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® Course prerequisites:
> Maturity with probability theory and linear algebra is required
» Familiarity with statistical theory and optimization is helpful
Participation (30%):
> Attend class on time :-)

» Meaningful classroom participation
» Proofread lecture notes and provide comments and corrections

Homeworks (30%): two to three problem sets

Final project (40%)
> either presenting paper(s) or a standalone research project.
> list of topics announced around week 6
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> Yihong Wu and Jiaming Xu, “Statistical inference on graphs: Selected
Topics”, working draft, available at
http://www.stat.yale.edu/~ywb62/teaching/stats-graphs.pdf
» Additional reading materials will be posted online.

® Highly theoretical class

> Statistical (information-theoretical) analysis
P Algorithms: emphasizing proof of correctness
» No coding
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Statistical problems

® Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

feo %‘Statlstlcal model‘% X | Algorithm|— 6

parameter data estimate

Includes hypothesis testing (detection) as special case.
® Understanding the fundamental limits:
Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?
Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?
® |n this course: statistical problems of combinatorial flavor
> Data = graphs (i.e. networks)
> Parameter = hidden (latent, or planted) structure, e.g., vertex labels,
matching, cycle, etc
> Focus on large-graph limit (number of vertices — o0)
» Statistical tasks: detection (null vs planted), recovery, or estimation.



Basic definitions of graphs

A graph G = (V, E) consists of
® A vertex set V = [n] ={1,...,n} for some positive integer n.

* An edge set E C (}). Each element of E is an edge e = (i, j) (unordered
pair). We say i and j are connected and write i ~ j if (i,7) € E.

We mostly focus on graphs that are undirected and simple.

Adjacency matrix representation: A = (A;;); je[n is an n X n symmetric
binary matrix with zero diagonal and

o J1 GeE
0 o.w.
1 2
0 1 1 1
1 0 1 0
A= 1 1 0 1
1 01 0



Basic definitions of graphs

The neighborhood of a given vertex v € V:

Nw)={ueV :u~uv}

The degree of v:
dy = [N (v)|

Induced subgraph: For any S C V, the subgraph induced by S is
G[S] = (S, Eg), where

Es 2 {(u,v) € E:u,v e S}

® A clique is a complete subgraph. A graph is complete iff all pairs of
vertices in the graph are connected.
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The neighborhood of a given vertex v € V:

Nw)={ueV :u~uv}

The degree of v:
dy = [N (v)|

Induced subgraph: For any S C V, the subgraph induced by S is
G[S] = (S, Eg), where

Es 2 {(u,v) € E:u,v e S}

® A clique is a complete subgraph. A graph is complete iff all pairs of
vertices in the graph are connected.

® Graphs are highly useful to represent relational data, which are ubiquitous



Data represented by graphs: Social networks
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Figure: Twitter network for UK MPs circa 2015

https://www.nesta.org.uk/blog/twitter-network-uk-mps/
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Data represented by graphs: Social networks

Figure: A Linkedln network: Green=Cisco, Blue=Disney, Purple=Recruiters, etc

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/
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Data represented by graphs: Biological networks

Figure: Gene regulatory network in yeast: nodes=genes, mRNA, protein, etc;
edges=regulartion, expression, etc

https://www.nature.com/articles/s41598-018-37667-4


https://www.nature.com/articles/s41598-018-37667-4

Data represented by graphs: Biological networks

Figure: Human Protein-Protein-Interaction (PPI) network or “interactome”:
nodes=proteins; red edge= CCSB-HI1 interactions, blue edges= LCl interactions.

https://www.nature.com/articles/nature04209


https://www.nature.com/articles/nature04209

Data represented by graphs: computer vision

Graphs as discretization of geometric objects (triangulated mesh)
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Data represented by graphs: operational research
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We will encounter many combinatorial optimimization problems involves
(weighted) graphs
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Statistical model: random graphs

Common ensembles
® Erdés-Rényi graph G(n,p): connect each pair ¢ and j with probability p
independently
® Erdés-Rényi graph G(n,m): draw E(G) uniformly at random from ((:2;]))

® Random geometric graph: draw x1, ..., x, uniformly from a sphere
independently; connect i and j if distance(z;,z;) < r.

® Planted models



Vignette # 1: Planted clique
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@ A clique of k vertices are chosen uniformly at random to form a clique
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Planted clique — graph view

@ A clique of k vertices are chosen uniformly at random to form a clique
® For every other pair of nodes, add an edge w.p. %

Call this G(n, k, %) the planted clique model.
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Planted clique: detection

Planted clique S — graph G — decision ¢ € {0,1}

to test the following hypothesis

1 1
Hy: G~ G(n, 5)(nuII model) vs H;:G ~ G(n,k, 5)(p|anted model)

® Goal:
]P)G’Ng(n,%)[gb = 1] +PG~g(n,k,%)[¢ = O] —0

Type-| error Type-Il error

® Question: What's the smallest clique that is detectable? How to do it fast?



Planted clique: recovery

Planted clique S — graph G — Estimated clique S

~

® Minimax framework: Find an estimator S = §(G) that performs well in
worst-case R
min Pg [S ]
Se(["])
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* Bayesian framework: Find an estimator S = §(G) that performs well on
average

B (1)) P [S(G) - s] ~1



Planted clique: recovery

Planted clique S — graph G — Estimated clique S

~

® Minimax framework: Find an estimator S = §(G) that performs well in
worst-case R
min Pg [S ]
Se(["])

* Bayesian framework: Find an estimator S = §(G) that performs well on
average

B (1)) P [S(G) - s} ~1

® The two formulations are equivalent by the permutaiton invariance of the
model:

s%p sIen(i[%)PS [§(G) = S] = sup E. |f(("]))PS [§(G) S].



Vignette # 2: Community detection



Community detection in networks

® Networks with community structures arise in many applications

® Task: Discover underlying communities based on the network topology
alone



Example 1

Santa Fe Institute Collaboration network [Girvan-Newman

Agent-based
Models

Mathematical
Ecology

'02]



Example 2

Protein-protein interaction networks [Jonsson et al. 06']

Karyopherin &
docking complex

EGF-like domains

ast cancer

v ssein kinase
S YA Casaink



Example 3

Political blogosphere and the 2004 U.S. election [Adamic-Glance '05]




Stochastic block model — graph view
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Stochastic block model — graph view

@ n nodes are randomly partitioned into 2 equal-sized communities
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Stochastic block model — graph view
@ n nodes are randomly partitioned into 2 equal-sized communities
® For every pair of nodes in same community, add an edge w.p. p
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Stochastic block model — graph view
@ n nodes are randomly partitioned into 2 equal-sized communities
® For every pair of nodes in same community, add an edge w.p. p
© For every pair of nodes in diff. community, add an edge w.p. g

/I
AV
. I\
\ »‘,‘,‘g“l!.g/,‘
RN/ N
NN
\\\\‘!’5\?;( .
A d
3 "1‘? / N
X ” 7 |
1"17&""'7 Vi e RN
7 = v P A




Stochastic block model — graph view
@ n nodes are randomly partitioned into 2 equal-sized communities
® For every pair of nodes in same community, add an edge w.p. p

© For every pair of nodes in diff. community, add an edge w.p. g

S N/
i

NS S
v 7\, ’“

O —

Call this SBM(n,p, ¢), SBM with two equal communities.



Stochastic block model — adjacency matrix view

nz = 7962



Stochastic block model — adjacency matrix view

0 50 100 150 200
nz = 7962



Stochastic block model — estimation

Planted community o € {+1}"™ — graph G — Estimated community &

P[(i,j) € E] = {Z e

Goal:
® Detection: test Hy : G ~ G(n, Z5%) or Hy : G ~ SBM(n,p, q)

® Recovery: with high probability, 6 and o agree on

» (Weak recovery) 50.0001% nodes (better than random guessing)
> (Almost exact recovery) all but o(n) nodes
> (Exact recovery) all nodes



Vignette # 3: Graph matching



Graph matching (network alignment)

Goal: find a correspondence between two vertex sets that maximally aligns the
edges
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Graph matching (network alignment)

Goal: find a correspondence between two vertex sets that maximally aligns the
edges Noiseless case: reduce to graph isomoprhism



Example: Network de-anonymization

Linked ([l 3y

G CT



Example 2: 3D shape matching

Find the correct vertex correspondance between two geometric graphs

source

target




Statistical model: Correlated Erdds-Rényi graphs
Permutation © € S,, — graphs (G1,G2) — Estimator 7

where (G1,G2) are Erdés-Rényi graphs correlated through the latent vertex
correspondence T:
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® a, = 0O(b,) or a,=by,, if a, = O(b,) and a,, = Q(b,).

® a, = o(by) or ap,<Kby, if an/b, = 0 asn — oco.

® a, = w(by,) or a,>by,, if a, /b, — co as n — 0.

® a, = poly(n) if a, = n°W.

® a, = polylog(n) if a, = (logn)
Also, we say that a sequence of events &, holds with high probability (whp), if
P{&} = 1asn — oco.

o@)

When a,, is not positive, O(+) and o(-) also make sense by applying to |an|.
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