\underbrace{\operatorname{TV}\left(\mathcal{P}(A, B), \mathcal{P}^{\prime}(A, B)\right.}_{\leq \mathcal{P}\left(\left(A, B, \pi_{*}\right) \notin \mathcal{E}\right)=o(1)}
$$

Details of truncated second-moment

Goal: bound $\operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B))$ from above.

- Introduce conditional planted model:

$$
\begin{aligned}
\mathcal{P}^{\prime}(A, B, \pi) & \triangleq \frac{\mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}}{\mathcal{P}(\mathcal{E})} \\
& =(1+o(1)) \mathcal{P}(A, B, \pi) \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}}
\end{aligned}
$$

- Triangle inequality of TV

$$
\operatorname{TV}(\mathcal{P}(A, B), \mathcal{Q}(A, B)) \leq \operatorname{TV}\left(\mathcal{P}^{\prime}(A, B), \mathcal{Q}(A, B)\right)+\underbrace{\operatorname{TV}\left(\mathcal{P}(A, B), \mathcal{P}^{\prime}(A, B)\right)}_{\leq \mathcal{P}\left(\left(A, B, \pi_{*}\right) \notin \mathcal{E}\right)=o(1)}
$$

- Apply second-moment method

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}^{\prime}(A, B)}{\mathcal{Q}(A, B)}\right)^{2}\right] \\
= & (1+o(1)) \mathbb{E}_{\pi_{*} \Perp \widetilde{\pi}}[\mathbb{E}_{Q}[\underbrace{\frac{\mathcal{P}(A, B \mid \pi)}{\mathcal{Q}(A, B)} \frac{\mathcal{P}(A, B \mid \widetilde{\pi})}{\mathcal{Q}(A, B)}}_{\prod_{O \in \mathcal{O}} X_{O}} \mathbf{1}_{\{(A, B, \pi) \in \mathcal{E}\}} \mathbf{1}_{\{(A, B, \tilde{\pi}) \in \mathcal{E}\}}]]
\end{aligned}
$$

Truncated second-moment: Gaussian model

Major contribution comes from $k=1$ (fixed points):

$$
Y \triangleq \prod_{O \in \mathcal{O}:|O|=1} X_{O} \approx \exp \left(-\rho^{2}\binom{n_{1}}{2}+2 \rho e_{A^{\pi_{*}} \wedge B}(F)\right)
$$

- F is the set of fixed points of $\sigma \triangleq \pi_{*}^{-1} \circ \widetilde{\pi}$ and $n_{1}=|F|$
- $e_{A^{\pi_{*} \wedge B}}(F) \triangleq \sum_{(i, j) \in F} A_{\pi_{*}(i) \pi_{*}(j)} B_{i j}$

Truncated second-moment: Gaussian model

Major contribution comes from $k=1$ (fixed points):

$$
Y \triangleq \prod_{O \in \mathcal{O}:|O|=1} X_{O} \approx \exp \left(-\rho^{2}\binom{n_{1}}{2}+2 \rho e_{A^{\pi_{*}} \wedge B}(F)\right)
$$

- F is the set of fixed points of $\sigma \triangleq \pi_{*}^{-1} \circ \widetilde{\pi}$ and $n_{1}=|F|$
- $e_{A^{\pi_{*} \wedge B}}(F) \triangleq \sum_{(i, j) \in F} A_{\pi_{*}(i) \pi_{*}(j)} B_{i j}$
- Under \mathcal{P} : $e_{A^{\pi *} \wedge B}(S)$ concentrates on its mean $\rho\binom{|S|}{2}$ uniformly over all S with large $|S|$ (Hanson-Wright)

Truncated second-moment: Gaussian model

Major contribution comes from $k=1$ (fixed points):

$$
Y \triangleq \prod_{O \in \mathcal{O}:|O|=1} X_{O} \approx \exp \left(-\rho^{2}\binom{n_{1}}{2}+2 \rho e_{A^{\pi *} \wedge B}(F)\right)
$$

- F is the set of fixed points of $\sigma \triangleq \pi_{*}^{-1} \circ \widetilde{\pi}$ and $n_{1}=|F|$
- $e_{A^{\pi_{*} \wedge B}}(F) \triangleq \sum_{(i, j) \in F} A_{\pi_{*}(i) \pi_{*}(j)} B_{i j}$
- Under $\mathcal{P}: e_{A^{\pi *} \wedge B}(S)$ concentrates on its mean $\rho\binom{|S|}{2}$ uniformly over all S with large $|S|$ (Hanson-Wright)
- On this typical (under \mathcal{P}) event \mathcal{E}, when $|F|$ is large,

$$
\begin{aligned}
\mathbb{E}_{\mathcal{Q}}\left[Y \mathbf{1}_{\mathcal{E}}\right] & \lesssim e^{-\rho^{2}\binom{n_{1}}{2}} \mathbb{E}_{\mathcal{Q}}\left[e^{2 \rho e_{A}^{\pi_{* \wedge B}}(F)} \mathbf{1}_{\left\{e_{A \wedge B \pi}(F) \leq \rho\binom{n_{1}}{2}\right\}}\right] \\
& \approx \exp \left(\frac{\rho^{2}}{2}\binom{n_{1}}{2}\right) \quad(\text { Gain a factor of } 2 \operatorname{over}(2))
\end{aligned}
$$

by truncated MGF

Truncated second-moment: sparse Erdős-Rényi

Need to consider $k=\Theta(\log n)$. It can be shown

- Long orbits:

$$
\mathbb{E}_{\mathcal{Q}}\left[\prod_{|O|>k} X_{O}\right] \leq\left(1+\rho^{k}\right)^{\frac{n^{2}}{k}}=1+o(1)
$$

- Short incomplete orbits:

$$
\mathbb{E}_{\mathcal{Q}}\left[X_{O} \mid O \not \subset E\left(A \wedge B^{\pi}\right)\right] \leq 1
$$

- Short complete orbits:

$$
X_{O}=\left(\frac{1}{p}\right)^{2|O|}, \quad \forall O \subset E\left(A \wedge B^{\pi}\right)
$$

Suffices to consider subgraph $H_{k} \triangleq \cup_{O:|O| \leq k, O \subset E\left(A \wedge B^{\pi}\right)} O$

Truncated second-moment: sparse Erdős-Rényi

- If $n p s^{2} \leq 1-\omega\left(n^{-1 / 3}\right)$:

$$
\mathcal{E} \triangleq\left\{A^{\pi} \wedge B \text { is a pseudoforest }\right\}
$$

- If $n p s^{2} \leq \lambda^{*}-\epsilon$:

$$
\mathcal{E} \triangleq\left\{\text { The subgraph density of } A^{\pi} \wedge B \text { is smaller than } \gamma\left(\lambda^{*}\right)\right\}
$$

Then

$$
\begin{aligned}
\mathbb{E}_{\mathcal{Q}}\left[\prod_{O \in \mathcal{O}} X_{O} \mathbf{1}_{\mathcal{E}}\right] & \leq(1+o(1)) \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{1}{p}\right)^{2 e\left(H_{k}\right)} \mathbf{1}_{\left\{H_{k} \text { is admissible }\right\}}\right] \\
& =(1+o(1)) \sum_{H \in \mathcal{H}_{k}} s^{2 e(H)} \quad \text { (generating function) }
\end{aligned}
$$

\mathcal{H}_{k} : The set of all admissible H_{k}

Truncated second-moment: sparse Erdős-Rényi

- If $n p s^{2} \leq 1-\omega\left(n^{-1 / 3}\right)$:

$$
\mathcal{E} \triangleq\left\{A^{\pi} \wedge B \text { is a pseudoforest }\right\}
$$

- If $n p s^{2} \leq \lambda^{*}-\epsilon$:

$$
\mathcal{E} \triangleq\left\{\text { The subgraph density of } A^{\pi} \wedge B \text { is smaller than } \gamma\left(\lambda^{*}\right)\right\}
$$

Then

$$
\begin{aligned}
\mathbb{E}_{\mathcal{Q}}\left[\prod_{O \in \mathcal{O}} X_{O} \mathbf{1}_{\mathcal{E}}\right] & \leq(1+o(1)) \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{1}{p}\right)^{2 e\left(H_{k}\right)} \mathbf{1}_{\left\{H_{k} \text { is admissible }\right\}}\right] \\
& =(1+o(1)) \sum_{H \in \mathcal{H}_{k}} s^{2 e(H)} \quad \text { (generating function) }
\end{aligned}
$$

\mathcal{H}_{k} : The set of all admissible H_{k}

Key remaining challenge: enumerate \mathcal{H}_{k} using orbit structure

Analysis

- Proof of detection thresholds
- Proof of exact recovery thresholds

Exact recovery: Positive results

- Decompose the difference of objectives via edge orbits

$$
\begin{aligned}
& \left\langle A^{\pi}-A^{\pi_{*}}, B\right\rangle \\
& =\sum_{O \in \mathcal{O} \backslash \mathcal{O}_{1}} \underbrace{\sum_{(i, j) \in O} A_{\pi(i) \pi(j)} B_{i j}}_{X_{O}}-\sum_{O \in \mathcal{O} \backslash \mathcal{O}_{1}} \underbrace{\sum_{(i, j) \in O} A_{\pi^{*}(i) \pi^{*}(j)} B_{i j}}_{Y_{O}}
\end{aligned}
$$

- Apply large deviation analysis:
- For π far away from π^{*} : bound $\sum_{O} X_{O}$ and $\sum_{O} Y_{O}$ separately
- For π close to π^{*} : bound $\sum_{O}\left(X_{O}-Y_{O}\right)$ directly
- The contribution of longer edge orbits can be effectively bounded by that of the 2-edge orbits

$$
M_{|O|} \triangleq \mathbb{E}\left[\exp \left(t X_{O}\right)\right] \leq M_{2}^{|O| / 2}, \quad \forall|O| \geq 2
$$

Computation of $M_{|O|}$ is similar to (1)

Exact recovery: Negative results

- Suffices to show MLE fails (WLOG $\pi_{*}=\mathrm{id}$)
- Bottleneck: π is a transposition swapping i and j, for which

$$
\Delta_{i j} \equiv\left\langle A^{\pi}-A^{\pi_{*}}, B\right\rangle=-\sum_{k \neq i, j}\left(A_{i k}-A_{j k}\right)\left(B_{i k}-B_{j k}\right)
$$

- Prove the existence of (i, j) for which $\Delta_{i j}>0$ whp

Exact recovery: Negative results

- Suffices to show MLE fails (WLOG $\pi_{*}=\mathrm{id}$)
- Bottleneck: π is a transposition swapping i and j, for which

$$
\Delta_{i j} \equiv\left\langle A^{\pi}-A^{\pi_{*}}, B\right\rangle=-\sum_{k \neq i, j}\left(A_{i k}-A_{j k}\right)\left(B_{i k}-B_{j k}\right)
$$

- Prove the existence of (i, j) for which $\Delta_{i j}>0$ whp
- Since $B=\rho A+\sqrt{1-\rho^{2}} Z$, conditioned on variance parameter $v_{i j} \equiv \sum_{k \neq i, j}\left(A_{i k}-A_{j k}\right)^{2}$,

$$
\Delta_{i j} \sim N\left(-\rho v_{i j}, 2\left(1-\rho^{2}\right) v_{i j}\right)
$$

- Whp, all $v_{i j}$ concentrates on $\mathbb{E}\left[v_{i j}\right] \approx 2 n$. So
$\mathbb{P}\left\{\Delta_{i j}>0\right\} \approx \exp \left(-\frac{\rho^{2} n}{2}\right.$.
- Total number of transpositions: $\binom{n}{2}$. So
$\rho^{2} \leq \frac{(4-\epsilon) \log n}{n} \Longrightarrow \mathbb{E}\left[\sum \mathbf{1}_{\left\{\Delta_{i j}>0\right\}}\right] \rightarrow \infty$.

Exact recovery: Negative results

- Suffices to show MLE fails (WLOG $\pi_{*}=\mathrm{id}$)
- Bottleneck: π is a transposition swapping i and j, for which

$$
\Delta_{i j} \equiv\left\langle A^{\pi}-A^{\pi_{*}}, B\right\rangle=-\sum_{k \neq i, j}\left(A_{i k}-A_{j k}\right)\left(B_{i k}-B_{j k}\right)
$$

- Prove the existence of (i, j) for which $\Delta_{i j}>0$ whp
- Since $B=\rho A+\sqrt{1-\rho^{2}} Z$, conditioned on variance parameter $v_{i j} \equiv \sum_{k \neq i, j}\left(A_{i k}-A_{j k}\right)^{2}$,

$$
\Delta_{i j} \sim N\left(-\rho v_{i j}, 2\left(1-\rho^{2}\right) v_{i j}\right)
$$

- Whp, all $v_{i j}$ concentrates on $\mathbb{E}\left[v_{i j}\right] \approx 2 n$. So
$\mathbb{P}\left\{\Delta_{i j}>0\right\} \approx \exp \left(-\frac{\rho^{2} n}{2}\right.$.
- Total number of transpositions: $\binom{n}{2}$. So

$$
\rho^{2} \leq \frac{(4-\epsilon) \log n}{n} \Longrightarrow \mathbb{E}\left[\sum \mathbf{1}_{\left\{\Delta_{i j}>0\right\}}\right] \rightarrow \infty
$$

- Since $\Delta_{i j}$ are not independent, need to compute 2 nd moment applying Paley-Zymund (Chap 1)

Concluding remarks

		Partial recovery \& detection	Almost exact recovery	Exact recovery
p	$n^{-o(1)}$	$n p s^{2}=\frac{2 \log n}{\log (1 / p)-1+p}$		$\frac{n p s^{2}}{(1-\sqrt{\bar{p}})^{2} \log n}=1$
	$n^{-\alpha}$	$n p s^{2}=\lambda^{*}$	$n p s^{2}=\omega(1)$	
Gaussian		$\frac{n \rho^{2}}{\log n}=4$		

Concluding remarks

		Partial detection	Almost exact recovery	Exact recovery
p	$n^{-o(1)}$	$n p s^{2}=\frac{2 \log n}{\log (1 / p)-1+p}$		
	$n^{-\alpha}$	$n p s^{2}=\lambda^{*}$	$n p s^{2}=\omega(1)$	
Gaussian		$\frac{n \rho^{2}}{\log n}=4$		

Reference

- Y. Wu, J. Xu, \& S. H. Yu, Testing correlation of unlabeled random graphs, Annals of Applied Probability, arXiv:2008.10097.
- Y. Wu, J. Xu, \& S. H. Yu, Settling the sharp reconstruction thresholds of random graph matching, IEEE Transactions on Information Theory, arXiv:2102.00082.
- J. Ding \& H. Du, Detection threshold for correlated Erdős-Rényi graphs via densest subgraphs. arXiv:2203.14573.
- J. Ding \& H. Du, Matching recovery threshold for correlated random graphs. arXiv:2205.14650.

