S&DS 684: Statistical inference on graphs

Spring 2023

- Schedule: Tue 4-550pm, 17 Hillhouse Rm 03
- Instructor: Prof. Yihong Wu yihongwu@yale.edu, Rm 235 Dunham Lab (10 Hillhouse)
 - Office hours: by appointment

- Schedule: Tue 4-550pm, 17 Hillhouse Rm 03
- Instructor: Prof. Yihong Wu yihongwu@yale.edu, Rm 235 Dunham Lab (10 Hillhouse)
 - Office hours: by appointment
- Advanced graduate-level seminar-style class. Undergraduates need express permission from the instructor.

- Schedule: Tue 4-550pm, 17 Hillhouse Rm 03
- Instructor: Prof. Yihong Wu yihongwu@yale.edu, Rm 235 Dunham Lab (10 Hillhouse)
 - Office hours: by appointment
- Advanced graduate-level seminar-style class. Undergraduates need express permission from the instructor.
- No TF.

- Schedule: Tue 4-550pm, 17 Hillhouse Rm 03
- Instructor: Prof. Yihong Wu yihongwu@yale.edu, Rm 235 Dunham Lab (10 Hillhouse)
 - Office hours: by appointment
- Advanced graduate-level seminar-style class. Undergraduates need express permission from the instructor.
- No TF.
- Website:

http://www.stat.yale.edu/~yw562/teaching/684/index.html

• Course prerequisites:

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful
- Participation (30%):

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful
- Participation (30%):
 - Attend class on time :-)

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful
- Participation (30%):
 - Attend class on time :-)
 - Meaningful classroom participation

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful
- Participation (30%):
 - Attend class on time :-)
 - Meaningful classroom participation
 - Proofread lecture notes and provide comments and corrections

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful
- Participation (30%):
 - Attend class on time :-)
 - Meaningful classroom participation
 - Proofread lecture notes and provide comments and corrections
- Homeworks (30%): two to three problem sets

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful
- Participation (30%):
 - Attend class on time :-)
 - Meaningful classroom participation
 - Proofread lecture notes and provide comments and corrections
- Homeworks (30%): two to three problem sets
- Final project (40%)

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful
- Participation (30%):
 - Attend class on time :-)
 - Meaningful classroom participation
 - Proofread lecture notes and provide comments and corrections
- Homeworks (30%): two to three problem sets
- Final project (40%)
 - either presenting paper(s) or a standalone research project.

- Course prerequisites:
 - Maturity with probability theory and linear algebra is required
 - Familiarity with statistical theory and optimization is helpful
- Participation (30%):
 - Attend class on time :-)
 - Meaningful classroom participation
 - Proofread lecture notes and provide comments and corrections
- Homeworks (30%): two to three problem sets
- Final project (40%)
 - either presenting paper(s) or a standalone research project.
 - list of topics announced around week 6

- Lecture notes:
 - Yihong Wu and Jiaming Xu, "Statistical inference on graphs: Selected Topics", working draft, available at http://www.stat.yale.edu/~yw562/teaching/stats-graphs.pdf
 - Additional reading materials will be posted online.

- Lecture notes:
 - Yihong Wu and Jiaming Xu, "Statistical inference on graphs: Selected Topics", working draft, available at http://www.stat.yale.edu/~yw562/teaching/stats-graphs.pdf
 - Additional reading materials will be posted online.
- Highly theoretical class
 - Statistical (information-theoretical) analysis
 - Algorithms: emphasizing proof of correctness
 - No coding

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{statistical model}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{data}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{statistical model}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

- Understanding the fundamental limits:
 - Q1 Characterize statistical (information-theoretic) limit: What is possible/impossible?

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{data}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

- Understanding the fundamental limits:
 - Q1 Characterize statistical (information-theoretic) limit: What is possible/impossible?
 - Q2 Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes, how? If not, why?

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{data}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

- Understanding the fundamental limits:
 - Q1 Characterize statistical (information-theoretic) limit: What is possible/impossible?
 - Q2 Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes, how? If not, why?
- In this course: statistical problems of combinatorial flavor

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{statistical model}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

- Understanding the fundamental limits:
 - Q1 Characterize statistical (information-theoretic) limit: What is possible/impossible?
 - Q2 Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes, how? If not, why?
- In this course: statistical problems of combinatorial flavor
 - Data = graphs (i.e. networks)

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{data}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

- Understanding the fundamental limits:
 - Q1 Characterize statistical (information-theoretic) limit: What is possible/impossible?
 - Q2 Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes, how? If not, why?
- In this course: statistical problems of combinatorial flavor
 - Data = graphs (i.e. networks)
 - Parameter = hidden (latent, or planted) structure, e.g., vertex labels, matching, cycle, etc

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{statistical model}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

- Understanding the fundamental limits:
 - Q1 Characterize statistical (information-theoretic) limit: What is possible/impossible?
 - Q2 Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes, how? If not, why?
- In this course: statistical problems of combinatorial flavor
 - Data = graphs (i.e. networks)
 - Parameter = hidden (latent, or planted) structure, e.g., vertex labels, matching, cycle, etc
 - Focus on large-graph limit (number of vertices $\rightarrow \infty$)

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, etc)

$$\underbrace{\theta \in \Theta}_{\text{parameter}} \rightarrow \underbrace{\text{Statistical model}}_{\text{statistical model}} \rightarrow \underbrace{X}_{\text{data}} \mapsto \underbrace{\text{Algorithm}}_{\text{estimate}} \rightarrow \underbrace{\hat{\theta}}_{\text{estimate}}$$

- Understanding the fundamental limits:
 - Q1 Characterize statistical (information-theoretic) limit: What is possible/impossible?
 - Q2 Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes, how? If not, why?
- In this course: statistical problems of combinatorial flavor
 - Data = graphs (i.e. networks)
 - Parameter = hidden (latent, or planted) structure, e.g., vertex labels, matching, cycle, etc
 - Focus on large-graph limit (number of vertices $\rightarrow \infty$)
 - Statistical tasks: detection (null vs planted), recovery, or estimation.

Basic definitions of graphs

A graph G = (V, E) consists of

- A vertex set $V = [n] \equiv \{1, ..., n\}$ for some positive integer n.
- An edge set E ⊂ (^V₂). Each element of E is an edge e = (i, j) (unordered pair). We say i and j are connected and write i ~ j if (i, j) ∈ E.

We mostly focus on graphs that are undirected and simple.

Adjacency matrix representation: $A = (A_{ij})_{i,j \in [n]}$ is an $n \times n$ symmetric binary matrix with zero diagonal and

$$A_{ij} = \mathbf{1}\{i \sim j\} = \begin{cases} 1 & (i, j) \in E\\ 0 & \text{o.w.} \end{cases}$$

Basic definitions of graphs

• The **neighborhood** of a given vertex $v \in V$:

$$N(v) = \{u \in V : u \sim v\}$$

• The **degree** of v:

$$d_v = |N(v)|$$

• Induced subgraph: For any $S \subset V$, the subgraph induced by S is $G[S] = (S, E_S)$, where

$$E_S \triangleq \{(u, v) \in E : u, v \in S\}$$

• A clique is a complete subgraph. A graph is complete iff all pairs of vertices in the graph are connected.

Basic definitions of graphs

• The **neighborhood** of a given vertex $v \in V$:

$$N(v) = \{u \in V : u \sim v\}$$

• The **degree** of v:

$$d_v = |N(v)|$$

• Induced subgraph: For any $S \subset V$, the subgraph induced by S is $G[S] = (S, E_S)$, where

$$E_S \triangleq \{(u, v) \in E : u, v \in S\}$$

- A clique is a complete subgraph. A graph is complete iff all pairs of vertices in the graph are connected.
- Graphs are highly useful to represent relational data, which are ubiquitous

Data represented by graphs: Social networks

Figure: Twitter network for UK MPs circa 2015

https://www.nesta.org.uk/blog/twitter-network-uk-mps/

Data represented by graphs: Social networks

Figure: A LinkedIn network: Green=Cisco, Blue=Disney, Purple=Recruiters, etc

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/

Data represented by graphs: Biological networks

Figure: Gene regulatory network in yeast: nodes=genes, mRNA, protein, etc; edges=regulartion, expression, etc

https://www.nature.com/articles/s41598-018-37667-4

Data represented by graphs: Biological networks

Figure: Human Protein-Protein-Interaction (PPI) network or "interactome": nodes=proteins; red edge= CCSB-HI1 interactions, blue edges= LCI interactions.

https://www.nature.com/articles/nature04209

Data represented by graphs: computer vision

Graphs as discretization of geometric objects (triangulated mesh)

Data represented by graphs: computer vision

Graphs as discretization of geometric objects (triangulated mesh)

Data represented by graphs: operational research

Data represented by graphs: operational research

Data represented by graphs: operational research

We will encounter many combinatorial optimimization problems involves (weighted) graphs

Common ensembles

• Erdős-Rényi graph $\mathcal{G}(n,p):$ connect each pair i and j with probability p independently

- Erdős-Rényi graph $\mathcal{G}(n,p)$: connect each pair i and j with probability p independently
- Erdős-Rényi graph $\mathcal{G}(n,m)$: draw E(G) uniformly at random from $\binom{\binom{[n]}{2}}{m}$

- Erdős-Rényi graph $\mathcal{G}(n,p):$ connect each pair i and j with probability p independently
- Erdős-Rényi graph $\mathcal{G}(n,m)$: draw E(G) uniformly at random from $\binom{\binom{[n]}{2}}{m}$
- Random geometric graph: draw x₁,..., x_n uniformly from a sphere independently; connect i and j if distance(x_i, x_j) ≤ r.

- Erdős-Rényi graph $\mathcal{G}(n,p)$: connect each pair i and j with probability p independently
- Erdős-Rényi graph $\mathcal{G}(n,m)$: draw E(G) uniformly at random from $\binom{\binom{[n]}{2}}{m}$
- Random geometric graph: draw x₁,..., x_n uniformly from a sphere independently; connect i and j if distance(x_i, x_j) ≤ r.

- Erdős-Rényi graph $\mathcal{G}(n,p)$: connect each pair i and j with probability p independently
- Erdős-Rényi graph $\mathcal{G}(n,m)$: draw E(G) uniformly at random from $\binom{\binom{[n]}{2}}{m}$
- Random geometric graph: draw x₁,..., x_n uniformly from a sphere independently; connect i and j if distance(x_i, x_j) ≤ r.
- Planted models

Vignette # 1: Planted clique

 ${\ensuremath{\textbf{0}}}$ A clique of k vertices are chosen uniformly at random to form a clique

0 A clique of k vertices are chosen uniformly at random to form a clique

1 A clique of k vertices are chosen uniformly at random to form a clique **2** For every other pair of nodes, add an edge w.p. $\frac{1}{2}$

1 A clique of k vertices are chosen uniformly at random to form a clique **2** For every other pair of nodes, add an edge w.p. $\frac{1}{2}$

Call this $\mathcal{G}(n,k,\frac{1}{2})$, the planted clique model.

Planted clique – adjacency matrix view

Planted clique - adjacency matrix view

Planted clique – adjacency matrix view

Planted clique: detection

Planted clique $S \longrightarrow \text{graph } G \longrightarrow \text{decision } \phi \in \{0, 1\}$

to test the following hypothesis

$$H_0: G \sim \mathcal{G}(n, \frac{1}{2}) (\text{null model}) \quad \text{vs} \quad H_1: G \sim \mathcal{G}(n, k, \frac{1}{2}) (\text{planted model})$$

Goal:

$$\underbrace{\mathbb{P}_{G\sim\mathcal{G}(n,\frac{1}{2})}[\phi=1]}_{\text{Type-I error}} + \underbrace{\mathbb{P}_{G\sim\mathcal{G}(n,k,\frac{1}{2})}[\phi=0]}_{\text{Type-II error}} \to 0$$

Question: What's the smallest clique that is detectable? How to do it fast?

Planted clique: recovery

Planted clique $S \longrightarrow \operatorname{graph} G \longrightarrow \operatorname{Estimated}$ clique \widehat{S}

• Minimax framework: Find an estimator $\widehat{S} = \widehat{S}(G)$ that performs well in worst-case

$$\min_{S \in \binom{[n]}{k}} \mathbb{P}_S \left[\widehat{S}(G) = S \right] \approx 1$$

Planted clique: recovery

Planted clique $S \longrightarrow \operatorname{graph} G \longrightarrow \operatorname{Estimated}$ clique \widehat{S}

• Minimax framework: Find an estimator $\widehat{S} = \widehat{S}(G)$ that performs well in worst-case

$$\min_{S \in \binom{[n]}{k}} \mathbb{P}_S \left[\widehat{S}(G) = S \right] \approx 1$$

• Bayesian framework: Find an estimator $\widehat{S} = \widehat{S}(G)$ that performs well on average

$$\mathbf{E}_{S\sim \mathsf{Unif}\left(\binom{[n]}{k}\right)} \mathbb{P}_{S}\left[\widehat{S}(G) = S\right] \approx 1$$

Planted clique: recovery

Planted clique $S \longrightarrow \operatorname{graph} G \longrightarrow \operatorname{Estimated}$ clique \widehat{S}

Minimax framework: Find an estimator Ŝ = Ŝ(G) that performs well in worst-case
min P_α[Ŝ(C) = S] ~ 1

$$\min_{S \in \binom{[n]}{k}} \mathbb{P}_S \left[\widehat{S}(G) = S \right] \approx 1$$

• Bayesian framework: Find an estimator $\widehat{S} = \widehat{S}(G)$ that performs well on average

$$\mathbf{E}_{S\sim \mathrm{Unif}\left(\binom{[n]}{k}\right)} \mathbb{P}_S \left\lfloor \widehat{S}(G) = S \right\rfloor \approx 1$$

 The two formulations are equivalent by the permutaiton invariance of the model:

$$\sup_{\widehat{S}} \min_{S \in \binom{[n]}{k}} \mathbb{P}_S\Big[\widehat{S}(G) = S\Big] = \sup_{\widehat{S}} \mathbf{E}_{S \sim \mathsf{Unif}\left(\binom{[n]}{k}\right)} \mathbb{P}_S\Big[\widehat{S}(G) = S\Big].$$

Vignette # 2: Community detection

Community detection in networks

- Networks with community structures arise in many applications
- Task: Discover underlying communities based on the network topology alone

Example 1

Santa Fe Institute Collaboration network [Girvan-Newman '02]

Example 2

Protein-protein interaction networks [Jonsson et al. 06']

Example 3

Political blogosphere and the 2004 U.S. election [Adamic-Glance '05]

Stochastic block model – graph view

Stochastic block model – graph view

1 nodes are randomly partitioned into 2 equal-sized communities

Stochastic block model - graph view

- $\mathbf{0}$ n nodes are randomly partitioned into 2 equal-sized communities
- **2** For every pair of nodes in same community, add an edge w.p. p

Stochastic block model – graph view

- $\mathbf{1}$ n nodes are randomly partitioned into 2 equal-sized communities
- **2** For every pair of nodes in same community, add an edge w.p. p
- ${f 3}$ For every pair of nodes in diff. community, add an edge w.p. q

Stochastic block model – graph view

- $\mathbf{0}$ n nodes are randomly partitioned into 2 equal-sized communities
- ${\it 2}$ For every pair of nodes in same community, add an edge w.p. p
- ${f 3}$ For every pair of nodes in diff. community, add an edge w.p. q

Call this SBM(n, p, q), SBM with two equal communities.

Stochastic block model - adjacency matrix view

Stochastic block model - adjacency matrix view

Stochastic block model – estimation

Planted community $\sigma \in \{\pm 1\}^n \longrightarrow \text{graph } G \longrightarrow \text{Estimated community } \widehat{\sigma}$

$$\mathbb{P}\big[(i,j) \in E\big] = \begin{cases} p & \sigma_i = \sigma_j \\ q & \sigma_i \neq \sigma_j \end{cases},$$

Goal:

- Detection: test $H_0: G \sim G(n, \frac{p+q}{2})$ or $H_1: G \sim \mathsf{SBM}(n, p, q)$
- Recovery: with high probability, $\hat{\sigma}$ and σ agree on
 - (Weak recovery) 50.0001% nodes (better than random guessing)
 - (Almost exact recovery) all but o(n) nodes
 - (Exact recovery) all nodes

Vignette # 3: Graph matching

Graph matching (network alignment)

Goal: find a correspondence between two vertex sets that maximally aligns the edges
Graph matching (network alignment)

Goal: find a correspondence between two vertex sets that maximally aligns the edges

Graph matching (network alignment)

Goal: find a correspondence between two vertex sets that maximally aligns the edges Noiseless case: reduce to graph isomoprhism

Example: Network de-anonymization

Example 2: 3D shape matching

Find the correct vertex correspondance between two geometric graphs

Permutation $\pi \in S_n \longrightarrow$ graphs $(G_1, G_2) \longrightarrow$ Estimator $\hat{\pi}$

where (G_1,G_2) are Erdős-Rényi graphs correlated through the latent vertex correspondence $\pi:$

 $G_0 \sim \mathcal{G}(n,p)$

Permutation $\pi \in S_n \longrightarrow$ graphs $(G_1, G_2) \longrightarrow$ Estimator $\hat{\pi}$

where (G_1,G_2) are Erdős-Rényi graphs correlated through the latent vertex correspondence $\pi:$

Permutation $\pi \in S_n \longrightarrow$ graphs $(G_1, G_2) \longrightarrow$ Estimator $\hat{\pi}$

where (G_1,G_2) are Erdős-Rényi graphs correlated through the latent vertex correspondence $\pi:$

Permutation $\pi \in S_n \longrightarrow$ graphs $(G_1, G_2) \longrightarrow$ Estimator $\hat{\pi}$

where (G_1,G_2) are Erdős-Rényi graphs correlated through the latent vertex correspondence $\pi:$

For two sequences of positive numbers a_n and b_n ,

• $a_n = O(b_n)$ or $a_n \leq b_n$, if there exist a constant C such that $|a_n| \leq Cb_n$ for all sufficiently large n.

For two sequences of positive numbers a_n and b_n ,

- $a_n = O(b_n)$ or $a_n \leq b_n$, if there exist a constant C such that $|a_n| \leq Cb_n$ for all sufficiently large n.
- $a_n = \Omega(b_n)$ or $a_n \gtrsim b_n$, if $b_n = O(a_n)$
- $a_n = \Theta(b_n)$ or $a_n \asymp b_n$, if $a_n = O(b_n)$ and $a_n = \Omega(b_n)$.

For two sequences of positive numbers a_n and b_n ,

- $a_n = O(b_n)$ or $a_n \leq b_n$, if there exist a constant C such that $|a_n| \leq Cb_n$ for all sufficiently large n.
- $a_n = \Omega(b_n)$ or $a_n \gtrsim b_n$, if $b_n = O(a_n)$
- $a_n = \Theta(b_n)$ or $a_n \asymp b_n$, if $a_n = O(b_n)$ and $a_n = \Omega(b_n)$.
- $a_n = o(b_n)$ or $a_n \ll b_n$, if $a_n/b_n \to 0$ as $n \to \infty$.
- $a_n = \omega(b_n)$ or $a_n \gg b_n$, if $a_n/b_n \to \infty$ as $n \to \infty$.

For two sequences of positive numbers a_n and b_n ,

- a_n = O(b_n) or a_n≤b_n, if there exist a constant C such that |a_n| ≤ Cb_n for all sufficiently large n.
- $a_n = \Omega(b_n)$ or $a_n \gtrsim b_n$, if $b_n = O(a_n)$
- $a_n = \Theta(b_n)$ or $a_n \asymp b_n$, if $a_n = O(b_n)$ and $a_n = \Omega(b_n)$.

•
$$a_n = o(b_n)$$
 or $a_n \ll b_n$, if $a_n/b_n \to 0$ as $n \to \infty$.

- $a_n = \omega(b_n)$ or $a_n \gg b_n$, if $a_n/b_n \to \infty$ as $n \to \infty$.
- $a_n = poly(n)$ if $a_n = n^{O(1)}$.

•
$$a_n = \operatorname{\mathsf{polylog}}(n)$$
 if $a_n = (\log n)^{O(1)}$.

For two sequences of positive numbers a_n and b_n ,

- a_n = O(b_n) or a_n≤b_n, if there exist a constant C such that |a_n| ≤ Cb_n for all sufficiently large n.
- a_n = Ω(b_n) or a_n≥b_n, if b_n = O(a_n)
 a_n = Θ(b_n) or a_n≍b_n, if a_n = O(b_n) and a_n = Ω(b_n).
 a_n = o(b_n) or a_n≪b_n, if a_n/b_n → 0 as n → ∞.
 a_n = ω(b_n) or a_n≫b_n, if a_n/b_n → ∞ as n → ∞.
 a_n = poly(n) if a_n = n^{O(1)}.

•
$$a_n = \operatorname{polylog}(n)$$
 if $a_n = (\log n)^{O(1)}$.

We use tilde to hide logarithmic factors, for example $a_n = \tilde{O}(b_n)$ if $a_n = O(b_n \operatorname{polylog}(n))$.

When a_n is not positive, $O(\cdot)$ and $o(\cdot)$ also make sense by applying to $|a_n|$.

We use subscript to indicate the dependency of proportionality constants on some other quantity, for example $a_n = O_m(b_n)$ or $a_n \leq_m b_n$ if $a_n \leq C(m)b_n$.

For two sequences of positive numbers a_n and b_n ,

• $a_n = O(b_n)$ or $a_n \leq b_n$, if there exist a constant C such that $|a_n| \leq Cb_n$ for all sufficiently large n.

•
$$a_n = \Omega(b_n)$$
 or $a_n \gtrsim b_n$, if $b_n = O(a_n)$

• $a_n = \Theta(b_n)$ or $a_n \asymp b_n$, if $a_n = O(b_n)$ and $a_n = \Omega(b_n)$.

•
$$a_n = o(b_n)$$
 or $a_n \ll b_n$, if $a_n/b_n \to 0$ as $n \to \infty$.

•
$$a_n = \omega(b_n)$$
 or $a_n \gg b_n$, if $a_n/b_n \to \infty$ as $n \to \infty$.

•
$$a_n = poly(n)$$
 if $a_n = n^{O(1)}$.

•
$$a_n = \operatorname{\mathsf{polylog}}(n)$$
 if $a_n = (\log n)^{O(1)}$.

Also, we say that a sequence of events \mathcal{E}_n holds with high probability (whp), if $\mathbb{P} \{ \mathcal{E}_n \} \to 1$ as $n \to \infty$.

We use tilde to hide logarithmic factors, for example $a_n = \tilde{O}(b_n)$ if $a_n = O(b_n \operatorname{polylog}(n))$.

When a_n is not positive, $O(\cdot)$ and $o(\cdot)$ also make sense by applying to $|a_n|$.

We use subscript to indicate the dependency of proportionality constants on some other quantity, for example $a_n = O_m(b_n)$ or $a_n \leq_m b_n$ if $a_n \leq C(m)b_n$.