Spring 2023

Homework 2

S&DS 684: Statistical Inference on Graphs

Due: Apr 18, 2023 Prof. Yihong Wu

Rules:

- It is mandatory to type your solutions in LaTeX; you may use the source file for this PDF posted on the course website. (If you need help with this, let me know.)
- Email your solution in pdf by midnight of the due date to yihong.wu@yale.edu with subject line Homework XX: your name.
- Justify your work rigorously. As long as you are able to prove the result or a stronger version, there is no need to follow the hints.
- 1. (Spiked Wigner model) Consider the following rank-one perturbation to a Gaussian random matrix:

$$W = \sqrt{\frac{\mu}{n}} \sigma \sigma^{\top} + Z$$

where $Z = (Z_{ij})$ is a symmetric matrix with $\{Z_{ij} : 1 \leq i \leq j \leq n\}$ being iid N(0,1), and the membership vector σ is uniformly drawn from the set of all bisections, i.e., $\{\sigma \in \{\pm\}^n : \sum_i \sigma_i = 0\}$.

- (a) (Detection) Consider the hypothesis testing problem of testing $H_0: W = Z$ (i.e. $\mu = 0$) versus $H_1: W = \sqrt{\frac{\mu}{n}} \sigma \sigma^{\top} + Z$. Assume that μ is a constant. Show that reliable detection (i.e. both Type-I and Type-II error probabilities vanish as $n \to \infty$) is impossible if $\mu < 1.^1$ (Hint: compute the χ^2 -divergence using the second moment method as in Sec 7.2. Note that one cannot directly apply the calculation in (7.8) as the null distribution is not $\frac{P+Q}{2}$).
- (b) (Correlated recovery) We say an estimator $\widehat{\sigma} = \widehat{\sigma}(W)$ achieves correlated recovery, if it has an nontrivial overlap with the true partition, i.e., $\mathbb{E}|\langle \sigma, \widehat{\sigma} \rangle| = \Omega(n)$ as $n \to \infty$. Instead of using conditional second-moment argument as we did in class, we show that correlated recovery is impossible if $\mu < 1$ by a reduction argument:²
 - Suppose correlated recovery is possible. Let's construct a test statistic. Write $\sigma = \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}$, where $\sigma_1 \in \{\pm\}^{(1-\epsilon)n}$ and $\sigma_2 \in \{\pm\}^{\epsilon n}$ with appropriately chosen ϵ . Write W accordingly in a block form $W = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix}$. Apply correlated recovery estimator on W_{11} to obtain $\widehat{\sigma}_1$, and compute $y = W_{21}\widehat{\sigma}_1/\|\widehat{\sigma}_1\|$. Under the null, we expect the variance of each coordinate of y is roughly 1; under the alternative, thanks to the correlation between σ_1 and $\widehat{\sigma}_1$, we expect the variance of each coordinate is strictly bigger than 1. Make this argument rigorous by analyzing the test statistic $\frac{1}{n}||y||_2^2$.
- (c) (Almost exact recovery) We say an estimator $\widehat{\sigma} = \widehat{\sigma}(W)$ achieves almost exact recovery, if the fraction of misclassification is vanishing, i.e., $\mathbb{E}|\langle \sigma, \widehat{\sigma} \rangle| = n o(n)$ as $n \to \infty$. Show that almost exact recovery is possible if and only if $\mu \to \infty$.

(Hint: for positive result, consider spectral method and perturbation bound).

In fact, $\mu = 1$ is also impossible, but we have to resort more advanced techniques than second moment method. This idea was suggested by Prof. Zhou Fan.

(d) (Exact recovery: impossibility) We say an estimator $\widehat{\sigma} = \widehat{\sigma}(W)$ achieves exact recovery, if $\mathbb{P}\left[\sigma = \pm \widehat{\sigma}\right] \to 1$ as $n \to \infty$. Show that exact recovery is impossible if $\mu = (2 - \epsilon) \log n$ for any fixed $\epsilon > 0$.

(Hint: show that even the maximum likelihood estimator fails in this case).

(e) (Exact recovery: SDP) Consider the following SDP relaxation:

$$\widehat{X} = \arg\max\{\langle W, X \rangle : X \succeq 0, X_{ii} = 1, \langle X, \mathbf{J} \rangle = 0\}$$

where **J** is the all-one matrix. Show that exact recovery is achieved, i.e., $\widehat{X} = \sigma \sigma^{\top}$ with probability tending to one, if $\mu = (2 + \epsilon) \log n$ for any fixed $\epsilon > 0$.

(Hint: do not invoke the general result Theorem 10.1 in the leture notes; instead, do a direct analysis based on two facts (i) $||Z||_{op} = O(\sqrt{n})$ with high probability; (ii) the maximum of n iid standard normals is $\sqrt{(2+o(1))\log n}$ with high probability).

- 2. $(\|\cdot\|_{2\to 1}\text{-norm})$ Denote the rows of $B\in\mathbb{R}^{n\times d}$ by b_1^\top,\ldots,b_n^\top .
 - (a) Show that the induced norm $||B||_{2\to 1}$ is given by

$$||B||_{2\to 1} = \max \left\{ \sum_{i=1}^{n} |\langle b_i, y \rangle| : y \in S^{d-1} \right\}.$$

(b) Suppose b_1, \ldots, b_n are iid uniformly drawn from the sphere S^{d-1} . Show that for any fixed d, as $n \to \infty$, $\frac{1}{n} ||B||_{2\to 1}$ converges in probability to some value c_d as a function of d. Find c_d as explicitly as you can.

(Hint: take an ϵ -net over S^{d-1} and use union bound. For fixed $y \in S^{d-1}$, what is $\mathbb{E}[|\langle b_1, y \rangle|]$?)

- (c) Show that $\sqrt{d}c_d \to \sqrt{\frac{2}{\pi}}$ as $d \to \infty$.
- 3. (Grothendieck inequality for PSD matrices) For $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, consider

$$||A||_{\infty \to 1} \triangleq \max \left\{ \sum_{i,j \in [n]} a_{ij} x_i y_j : x_i, y_j \in \{\pm\} \right\} = \max \left\{ \langle A, xy^\top \rangle : ||x||_{\infty} \le 1, ||y||_{\infty} \le 1 \right\} \quad (1)$$

and its SDP relaxation

$$SDP(A) \triangleq \max \left\{ \sum_{i,j \in [n]} a_{ij} \langle u_i, v_j \rangle : u_i, v_j \in S^{n-1} \right\} = \max \{ \langle A, X \rangle : X \succeq 0, X_{ii} = 1 \}. \quad (2)$$

(a) Following the argument in class, show that for every positive semidefinite A,

$$SDP(A) \ge ||A||_{\infty \to 1} \ge \frac{2}{\pi} SDP(A). \tag{3}$$

- (b) Next we show that the constant $\frac{2}{\pi}$ in (3) is sharp by constructing instances of A so that the ratio $\frac{\|A\|_{\infty \to 1}}{\text{SDP}(A)}$ is arbitrarily close to $\frac{2}{\pi}$.
 - (i) Show that without loss of optimality, we can restrict to $x_i = y_i$ in (1); (Hint: $\langle A, xy^{\top} \rangle^2 = \langle \sqrt{A}x, \sqrt{A}y \rangle^2 \leq \langle A, xx^{\top} \rangle \langle A, yy^{\top} \rangle$. Why?)

- (ii) Show that without loss of optimality, we can restrict to $u_i = v_i$ in (2); (Hint: $\langle A, U^\top V \rangle^2 = \langle \sqrt{A}U^\top, \sqrt{A}V^\top \rangle^2 \leq \langle A, U^\top U \rangle \langle A, V^\top V \rangle$. Why?)
- (iii) Show the following deterministic fact: if $A = \frac{1}{n^2} B B^{\top}$ for $B \in \mathbb{R}^{n \times d}$, then

$$||A||_{\infty \to 1} = \frac{1}{n^2} ||B||_{2 \to 1}^2$$

and

$$SDP(A) \ge \frac{1}{n^2} \sum_{i,j \in [n]} \langle b_i, b_j \rangle^2$$

where b_i^{\top} is the *i*th row of B.

- (iv) Now take the rows of B to be iid uniform on S^{d-1} , use the previous problem to show that $||A||_{\infty\to 1}\to c_d^2$ as $n\to\infty$.
- (v) Show that SDP(A) $\geq r_d$ in probability as $n \to \infty$, where r_d behaves as $\frac{1+o(1)}{d}$ as $d \to \infty$.
- (vi) Conclude the sharpness of the constant $\frac{2}{\pi}$ in (3). (Hint: What is $\mathbb{E}[\langle b_1, b_2 \rangle^2]$? Be careful with $\sum_{i,j \in [n]} \langle v_i, v_j \rangle^2$ which is not an iid sum.)