Rules:

Spring 2023
Homework 2
S&DS 684: Statistical Inference on Graphs
Due: Apr 18, 2023
Prof. Yihong Wu

e [t is mandatory to type your solutions in ITEX; you may use the source file for this PDF
posted on the course website. (If you need help with this, let me know.)

e Email your solution in pdf by midnight of the due date to yihong.wu@yale.edu with subject
line Homework XX: your name.

e Justify your work rigorously. As long as you are able to prove the result or a stronger version,
there is no need to follow the hints.

1. (Spiked Wigner model) Consider the following rank-one perturbation to a Gaussian random
matrix:

W:\/EO'O'T+Z
n

where Z = (Z;;) is a symmetric matrix with {Z;; : 1 < i < j < n} being iid N(0,1), and the
membership vector ¢ is uniformly drawn from the set of all bisections, i.e., {o € {£}" : ), 0; =

0}.
(a)

(Detection) Consider the hypothesis testing problem of testing Hy : W = Z (i.e. p = 0)

versus Hy : W = \ﬁ oo + Z. Assume that p is a constant. Show that reliable detection

n

(i.e. both Type-I and Type-II error probabilities vanish as n — co) is impossible if z < 1.1
(Hint: compute the y2-divergence using the second moment method as in Sec 7.2. Note
that one cannot directly apply the calculation in (7.8) as the null distribution is not #)

(Correlated recovery) We say an estimator ¢ = o (W) achieves correlated recovery, if it has
an nontrivial overlap with the true partition, i.e., E|(0,0)| = Q(n) as n — oo. Instead
of using conditional second-moment argument as we did in class, we show that correlated
recovery is impossible if 4 < 1 by a reduction argument:?

Suppose correlated recovery is possible. Let’s construct a test statistic. Write o = [g; },

where o1 € {£}(179" and oy € {£}" with appropriately chosen e. Write W accordingly

in a block form W = %; %;i } . Apply correlated recovery estimator on Wi; to obtain o7y,

and compute y = Wa101/|/71||. Under the null, we expect the variance of each coordinate of

y is roughly 1; under the alternative, thanks to the correlation between o and o1, we expect

the variance of each coordinate is strictly bigger than 1. Make this argument rigorous by
1

analyzing the test statistic +|y|3.

(Almost exact recovery) We say an estimator ¢ = o(W) achieves almost exact recovery, if
the fraction of misclassification is vanishing, i.e., E|(0,5)| = n — o(n) as n — co. Show
that almost exact recovery is possible if and only if y — oo.

(Hint: for positive result, consider spectral method and perturbation bound).

n fact, p = 1 is also impossible, but we have to resort more advanced techniques than second moment method.
2This idea was suggested by Prof. Zhou Fan.


yihong.wu@yale.edu

(d) (Exact recovery: impossibility) We say an estimator ¢ = o(W) achieves exact recovery, if
P[0 = £0] — 1 as n — oo. Show that exact recovery is impossible if © = (2 — ¢€) logn for
any fixed € > 0.

(Hint: show that even the maximum likelihood estimator fails in this case).

(e) (Exact recovery: SDP) Consider the following SDP relaxation:
X =argmax{(W, X): X = 0, X;; = 1, (X,J) = 0}

where J is the all-one matrix. Show that exact recovery is achieved, i.e., X = oo ! with
probability tending to one, if u = (2 + €) logn for any fixed € > 0.

(Hint: do not invoke the general result Theorem 10.1 in the leture notes; instead, do a direct
analysis based on two facts (i) || Z]|o,, = O(y/n) with high probability; (ii) the maximum of

n iid standard normals is 1/ (2 + o(1)) log n with high probability).

2. (|| - la—1-norm) Denote the rows of B € R4 by b ... b} .

n

(a) Show that the induced norm ||Bl|2—1 is given by

| Bll2—1 = max{z [(bi, y)| -y € Sd_l} .
=1

(b) Suppose by, ..., b, are iid uniformly drawn from the sphere S?~!. Show that for any fixed
d, as n — 00, 1||B||a—1 converges in probability to some value ¢4 as a function of d. Find
cq as explicitly as you can.

(Hint: take an e-net over S?~! and use union bound. For fixed y € S9! what is

E[(b1,)[]?)
(¢) Show that v/dcg — \/g as d — oo.

3. (Grothendieck inequality for PSD matrices) For A = (a;;) € R™*", consider
Al 2 max$ > ayaiy; < wsy; € {£} p = max {(Aay") < lollos < 1 yloe <1} (1)
i,j€n]
and its SDP relaxation
SDP(A) £ max ¢ > aij(us,vs) s ug,v; € ™1 4 =max{({4, X): X =0, X =1}.  (2)
i,j€[n]

(a) Following the argument in class, show that for every positive semidefinite A,
2
SDP(A) > || Allcos1 = ;SDP(A). (3)

(b) Next we show that the constant 2 in (3) is sharp by constructing instances of A so that

[[Alloo—1
SDP(A)

the ratio is arbitrarily close to %

(i) Show that without loss of optimality, we can restrict to x; = y; in (1);
(Hint: (A, 2y")? = (VAz,VAy)> < (A, zzT)(A,yy"). Why?)



Show that without loss of optimality, we can restrict to u; = v; in (2);
(Hint: (A, UTV)2 = (VAU , VAV )2 < (A, UTU)(A, VTV). Why?)
Show the following deterministic fact: if A = #BBT for B € R"*?, then

1
[ Alloo—1 = —511Bll351

and

1
SDP(4) > — > (bib))?
i,j€[n]

where b;-r is the ith row of B.

Now take the rows of B to be iid uniform on S%~!, use the previous problem to show
that ||Allcc—1 — % as n — o0.

Show that SDP(A) > rg in probability as n — oo, where ry behaves as 1+2(1) as

d — 0.

Conclude the sharpness of the constant 2 in (3).
(Hint: What is E[(b1, b2)?]? Be careful with 2 jefn) (Vs v;)? which is not an iid sum.)



