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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)
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QAP (1)
Given symmetric n× n matrices A,B, solve

Quadratic Assignment Problem (QAP) : max
π∈Sn

∑
i<j

Aπ(i)π(j)Bij

• Introduced by Koopmans-Beckmann ’57 (Yale Econ)
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QAP (2)

Noiseless case: QAP ⇐⇒ Graph isomorphism
Given two graphs A and B, decide whether A ∼= B, i.e., there exists a
bijection π : V (A) → V (B) such that

(u, v) ∈ E(A) ⇔ (π(u), π(v)) ∈ E(B)
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• Not known to be solvable in polynomial time in the worst case

• In practice, two graphs are often not exactly isomorphic, but still
want to tell whether their topologies are similar
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QAP (3)

QAP includes many problems as special cases: A = adj matrix of
observed graph

• Planted clique (Part I):

B = adj matrix of a fixed k-clique

• Minumum bisection (Part II):

B = ξξ⊤, ξ = (1, . . . , 1,−1, . . . ,−1)⊤.

• TSP (Lec 12):

B = adj matrix of a fixed Hamiltonian cycle

Here we will be dealing with B being Erdős-Rényi as well.
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Application 1: Network de-anonymization

Alice

Bob

Charlie

?

?

?

• Successfully de-anonymize Netflix dataset by matching it to IMDB
[Narayanan-Shmatikov ’08]

• Correctly identify 30.8% of shared users between Twitter and Flickr
[Narayanan-Shmatikov ’09]
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Application 2: Protein-Protein Interaction network

Kazemi et al. BMC Bioinformatics  (2016) 17:527 Page 6 of 16

proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

[Kazemi-Hassani-Grossglauser-Modarres ’16]

Graph matching for aligning PPI networks between different species, to
identify conserved components and genes with common function
[Singh-Xu-Berger ’08]
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Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar
objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lähner et al ’16]

3-D shapes → geometric graphs (features → nodes, distances → edges)
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Two key challenges
• Statistical: two graphs may not be the same

• Computational: # of possible node mappings is n! (100! ≈ 10158)
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Beyond worst-case intractability

• NP-hard for matching two graphs in worst case
▶ QAP is hard to approximate within exp(polylog(n)) multiplicative

factor [Makarychev-Manokaran-Sviridenko ’15]

• However, real networks are not arbitrary and have latent structures

• Recent surge of interests on the average-case analysis of matching
correlated random graphs [Feizi at el.’16, Lyzinski at el’16,

Cullina-Kiyavash’16,17, Ding-Ma-W-Xu’18, Barak-Chou-Lei-Schramm-Sheng’19,

Fan-Mao-W-Xu’19a,19b, Ganassali-Massoulié’20, Hall-Massoulié’20, . . .]

▶ CS-style average-case analysis: under null model, aiming to
understand “what’s the fraction of bad instances”

▶ Stat-style average-case analysis: under planted model (meaningful
statistical model).

• Focus on correlated Erdős-Rényi graphs model [Pedarsani-Grossglauser ’11]
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Correlated Erdős-Rényi graphs model G(n, p, s)
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• (Aπ∗(i)π∗(j), Bij) are iid pairs of correlated Bern(ps)

• Key parameter nps2: average degree of intersection graph A ∧B∗;
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Correlated Gaussian model

B = ρAπ∗ +
√
1− ρ2Z ,

where

• A and Z are independent Gaussian Wigner matrices with iid
standard normal entries;

• Aπ∗ = (Aπ∗(i)π∗(j)) denotes the relabeled version of A

• Conditional on π∗, for any 1 ≤ i < j ≤ n,

(Aπ∗(i)π∗(j), Bij)
iid∼N

(
( 00 ) ,

(
1 ρ
ρ 1

))
.
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Two statistical tasks: detection and estimation

• Detection:
▶ H0: A and B are independent Erdős-Rényi graphs G(n, ps)
▶ H1: A and B are correlated Erdős-Rényi graphs G(n, p, s)
▶ Test between H0 and H1 based on observation of (A,B)

• Estimation:
▶ Observe two correlated Erdős-Rényi graphs A,B ∼ G(n, p, s)
▶ Recover the underlying true vertex correspondence π∗

(Similarly for Gaussian model)

Focus of this lecture

What are the information-theoretic limits of detection and estimation?
(Next Tuesday: Algorithms.)

Progress in the recent decade: [Pedarsani-Grossglauser ’11], [Cullina-Kiyavash

’16,17], [Hall-Massoulié ’20], [Ganassali ’20], [W-Xu-Yu ’20,21], [Ganassali-Lelarge-Massoulié
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’16,17], [Hall-Massoulié ’20], [Ganassali ’20], [W-Xu-Yu ’20,21], [Ganassali-Lelarge-Massoulié
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Maximum likelihood estimation as quadratic assignment

Maximum likelihood estimation reduces to quadratic assignment (QAP):

π̂ML ∈ argmax
π

∑
i<j

Aπ(i)π(j)Bij .

• QAP is NP-hard in worst case

• How much does π̂ML have in common with π∗?

overlap(π∗, π̂) ≜
1

n

∣∣∣∣ {i ∈ [n] : π̂(i) = π∗(i)}
∣∣∣∣

i.e., fraction of correctly classified nodes
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Sharp threshold for detection: Gaussian

Theorem (W-Xu-Yu ’20)

nρ2 ≥ (4 + ϵ) log n =⇒ TV (P,Q) = 1− o(1) (test error=o(1))

nρ2 ≤ (4− ϵ) log n =⇒ TV (P,Q) = o(1) (test error=1− o(1))

1

TV (P ,Q)

0 nρ2

logn
4

weak detection
impossible

test error=1− o(1)

strong detection
possible

test error=o(1)
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Sharp threshold for recovery: Gaussian model

Theorem (W-Xu-Yu ’21)

nρ2 ≥ (4 + ϵ) log n =⇒ π̂ML = π∗ whp

nρ2 ≤ (4− ϵ) log n =⇒ overlap (π̂, π∗) = o(1), whp, ∀ estimator π̂

1

E [overlap (π̂, π∗)]

0
nρ2

logn4

Partial recovery

impossible

“Nothing”

Exact recovery

possible (MLE)

“All”

• Exact recovery threshold is derived in [Ganassali ’20]

• Exhibits a stronger form of “all or nothing” phenomenon

• Only a vanishing amount of correlation allows detection and recovery
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Sharp detection threshold: dense Erdős-Rényi graphs

Theorem (W-Xu-Yu ’20)

Suppose n−o(1) ≤ p ≤ 1− Ω(1). Then,

nps2 ≥ (2 + ϵ) log n

log 1
p − 1 + p

=⇒ TV (P,Q) = 1− o (1) (test error=o(1))

nps2 ≤ (2− ϵ) log n

log 1
p − 1 + p

=⇒ TV (P,Q) = o(1) (test error=1− o(1))

1

TV (P ,Q)

0
nps2(log(1/p)−1+p)

logn2

weak detection
impossible

test error=1− o(1)

strong detection
possible

test error=o(1)
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Sharp recovery threshold: dense Erdős-Rényi

Theorem (W-Xu-Yu ’21)

Suppose n−o(1) ≤ p ≤ 1− Ω(1). Then,

nps2 ≥ (2 + ϵ) log n

log 1
p − 1 + p

=⇒ overlap (π̂ML, π∗) = 1− o(1) whp

nps2 ≤ (2− ϵ) log n

log 1
p − 1 + p

=⇒ overlap (π̂, π∗) = o(1), whp, ∀ estimator π̂

1

E [overlap (π̂, π∗)]

0
nps2(log(1/p)−1+p)

log n2

Partial recovery

impossible

“Nothing”

Almost exact recovery

possible (MLE)

“All”
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Sharp recovery threshold: dense Erdős-Rényi

Theorem (W-Xu-Yu ’21)

Suppose n−o(1) ≤ p ≤ 1− Ω(1). Then,

nps2 ≥ (2 + ϵ) log n

log 1
p − 1 + p

=⇒ overlap (π̂ML, π∗) = 1− o(1) whp

nps2 ≤ (2− ϵ) log n

log 1
p − 1 + p

=⇒ overlap (π̂, π∗) = o(1), whp, ∀ estimator π̂

Interpretation of threshold:

• I(π∗;A,B) ≈
(
n
2

)
× ps2

(
log

1

p
− 1 + p

)
︸ ︷︷ ︸

mutual info btw two correlated edges

• H(π∗) ≈ n log n

• Threshold is at I(π;A,B) ≈ H(π∗)
• Only a vanishing amount of correlation allows detection and recovery
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Sharp detection threshold: sparse Erdős-Rényi

Theorem (Ding-Du ’22a)

Suppose p = n−α for α ∈ (0, 1) and λ∗ = γ−1(1/α).

nps2 ≥ λ∗ + ϵ =⇒ TV (P,Q) = 1− o(1) (test error=o(1))

nps2 ≤ λ∗ − ϵ =⇒ TV (P,Q) = o(1) (test error=1− o(1))

• Sharpens the earlier threshold of nps2 = Θ(1) [W-Xu-Yu ’20]

• γ : [1,∞) → [1,∞) is given by the densest subgraph problem in
Erdős-Rényi G(n, λn) [Hajek ’90, Anantharam-Salez’ 16]

max
∅≠U⊂[n]

|E(U)|
|U | → γ(λ)

• When np = Θ(1), there is no zero-one phase transition.
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Sharp recovery threshold: sparse Erdős-Rényi

Theorem (Ding-Du ’22b)

Suppose p = n−α for α ∈ (0, 1] and λ∗ = γ−1(1/α).

nps2 ≥ λ∗ + ϵ =⇒ overlap (π̂ML, π∗) ≥ Ω(1) whp.

nps2 ≤ λ∗ − ϵ =⇒ overlap (π̂, π∗) = o(1) whp. ∀π̂

• The case of α = 1 is proved in [Ganassali-Lelarge-Massoulié ’21]

• Sharpen the partial recovery threshold at nps2 = Θ(1) [W-Xu-Yu ’20]

• “All-or-nothing” phenomenon does not exist, as almost exact
recovery (overlap = 1− o(1)) requires
nps2 → ∞ [Cullina-Kiyavash-Mittal-Poor ’19]
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Exact recovery threshold

Theorem (W-Xu-Yu ’21)

Suppose p ≤ 1− Ω(1). Then

nps2 ≥ (1 + ϵ) log n(
1−√

p
)2 =⇒ overlap (π̂ML, π∗) = 1 whp.

nps2 ≤ (1− ϵ) log n(
1−√

p
)2 =⇒ overlap (π̂, π∗) ̸= 1 whp. ∀ π̂ .

• p = o(1): reduces to the connectivity threshold of the intersection
graph A ∧B∗ ∼ G(n, ps2) [Cullina-Kiyavash’16,17].

Fact about Erdős-Rényi graph: For G ∼ G(n, q),
▶ If q ≥ (1+ϵ) logn

n , G is connected.

▶ If q ≤ (1−ϵ) logn
n , G has many isolated vertices.

• p = Ω(1): strictly higher than the connectivity threshold
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Analysis

• Proof of detection thresholds

• Proof of exact recovery thresholds
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Proof of detection thresholds: Positive results

• Gaussian or dense Erdős-Rényi: analyzing QAP statistic

TQAP = max
π∈Sn

∑
i<j

Aπ(i)π(j)Bij

In Erdős-Rényi model: TQAP = size of maximal common subgraph

• Analysis: standard first-moment computation (next page)

• Sparse Erdős-Rényi: analyzing densest subgraph statistic

max
π∈Sn

max
U⊂[n]:|U |≥n/ logn

Eπ(U)

|U | ,

where Eπ(U) is the set of edges induced by vertices in U in
intersection graph Aπ ∧B
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Proof of detection thresholds: Positive results

Gaussian analysis:

TQAP = max
π∈Sn

∑
i<j

Aπ(i)π(j)Bij .

• Under P (ρ-correlated):

TQAP ≥
∑
i<j

Aπ∗(i)π∗(j)Bij ≈ ρ

(
n

2

)
• Under Q (independent):

Q
(
TQAP ≤ ρ

(
n

2

))
≲ n! exp

(
−(ρ

(
n
2

)
)2

2
(
n
2

) ) ≈ exp
(
ρ2n2/4− n log n

)
• ρ2 = (4+ϵ) logn

n =⇒ success
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Proof of detection thresholds: Negative results

Second-moment method (Chap 7):

EQ

[(P(A,B)

Q(A,B)

)2
]
= O(1) =⇒ TV(P,Q) ≤ 1− Ω(1)

Strong detection is impossible

EQ

[(P(A,B)

Q(A,B)

)2
]
= 1 + o(1) =⇒ TV(P,Q) = o(1)

Weak detection is impossible

Here
P(A,B)

Q(A,B)
=

1

n!

∑
π∗∈Sn

P(A,B|π∗)
Q(A,B)

.

As usual, second moment computation involves two iid replicas π∗ and π̃
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Cycle (orbit) decomposition
• Node permutation σ acts on [n]

• Edge permutation σE acts on
(
[n]
2

)
: σE((i, j)) ≜ (σ(i), σ(j))

Example: n = 6 and σ = (1)(23)(456):

σ:
1

2

3

4

56

σE:
(2, 3)

(1, 2)

(1, 3)

(1, 4)

(1, 5)(1, 6)

(4, 5)

(5, 6)(4, 6)

(2, 4)

(3, 5)

(2, 6)

(3, 4)

(2, 5)

(3, 6)

32 1

2

3

1

4

5

6 6
4

5 2

3
4

5

6
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Second moment via orbit decomposition (1)

(P(A,B)

Q(A,B)

)2

=

(
Eπ∗

[P(A,B|π∗)
Q(A,B)

])2

= Eπ̃⊥⊥π∗

∏
i<j

Xij Xij ≜
P(Bij |Aπ∗(i)π∗(j))P(Bij |Aπ̃(i)π̃(j))

Q(Bij)2

= Eπ̃⊥⊥π∗

∏
O∈O

XO XO ≜
∏

(i,j)∈O
Xij

O: disjoint orbits of edge permutation σE with σ ≜ π−1
∗ ◦ π̃

EQ

[(P(A,B)

Q(A,B)

)2
]
= Eπ̃⊥⊥π∗EQ

∏
O∈O

XO = Eπ̃⊥⊥π∗

∏
O∈O

EQ [XO]

We will show

EQ [XO] =
1

1− ρ2|O| (1)
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Proof of (1)

Xij ≜ L
(
Aπ∗(i)π∗(j), Bij

)
L
(
Aπ̃(i)π̃(j), Bij

)
.

where for Gaussian model

L(a, b) =
P (a, b)

Q(a, b)
=

1√
1− ρ2

exp

(
−ρ2

(
b2 + a2

)
+ 2ρab

2 (1− ρ2)

)
.

Example: π∗ = id, π̃ = σ as previously. Consider O = {14, 15, 16}:

XO = L(A14, B14)L(A15, B14)︸ ︷︷ ︸L(A15, B15)L(A16, B15)︸ ︷︷ ︸L(A16, B16)L(A14, B16)︸ ︷︷ ︸
For an edge orbit |O| = k, computing EQ[XO] boils down to

EQ[XO] = E

[
k∏

ℓ=1

L (aℓ, bℓ)L
(
aℓ, b(ℓ+1) mod k

)]
, aℓ, bℓ

iid∼N(0, 1)
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Proof of (1)

Two ways:

1 Write E[exp(x⊤Cx)], where
x = (a1, . . . , ak, b1, . . . , bk) ∼ N(0, I2k). Find MGF of Gaussian
quadratic form determined by eigenvalues of C.

2 Slicker way: view L as a kernel

(Lf)(x) ≜ EY∼Q [L(x, Y )f(Y )] = E(X,Y )∼P [f(Y ) | X = x] .

and L2 ≡ L ◦ L. Then

E

[
k∏

ℓ=1

L (aℓ, bℓ)L
(
aℓ, b(ℓ+1) mod k

)]
= E

[
k∏

ℓ=1

L2
(
aℓ, a(ℓ+1) mod k

)]

= tr
(
L2k

)
=

∑
λ2k
i

where λi = ρi (L is Mehler kernel, diagonalized by Hermite polynomials).
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Second moment via orbit decomposition (2)
Overall, we get

EQ

[(P(A,B)

Q(A,B)

)2
]
= Eσ

(
n
2)∏

k=1

(
1

1− ρ2k

)Nk


where

• σ = π−1
∗ ◦ π̃ is a uniform random permutation on [n]

• Cycle length of σ: n1, n2, . . .

• Cycle length of σE: N1, N2, . . .

N1 =

(
n1

2

)
+ n2, N2 =

(
n2

2

)
× 2 + n1n2 + n4

• Poisson approximation [Arratia-Tavaré ’92]: nk’s are approximated
independent Poi( 1k ) (we will need their joint MGF)
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Second moment via orbit decomposition (3)
Let τ = log 1

1−ρ2
= ρ2(1 + o(1). We get

Eσ

(
n
2)∏

k=1

(
1

1− ρ2k

)Nk

 ≈ Eσ [exp(τN1)] ≈ Eσ

[
exp(τn2

1/2)
]

(2)

≈ E
[
exp(τPoi(1)2/2)1{Poi(1)≤n}

]
=

n∑
ℓ=0

exp(τℓ2/2)

ℓ!
= 1 + o(1)

if τ = (2−ϵ) logn
n .

Summary: We have shown

ρ2 ≤ (2− ϵ) log n

n
=⇒ EQ

[(P(A,B)

Q(A,B)

)2
]
= 1 + o(1).

But we want ρ2 ≤ (4−ϵ) logn
n ...
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Limitation of vanilla second-moment method

It turns out that

ρ2 ≥ (2+ ϵ) log n

n
=⇒ EQ

[(P(A,B)

Q(A,B)

)2
]
→ ∞

• Gaussian: suboptimal by a factor of 2

• ER graphs: suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits

E(A,B)∼Q

[(P(A,B)

Q(A,B)

)2
]
= Eπ⊥⊥π̃

[∏
O∈O

EQ [XO]

]
π̃=π
≥ 1

n!

(
1 + ρ2

)(n2)
Atypically large magnitude of

∏
O∈O:|O|=k XO for short orbits of length

k ≲ log n ⇒ second-moment blows up
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Truncated second-moment method

Let E denote a typical event under P, i.e., P((A,B, π∗) ∈ E) = 1− o(1).

Truncated 2nd moment = Eπ∗⊥⊥π̃

[
EQ

[∏
O∈O

XO1{(A,B,π)∈E}1{(A,B,π̃)∈E}

]]

Then

Truncated 2nd moment = O(1) =⇒ TV(P(A,B),Q(A,B)) ≤ 1− Ω(1)

Truncated 2nd moment = 1 + o(1) =⇒ TV(P(A,B),Q(A,B)) = o(1)

Caveat:

• The event E must be measurable wrt (A,B, π∗).
• Although π∗ = π̃ is a rare event, we cannot truncate on anything

involving the interaction between two replicas (π∗, π̃).

Let’s see why.
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Details of truncated second-moment
Goal: bound TV(P(A,B),Q(A,B)) from above.
• Introduce conditional planted model:

P ′ (A,B, π) ≜
P (A,B, π)1{(A,B,π)∈E}

P (E)
= (1 + o (1))P (A,B, π)1{(A,B,π)∈E},

• Triangle inequality of TV

TV(P(A,B),Q(A,B)) ≤ TV(P ′(A,B),Q(A,B)) + TV(P(A,B),P ′(A,B))︸ ︷︷ ︸
≤P((A,B,π∗)/∈E)=o(1)

• Apply second-moment method

EQ

[(P ′ (A,B)

Q (A,B)

)2
]

=(1 + o (1))Eπ∗⊥⊥π̃

EQ

P (A,B | π)
Q (A,B)

P (A,B | π̃)
Q (A,B)︸ ︷︷ ︸∏

O∈O XO

1{(A,B,π)∈E}1{(A,B,π̃)∈E}
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Truncated second-moment: Gaussian model
Major contribution comes from k = 1 (fixed points):

Y ≜
∏

O∈O:|O|=1

XO ≈ exp

(
−ρ2

(
n1

2

)
+ 2ρeAπ∗∧B(F )

)

• F is the set of fixed points of σ ≜ π−1
∗ ◦ π̃ and n1 = |F |

• eAπ∗∧B(F ) ≜
∑

(i,j)∈F Aπ∗(i)π∗(j)Bij

• Under P: eAπ∗∧B(S) concentrates on its mean ρ
(|S|

2

)
uniformly over

all S with large |S| (Hanson-Wright)

• On this typical (under P) event E , when |F | is large,

EQ [Y 1E ] ≲ e−ρ2(n1
2 )EQ

[
e2ρeAπ∗∧B(F )1{eA∧Bπ (F )≤ρ(n1

2 )}
]

≈ exp

(
ρ2

2

(
n1

2

))
(Gain a factor of 2 over (2))

by truncated MGF
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Truncated second-moment: sparse Erdős-Rényi

Need to consider k = Θ(log n). It can be shown

• Long orbits:

EQ

 ∏
|O|>k

XO

 ≤
(
1 + ρk

)n2

k
= 1 + o(1)

• Short incomplete orbits:

EQ [XO | O ̸⊂ E (A ∧Bπ)] ≤ 1

• Short complete orbits:

XO =

(
1

p

)2|O|
, ∀O ⊂ E (A ∧Bπ)

Suffices to consider subgraph Hk ≜ ∪O:|O|≤k,O⊂E(A∧Bπ)O
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Truncated second-moment: sparse Erdős-Rényi
• If nps2 ≤ 1− ω(n−1/3):

E ≜ {Aπ ∧B is a pseudoforest}

• If nps2 ≤ λ∗ − ϵ:

E ≜ {The subgraph density of Aπ ∧B is smaller than γ(λ∗)}

Then

EQ

[∏
O∈O

XO1E

]
≤ (1 + o(1))EQ

[(
1

p

)2e(Hk)

1{Hk is admissible}

]
= (1 + o(1))

∑
H∈Hk

s2e(H) (generating function)

Hk: The set of all admissible Hk

Key remaining challenge: enumerate Hk using orbit structure
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Analysis

• Proof of detection thresholds

• Proof of exact recovery thresholds
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Exact recovery: Positive results

• Decompose the difference of objectives via edge orbits

⟨Aπ −Aπ∗ , B⟩
=

∑
O∈O\O1

∑
(i,j)∈O

Aπ(i)π(j)Bij︸ ︷︷ ︸
XO

−
∑

O∈O\O1

∑
(i,j)∈O

Aπ∗(i)π∗(j)Bij︸ ︷︷ ︸
YO

• Apply large deviation analysis:
▶ For π far away from π∗: bound

∑
O XO and

∑
O YO separately

▶ For π close to π∗: bound
∑

O(XO − YO) directly

• The contribution of longer edge orbits can be effectively bounded by
that of the 2-edge orbits

M|O| ≜ E [exp(tXO)] ≤ M
|O|/2
2 , ∀|O| ≥ 2

Computation of M|O| is similar to (1)
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Exact recovery: Negative results
• Suffices to show MLE fails (WLOG π∗ = id)
• Bottleneck: π is a transposition swapping i and j, for which

∆ij ≡ ⟨Aπ −Aπ∗ , B⟩ = −
∑
k ̸=i,j

(Aik −Ajk) (Bik −Bjk)

• Prove the existence of (i, j) for which ∆ij > 0 whp

• Since B = ρA+
√

1− ρ2Z, conditioned on variance parameter
vij ≡

∑
k ̸=i,j(Aik −Ajk)

2,

∆ij ∼ N(−ρvij , 2(1− ρ2)vij)

• Whp, all vij concentrates on E[vij ] ≈ 2n. So

P {∆ij > 0} ≈ exp(−ρ2n
2 .

• Total number of transpositions:
(
n
2

)
. So

ρ2 ≤ (4−ϵ) logn
n =⇒ E[

∑
1{∆ij>0}] → ∞.

• Since ∆ij are not independent, need to compute 2nd moment
applying Paley-Zymund (Chap 1)
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Concluding remarks

Partial
recovery &
detection

Almost exact
recovery Exact recovery

p
n−o(1) nps2 = 2 logn

log(1/p)−1+p nps2

(1−√
p)2 logn

= 1

n−α nps2 = λ∗ nps2 = ω(1)

Gaussian nρ2

logn = 4

Reference
• Y. Wu, J. Xu, & S. H. Yu, Testing correlation of unlabeled random graphs,

Annals of Applied Probability, arXiv:2008.10097.

• Y. Wu, J. Xu, & S. H. Yu, Settling the sharp reconstruction thresholds of random
graph matching, IEEE Transactions on Information Theory, arXiv:2102.00082.

• J. Ding & H. Du, Detection threshold for correlated Erdős-Rényi graphs via
densest subgraphs. arXiv:2203.14573.

• J. Ding & H. Du, Matching recovery threshold for correlated random graphs.
arXiv:2205.14650.
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