
Spring 2023
Homework 2

S&DS 684: Statistical Inference on Graphs
Due: Apr 18, 2023
Prof. Yihong Wu

Rules:

• It is mandatory to type your solutions in LATEX; you may use the source file for this PDF
posted on the course website. (If you need help with this, let me know.)

• Email your solution in pdf by midnight of the due date to yihong.wu@yale.edu with subject
line Homework XX: your name.

• Justify your work rigorously. As long as you are able to prove the result or a stronger version,
there is no need to follow the hints.

1. (Spiked Wigner model) Consider the following rank-one perturbation to a Gaussian random
matrix:

W =

√
µ

n
σσ⊤ + Z

where Z = (Zij) is a symmetric matrix with {Zij : 1 ≤ i ≤ j ≤ n} being iid N(0, 1), and the
membership vector σ is uniformly drawn from the set of all bisections, i.e., {σ ∈ {±}n :

∑
i σi =

0}.

(a) (Detection) Consider the hypothesis testing problem of testing H0 : W = Z (i.e. µ = 0)

versus H1 : W =
√

µ
nσσ

⊤ + Z. Assume that µ is a constant. Show that reliable detection

(i.e. both Type-I and Type-II error probabilities vanish as n → ∞) is impossible if µ < 1.1

(Hint: compute the χ2-divergence using the second moment method as in Sec 7.2. Note
that one cannot directly apply the calculation in (7.8) as the null distribution is not P+Q

2 ).

(b) (Correlated recovery) We say an estimator σ̂ = σ̂(W ) achieves correlated recovery, if it has
an nontrivial overlap with the true partition, i.e., E| ⟨σ, σ̂⟩ | = Ω(n) as n → ∞. Instead
of using conditional second-moment argument as we did in class, we show that correlated
recovery is impossible if µ < 1 by a reduction argument:2

Suppose correlated recovery is possible. Let’s construct a test statistic. Write σ =
[
σ1
σ2

]
,

where σ1 ∈ {±}(1−ϵ)n and σ2 ∈ {±}ϵn with appropriately chosen ϵ. Write W accordingly

in a block form W =
[
W11 W12
W21 W22

]
. Apply correlated recovery estimator on W11 to obtain σ̂1,

and compute y = W21σ̂1/∥σ̂1∥. Under the null, we expect the variance of each coordinate of
y is roughly 1; under the alternative, thanks to the correlation between σ1 and σ̂1, we expect
the variance of each coordinate is strictly bigger than 1. Make this argument rigorous by
analyzing the test statistic 1

n∥y∥
2
2.

(c) (Almost exact recovery) We say an estimator σ̂ = σ̂(W ) achieves almost exact recovery, if
the fraction of misclassification is vanishing, i.e., E| ⟨σ, σ̂⟩ | = n − o(n) as n → ∞. Show
that almost exact recovery is possible if and only if µ → ∞.

(Hint: for positive result, consider spectral method and perturbation bound).

1In fact, µ = 1 is also impossible, but we have to resort more advanced techniques than second moment method.
2This idea was suggested by Prof. Zhou Fan.
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(d) (Exact recovery: impossibility) We say an estimator σ̂ = σ̂(W ) achieves exact recovery, if
P [σ = ±σ̂] → 1 as n → ∞. Show that exact recovery is impossible if µ = (2− ϵ) log n for
any fixed ϵ > 0.

(Hint: show that even the maximum likelihood estimator fails in this case).

(e) (Exact recovery: SDP) Consider the following SDP relaxation:

X̂ = argmax{⟨W,X⟩ : X ⪰ 0, Xii = 1, ⟨X,J⟩ = 0}

where J is the all-one matrix. Show that exact recovery is achieved, i.e., X̂ = σσ⊤ with
probability tending to one, if µ = (2 + ϵ) log n for any fixed ϵ > 0.

(Hint: do not invoke the general result Theorem 10.1 in the leture notes; instead, do a direct
analysis based on two facts (i) ∥Z∥op = O(

√
n) with high probability; (ii) the maximum of

n iid standard normals is
√

(2 + o(1)) log n with high probability).

2. (∥ · ∥2→1-norm) Denote the rows of B ∈ Rn×d by b⊤1 , . . . , b
⊤
n .

(a) Show that the induced norm ∥B∥2→1 is given by

∥B∥2→1 = max

{
n∑

i=1

|⟨bi, y⟩| : y ∈ Sd−1

}
.

(b) Suppose b1, . . . , bn are iid uniformly drawn from the sphere Sd−1. Show that for any fixed
d, as n → ∞, 1

n∥B∥2→1 converges in probability to some value cd as a function of d. Find
cd as explicitly as you can.

(Hint: take an ϵ-net over Sd−1 and use union bound. For fixed y ∈ Sd−1, what is
E[|⟨b1, y⟩|]?)

(c) Show that
√
dcd →

√
2
π as d → ∞.

3. (Grothendieck inequality for PSD matrices) For A = (aij) ∈ Rn×n, consider

∥A∥∞→1 ≜ max

 ∑
i,j∈[n]

aijxiyj : xi, yj ∈ {±}

 = max
{
⟨A, xy⊤⟩ : ∥x∥∞ ≤ 1, ∥y∥∞ ≤ 1

}
(1)

and its SDP relaxation

SDP(A) ≜ max

 ∑
i,j∈[n]

aij⟨ui, vj⟩ : ui, vj ∈ Sn−1

 = max{⟨A,X⟩ : X ⪰ 0, Xii = 1}. (2)

(a) Following the argument in class, show that for every positive semidefinite A,

SDP(A) ≥ ∥A∥∞→1 ≥
2

π
SDP(A). (3)

(b) Next we show that the constant 2
π in (3) is sharp by constructing instances of A so that

the ratio ∥A∥∞→1

SDP(A) is arbitrarily close to 2
π .

(i) Show that without loss of optimality, we can restrict to xi = yi in (1);
(Hint: ⟨A, xy⊤⟩2 = ⟨

√
Ax,

√
Ay⟩2 ≤ ⟨A, xx⊤⟩⟨A, yy⊤⟩. Why?)
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(ii) Show that without loss of optimality, we can restrict to ui = vi in (2);
(Hint: ⟨A,U⊤V ⟩2 = ⟨

√
AU⊤,

√
AV ⊤⟩2 ≤ ⟨A,U⊤U⟩⟨A, V ⊤V ⟩. Why?)

(iii) Show the following deterministic fact: if A = 1
n2BB⊤ for B ∈ Rn×d, then

∥A∥∞→1 =
1

n2
∥B∥22→1

and

SDP(A) ≥ 1

n2

∑
i,j∈[n]

⟨bi, bj⟩2

where b⊤i is the ith row of B.

(iv) Now take the rows of B to be iid uniform on Sd−1, use the previous problem to show
that ∥A∥∞→1 → c2d as n → ∞.

(v) Show that SDP(A) ≥ rd in probability as n → ∞, where rd behaves as 1+o(1)
d as

d → ∞.

(vi) Conclude the sharpness of the constant 2
π in (3).

(Hint: What is E[⟨b1, b2⟩2]? Be careful with
∑

i,j∈[n]⟨vi, vj⟩2 which is not an iid sum.)
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