
S&DS 684: Statistical inference on graphs

Spring 2023

Administrivia

• Schedule: Tue 4-550pm, 17 Hillhouse Rm 03

• Instructor: Prof. Yihong Wu yihongwu@yale.edu, Rm 235 Dunham Lab
(10 Hillhouse)
▶ Office hours: by appointment

• Advanced graduate-level seminar-style class. Undergraduates need express
permission from the instructor.

• No TF.

• Website:
http://www.stat.yale.edu/~yw562/teaching/684/index.html

yihongwu@yale.edu
http://www.stat.yale.edu/~yw562/teaching/684/index.html

Administrivia

• Schedule: Tue 4-550pm, 17 Hillhouse Rm 03

• Instructor: Prof. Yihong Wu yihongwu@yale.edu, Rm 235 Dunham Lab
(10 Hillhouse)
▶ Office hours: by appointment

• Advanced graduate-level seminar-style class. Undergraduates need express
permission from the instructor.

• No TF.

• Website:
http://www.stat.yale.edu/~yw562/teaching/684/index.html

yihongwu@yale.edu
http://www.stat.yale.edu/~yw562/teaching/684/index.html

Administrivia

• Schedule: Tue 4-550pm, 17 Hillhouse Rm 03

• Instructor: Prof. Yihong Wu yihongwu@yale.edu, Rm 235 Dunham Lab
(10 Hillhouse)
▶ Office hours: by appointment

• Advanced graduate-level seminar-style class. Undergraduates need express
permission from the instructor.

• No TF.

• Website:
http://www.stat.yale.edu/~yw562/teaching/684/index.html

yihongwu@yale.edu
http://www.stat.yale.edu/~yw562/teaching/684/index.html

Administrivia

• Schedule: Tue 4-550pm, 17 Hillhouse Rm 03

• Instructor: Prof. Yihong Wu yihongwu@yale.edu, Rm 235 Dunham Lab
(10 Hillhouse)
▶ Office hours: by appointment

• Advanced graduate-level seminar-style class. Undergraduates need express
permission from the instructor.

• No TF.

• Website:
http://www.stat.yale.edu/~yw562/teaching/684/index.html

yihongwu@yale.edu
http://www.stat.yale.edu/~yw562/teaching/684/index.html

Administrivia

• Course prerequisites:

▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):

▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required

▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):

▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):

▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):

▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):
▶ Attend class on time :-)

▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):
▶ Attend class on time :-)
▶ Meaningful classroom participation

▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):
▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):
▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):
▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)

▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):
▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)
▶ either presenting paper(s) or a standalone research project.

▶ list of topics announced around week 6

Administrivia

• Course prerequisites:
▶ Maturity with probability theory and linear algebra is required
▶ Familiarity with statistical theory and optimization is helpful

• Participation (30%):
▶ Attend class on time :-)
▶ Meaningful classroom participation
▶ Proofread lecture notes and provide comments and corrections

• Homeworks (30%): two to three problem sets

• Final project (40%)
▶ either presenting paper(s) or a standalone research project.
▶ list of topics announced around week 6

Administrivia

• Lecture notes:
▶ Yihong Wu and Jiaming Xu, “Statistical inference on graphs: Selected

Topics”, working draft, available at
http://www.stat.yale.edu/~yw562/teaching/stats-graphs.pdf

▶ Additional reading materials will be posted online.

• Highly theoretical class
▶ Statistical (information-theoretical) analysis
▶ Algorithms: emphasizing proof of correctness
▶ No coding

http://www.stat.yale.edu/~yw562/teaching/stats-graphs.pdf

Administrivia

• Lecture notes:
▶ Yihong Wu and Jiaming Xu, “Statistical inference on graphs: Selected

Topics”, working draft, available at
http://www.stat.yale.edu/~yw562/teaching/stats-graphs.pdf

▶ Additional reading materials will be posted online.

• Highly theoretical class
▶ Statistical (information-theoretical) analysis
▶ Algorithms: emphasizing proof of correctness
▶ No coding

http://www.stat.yale.edu/~yw562/teaching/stats-graphs.pdf

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor

▶ Data = graphs (i.e. networks)
▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,

matching, cycle, etc
▶ Focus on large-graph limit (number of vertices → ∞)
▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor

▶ Data = graphs (i.e. networks)
▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,

matching, cycle, etc
▶ Focus on large-graph limit (number of vertices → ∞)
▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor

▶ Data = graphs (i.e. networks)
▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,

matching, cycle, etc
▶ Focus on large-graph limit (number of vertices → ∞)
▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor

▶ Data = graphs (i.e. networks)
▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,

matching, cycle, etc
▶ Focus on large-graph limit (number of vertices → ∞)
▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor

▶ Data = graphs (i.e. networks)
▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,

matching, cycle, etc
▶ Focus on large-graph limit (number of vertices → ∞)
▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor
▶ Data = graphs (i.e. networks)

▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,
matching, cycle, etc

▶ Focus on large-graph limit (number of vertices → ∞)
▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor
▶ Data = graphs (i.e. networks)
▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,

matching, cycle, etc

▶ Focus on large-graph limit (number of vertices → ∞)
▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor
▶ Data = graphs (i.e. networks)
▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,

matching, cycle, etc
▶ Focus on large-graph limit (number of vertices → ∞)

▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

θ ∈ Θ︸ ︷︷ ︸
parameter

→ Statistical model → X︸︷︷︸
data

7→ Algorithm → θ̂︸︷︷︸
estimate

Includes hypothesis testing (detection) as special case.

• Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

• In this course: statistical problems of combinatorial flavor
▶ Data = graphs (i.e. networks)
▶ Parameter = hidden (latent, or planted) structure, e.g., vertex labels,

matching, cycle, etc
▶ Focus on large-graph limit (number of vertices → ∞)
▶ Statistical tasks: detection (null vs planted), recovery, or estimation.

Basic definitions of graphs

A graph G = (V,E) consists of

• A vertex set V = [n] ≡ {1, . . . , n} for some positive integer n.

• An edge set E ⊂
(
V
2

)
. Each element of E is an edge e = (i, j) (unordered

pair). We say i and j are connected and write i ∼ j if (i, j) ∈ E.

We mostly focus on graphs that are undirected and simple.

Adjacency matrix representation: A = (Aij)i,j∈[n] is an n× n symmetric
binary matrix with zero diagonal and

Aij = 1{i ∼ j} =

{
1 (i, j) ∈ E

0 o.w.
.

21

34

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0



Basic definitions of graphs

• The neighborhood of a given vertex v ∈ V :

N(v) = {u ∈ V : u ∼ v}

• The degree of v:
dv = |N(v)|

• Induced subgraph: For any S ⊂ V , the subgraph induced by S is
G[S] = (S,ES), where

ES ≜ {(u, v) ∈ E : u, v ∈ S}

• A clique is a complete subgraph. A graph is complete iff all pairs of
vertices in the graph are connected.

• Graphs are highly useful to represent relational data, which are ubiquitous

Basic definitions of graphs

• The neighborhood of a given vertex v ∈ V :

N(v) = {u ∈ V : u ∼ v}

• The degree of v:
dv = |N(v)|

• Induced subgraph: For any S ⊂ V , the subgraph induced by S is
G[S] = (S,ES), where

ES ≜ {(u, v) ∈ E : u, v ∈ S}

• A clique is a complete subgraph. A graph is complete iff all pairs of
vertices in the graph are connected.

• Graphs are highly useful to represent relational data, which are ubiquitous

Data represented by graphs: Social networks

Figure: Twitter network for UK MPs circa 2015

https://www.nesta.org.uk/blog/twitter-network-uk-mps/

https://www.nesta.org.uk/blog/twitter-network-uk-mps/

Data represented by graphs: Social networks

Figure: A LinkedIn network: Green=Cisco, Blue=Disney, Purple=Recruiters, etc

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/

Data represented by graphs: Biological networks

Figure: Gene regulatory network in yeast: nodes=genes, mRNA, protein, etc;
edges=regulartion, expression, etc

https://www.nature.com/articles/s41598-018-37667-4

https://www.nature.com/articles/s41598-018-37667-4

Data represented by graphs: Biological networks

© 2005 Nature Publishing Group

the yeast two-hybrid methodology. Estimating biological false posi-
tive interactions, which are genuinely observed in one or more assay
but do not occur in vivo, is more difficult. We partially addressed this
by examining the correlation of CCSB-HI1 data with other biological
information (see below).

To measure the sensitivity of CCSB-HI1, we selected two high-
confidence subsets from among all 4,067 LCI direct binary inter-
actions. LCI-core contains 624 interactions supported by at least two
PubMed entries. LCI-hypercore contains 275 interactions supported
by at least two PubMed entries and present in at least two curated
databases (Supplementary Table S2). Overall, the fractions of LCI, LCI-
core and LCI-hypercore interactions found in CCSB-HI1 are 2.3%,
4.6% and 8.4%, respectively (Fig. 2a). These overlaps are larger than
expected by chance (P , 6 £ 10256) and are similar to those found
for interactome maps in Caenorhabditis elegans and Drosophila
melanogaster7,21. That the fraction of CCSB-HI1 interactions increases
markedly with increasingly confident subsets of LCI suggests that
literature-derived interactions are variable in quality and should not
necessarily be interpreted as a ‘gold standard’. Because Space-I rep-
resents ,10% of the human network (without accounting for
alternative splice variants), and because we detected ,10% of LCI-
hypercore interactions, we conclude that the CCSB-HI1 data set
contains ,1% of the human interactome (Supplementary Data X).

We represented the union of all CCSB-HI1 and LCI interactions in
a network graph in which nodes are proteins and edges are inter-
actions. The main component of this network contains 2,784 nodes
and 6,438 edges (Fig. 2b), and shows interactions largely segregated
into two neighbourhoods: one enriched for CCSB-HI1 interactions
(red edges) and the other enriched for LCI interactions (blue edges).
To explore this hypothesis, we calculated, for each node, the fraction
of yeast two-hybrid edges within paths of length 1, 2 and 3 (that is,
within ‘1-hop’, ‘2-hop’ and ‘3-hop’ neighbourhoods). The distri-
bution of this fraction (Fig. 2c; see also Supplementary Fig. S2)
confirms the evidence-type segregation apparent in Fig. 2b. One
explanation for this phenomenon is that different biases exist in the
CCSB-HI1 and LCI data sets. For example, certain protein classes
(such as those involved in cancer) are studied more extensively
than others, resulting in an inherent inspection bias in LC data
(Supplementary Table S4). Furthermore, the methodologies used to
detect interactions (including yeast two-hybrid) each have different
biases for example, under-representation of membrane proteins
(Supplementary Data X).

The novelty of CCSB-HI1 interactions was evaluated by system-
atically searching the PubMed and Google Scholar literature data-
bases for co-occurrence of the corresponding gene symbols. More
than 85% of the CCSB-HI1 pairs (as compared with only 25% of

Figure 2 | Overlap of CCSB-HI1 with existing literature-curated (LC)
data. a, Overlap between CCSB-HI1 and LC interactions in Space-I (LCI).
The top, middle and bottom panels represent the overlap between
CCSB-HI1 and LCI, LCI-core and LCI-hypercore, respectively. b, Network
graph of the union of all CCSB-HI1 and LCI interactions. Proteins are shown
as yellow nodes and CCSB-HI1 and LCI interactions are shown as red and
blue edges, respectively. Blue edges with increasing thickness indicate
LCI-non-core, LCI-core and LCI-hypercore, respectively. The apparent
banding pattern of the yellow nodes is an artefact of the graph layout
algorithm (Supplementary Data). Importantly, the layout algorithmwas not
informed by type of supporting evidence and therefore does not explain the

evident separation of blue and red edges. c, Bias in 2-hop network
neighbourhood for either CCSB-HI1 or LCI interactions. The frequency of
nodes with a given proportion of CCSB-HI1 interactions in their 2-hop
neighbourhood is depicted for the interactome network graph in b (solid
curve) and for a network in which the types of supporting evidence (CCSB-
HI1 or LCI) are randomly permuted among edges (dashed curve). The solid
curve indicates that most of the proteins in the network of b have either only
CCSB-HI1 or only LCI interactions in their 2-hop neighbourhood. In
contrast, neighbourhoods are well mixed when evidence labels are randomly
permuted among edges.

NATURE|Vol 437|20 October 2005 LETTERS

1175

Figure: Human Protein-Protein-Interaction (PPI) network or “interactome”:
nodes=proteins; red edge= CCSB-HI1 interactions, blue edges= LCI interactions.

https://www.nature.com/articles/nature04209

https://www.nature.com/articles/nature04209

Data represented by graphs: computer vision

Graphs as discretization of geometric objects (triangulated mesh)

Data represented by graphs: computer vision

Graphs as discretization of geometric objects (triangulated mesh)

Data represented by graphs: operational research

We will encounter many combinatorial optimimization problems involves
(weighted) graphs

Data represented by graphs: operational research

We will encounter many combinatorial optimimization problems involves
(weighted) graphs

Data represented by graphs: operational research

We will encounter many combinatorial optimimization problems involves
(weighted) graphs

Statistical model: random graphs

Common ensembles

• Erdős-Rényi graph G(n, p): connect each pair i and j with probability p
independently

• Erdős-Rényi graph G(n,m): draw E(G) uniformly at random from
(([n]

2)
m

)
• Random geometric graph: draw x1, . . . , xn uniformly from a sphere

independently; connect i and j if distance(xi, xj) ≤ r.

• Planted models

Statistical model: random graphs

Common ensembles

• Erdős-Rényi graph G(n, p): connect each pair i and j with probability p
independently

• Erdős-Rényi graph G(n,m): draw E(G) uniformly at random from
(([n]

2)
m

)

• Random geometric graph: draw x1, . . . , xn uniformly from a sphere
independently; connect i and j if distance(xi, xj) ≤ r.

• Planted models

Statistical model: random graphs

Common ensembles

• Erdős-Rényi graph G(n, p): connect each pair i and j with probability p
independently

• Erdős-Rényi graph G(n,m): draw E(G) uniformly at random from
(([n]

2)
m

)
• Random geometric graph: draw x1, . . . , xn uniformly from a sphere
independently; connect i and j if distance(xi, xj) ≤ r.

• Planted models

Statistical model: random graphs

Common ensembles

• Erdős-Rényi graph G(n, p): connect each pair i and j with probability p
independently

• Erdős-Rényi graph G(n,m): draw E(G) uniformly at random from
(([n]

2)
m

)
• Random geometric graph: draw x1, . . . , xn uniformly from a sphere
independently; connect i and j if distance(xi, xj) ≤ r.

• Planted models

Statistical model: random graphs

Common ensembles

• Erdős-Rényi graph G(n, p): connect each pair i and j with probability p
independently

• Erdős-Rényi graph G(n,m): draw E(G) uniformly at random from
(([n]

2)
m

)
• Random geometric graph: draw x1, . . . , xn uniformly from a sphere
independently; connect i and j if distance(xi, xj) ≤ r.

• Planted models

Vignette # 1: Planted clique

Planted clique – graph view

1 A clique of k vertices are chosen uniformly at random to form a clique

2 For every other pair of nodes, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Call this G(n, k, 1
2), the planted clique model.

Planted clique – graph view

1 A clique of k vertices are chosen uniformly at random to form a clique

2 For every other pair of nodes, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

••

••

••••

••

••

••

••••

••

••

••
••

••
•• ••

••

••

••

••

••

••••

••

••

••

••

••

••

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Call this G(n, k, 1
2), the planted clique model.

Planted clique – graph view

1 A clique of k vertices are chosen uniformly at random to form a clique

2 For every other pair of nodes, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

••

••

••••

••

••

••

••••

••

••

••
••

••
•• ••

••

••

••

••

••

••••

••

••

••

••

••

••

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Call this G(n, k, 1
2), the planted clique model.

Planted clique – graph view

1 A clique of k vertices are chosen uniformly at random to form a clique

2 For every other pair of nodes, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

••

••

••••

••

••

••

••••

••

••

••
••

••
•• ••

••

••

••

••

••

••••

••

••

••

••

••

••

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Call this G(n, k, 1
2), the planted clique model.

Planted clique – graph view

1 A clique of k vertices are chosen uniformly at random to form a clique

2 For every other pair of nodes, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Call this G(n, k, 1
2), the planted clique model.

Planted clique – adjacency matrix view

Planted clique – adjacency matrix view

Planted clique – adjacency matrix view

Planted clique: detection

Planted clique S −→ graph G −→ decision ϕ ∈ {0, 1}

to test the following hypothesis

H0 : G ∼ G(n, 1
2
)(null model) vs H1 : G ∼ G(n, k, 1

2
)(planted model)

• Goal:
PG∼G(n, 12)

[ϕ = 1]︸ ︷︷ ︸
Type-I error

+PG∼G(n,k, 12)
[ϕ = 0]︸ ︷︷ ︸

Type-II error

→ 0

• Question: What’s the smallest clique that is detectable? How to do it fast?

Planted clique: recovery

Planted clique S −→ graph G −→ Estimated clique Ŝ

• Minimax framework: Find an estimator Ŝ = Ŝ(G) that performs well in
worst-case

min
S∈([n]

k)
PS

[
Ŝ(G) = S

]
≈ 1

• Bayesian framework: Find an estimator Ŝ = Ŝ(G) that performs well on
average

E
S∼Unif

(
([n]

k)
)PS

[
Ŝ(G) = S

]
≈ 1

• The two formulations are equivalent by the permutaiton invariance of the
model:

sup
Ŝ

min
S∈([n]

k)
PS

[
Ŝ(G) = S

]
= sup

Ŝ

E
S∼Unif

(
([n]

k)
)PS

[
Ŝ(G) = S

]
.

Planted clique: recovery

Planted clique S −→ graph G −→ Estimated clique Ŝ

• Minimax framework: Find an estimator Ŝ = Ŝ(G) that performs well in
worst-case

min
S∈([n]

k)
PS

[
Ŝ(G) = S

]
≈ 1

• Bayesian framework: Find an estimator Ŝ = Ŝ(G) that performs well on
average

E
S∼Unif

(
([n]

k)
)PS

[
Ŝ(G) = S

]
≈ 1

• The two formulations are equivalent by the permutaiton invariance of the
model:

sup
Ŝ

min
S∈([n]

k)
PS

[
Ŝ(G) = S

]
= sup

Ŝ

E
S∼Unif

(
([n]

k)
)PS

[
Ŝ(G) = S

]
.

Planted clique: recovery

Planted clique S −→ graph G −→ Estimated clique Ŝ

• Minimax framework: Find an estimator Ŝ = Ŝ(G) that performs well in
worst-case

min
S∈([n]

k)
PS

[
Ŝ(G) = S

]
≈ 1

• Bayesian framework: Find an estimator Ŝ = Ŝ(G) that performs well on
average

E
S∼Unif

(
([n]

k)
)PS

[
Ŝ(G) = S

]
≈ 1

• The two formulations are equivalent by the permutaiton invariance of the
model:

sup
Ŝ

min
S∈([n]

k)
PS

[
Ŝ(G) = S

]
= sup

Ŝ

E
S∼Unif

(
([n]

k)
)PS

[
Ŝ(G) = S

]
.

Vignette # 2: Community detection

Community detection in networks

• Networks with community structures arise in many applications

• Task: Discover underlying communities based on the network topology
alone

Example 1

Santa Fe Institute Collaboration network [Girvan-Newman ’02]

Example 2

Protein-protein interaction networks [Jonsson et al. 06’]

Example 3

Political blogosphere and the 2004 U.S. election [Adamic-Glance ’05]

Figure 1: Community structure of political blogs (expanded set), shown using utilizing the GUESS visual-
ization and analysis tool[2]. The colors reflect political orientation, red for conservative, and blue for liberal.
Orange links go from liberal to conservative, and purple ones from conservative to liberal. The size of each
blog reflects the number of other blogs that link to it.

Because of bloggers’ ability to identify and frame break-
ing news, many mainstream media sources keep a close eye
on the best known political blogs. A number of mainstream
news sources have started to discuss and even to host blogs.
In an online survey asking editors, reporters, columnists and
publishers to each list the “top 3” blogs they read, Drezner
and Farrell [4] identified a short list of dominant “A-list”
blogs. Just 10 of the most popular blogs accounted for over
half the blogs on the journalists’ lists. They also found that,
besides capturing most of the attention of the mainstream
media, the most popular political blogs also get a dispro-
portionate number of links from other blogs. Shirky [12]
observed the same effect for blogs in general and Hindman
et al. [7] found it to hold for political websites focusing on
various issues.
While these previous studies focused on the inequality of

citation links for political blogs overall, there has been com-
paratively little study of subcommunities of political blogs.
In the context of political websites, Hindman et al. [7] noted
that, for example, those dealing with the issue of abortion,
gun control, and the death penalties, contain subcommuni-
ties of opposing views. In the case of the pro-choice and
pro-life web communities, an earlier study [1] found pro-life
websites to be more densely linked than pro-choice ones. In
a study of a sample of the blogosphere, Herring et al.[6] dis-
covered densely interlinked (non-political) blog communities
focusing on the topics of Catholicism and homeschooling, as
well as a core network of A-list blogs, some of them political.
Recently, Butts and Cross [3] studied the response in the

structure of networks of political blogs to polling data and
election campaign events. In another political blog study,
Welsch [15] gathered a single-day snapshot of the network

neighborhoods of Atrios, a popular liberal blog, and In-
stapundit, a popular conservative blog. He found the In-
stapundit neighborhood to include many more blogs than
the Atrios one, and observed no overlap in the URLs cited
between the two neighborhoods. The lack of overlap in lib-
eral and conservative interests has previously been observed
in purchases of political books on Amazon.com [8]. This
brings about the question of whether we are witnessing a
cyberbalkanization [11, 13] of the Internet, where the prolif-
eration of specialized online news sources allows people with
different political leanings to be exposed only to information
in agreement with their previously held views. Yale law pro-
fessor Jack Balkin provides a counter-argument7 by pointing
out that such segregation is unlikely in the blogosphere be-
cause bloggers systematically comment on each other, even
if only to voice disagreement.

In this paper we address both hypotheses by examining in
a systematic way the linking patterns and discussion topics
of political bloggers. In doing so, we not only measure the
degree of interaction between liberal and conservative blogs,
but also uncover differences in the structure of the two com-
munities. Our data set includes the posts of 40 A-list blogs
over the period of two months preceding the U.S. Presiden-
tial Election of 2004. We also study a large network of over
1,000 political blogs based on a single day snapshot that in-
cludes blogrolls (the list of links to other blogs frequently
found in sidebars), and so presents a more static picture of
a broader blogosphere.

From both samples we find that liberal and conservative
blogs did indeed have different lists of favorite news sources,

7http://balkin.blogspot.com/2004 01 18 balkin
archive.html#107480769112109137

Stochastic block model – graph view

1 n nodes are randomly partitioned into 2 equal-sized communities

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Call this SBM(n, p, q), SBM with two equal communities.

Stochastic block model – graph view
1 n nodes are randomly partitioned into 2 equal-sized communities

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Call this SBM(n, p, q), SBM with two equal communities.

Stochastic block model – graph view
1 n nodes are randomly partitioned into 2 equal-sized communities

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Call this SBM(n, p, q), SBM with two equal communities.

Stochastic block model – graph view
1 n nodes are randomly partitioned into 2 equal-sized communities

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Call this SBM(n, p, q), SBM with two equal communities.

Stochastic block model – graph view
1 n nodes are randomly partitioned into 2 equal-sized communities

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Call this SBM(n, p, q), SBM with two equal communities.

Stochastic block model – adjacency matrix view

0 50 100 150 200

nz = 7962

0

20

40

60

80

100

120

140

160

180

200

Stochastic block model – adjacency matrix view

0 50 100 150 200

nz = 7962

0

20

40

60

80

100

120

140

160

180

200

Stochastic block model – estimation

Planted community σ ∈ {±1}n −→ graph G −→ Estimated community σ̂

P
[
(i, j) ∈ E

]
=

{
p σi = σj

q σi ̸= σj

,

Goal:

• Detection: test H0 : G ∼ G(n, p+q
2) or H1 : G ∼ SBM(n, p, q)

• Recovery: with high probability, σ̂ and σ agree on
▶ (Weak recovery) 50.0001% nodes (better than random guessing)
▶ (Almost exact recovery) all but o(n) nodes
▶ (Exact recovery) all nodes

Vignette # 3: Graph matching

Graph matching (network alignment)

Goal: find a correspondence between two vertex sets that maximally aligns the
edges

Noiseless case: reduce to graph isomoprhism

Graph matching (network alignment)

1

1

2 23

3

4
4

5

5
6

6

7

7

8
89

9

10

10

Goal: find a correspondence between two vertex sets that maximally aligns the
edges

Noiseless case: reduce to graph isomoprhism

Graph matching (network alignment)

1

1

2 23

3

4
4

5

5
6

6

7

7

8
89

9

10

10

Goal: find a correspondence between two vertex sets that maximally aligns the
edges Noiseless case: reduce to graph isomoprhism

Example: Network de-anonymization

Alice

Bob

Charlie

?

?

?

Example 2: 3D shape matching

Find the correct vertex correspondance between two geometric graphs

Statistical model: Correlated Erdős-Rényi graphs

Permutation π ∈ Sn −→ graphs (G1, G2) −→ Estimator π̂

where (G1, G2) are Erdős-Rényi graphs correlated through the latent vertex
correspondence π:

1

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)1

s

G∗
2

1
π

G2

7

2

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

2

s

G∗
2

2

π

G2

3

3

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

3

s

G∗
2

3

π

G2

5

4

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

4

s

G∗
2

4

π

G2

2

5

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

5

s

G∗
2

5

π

G2

8

6

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)6

s

G∗
2

6
π

G2

10

7

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

7

s

G∗
2

7
π

G2

1

8

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

8

s

G∗
2

8

π

G2

9

9

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

9

s

G∗
2

9

π

G2

4

10

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

10

s

G∗
2

10
π

G2

6

Statistical model: Correlated Erdős-Rényi graphs

Permutation π ∈ Sn −→ graphs (G1, G2) −→ Estimator π̂

where (G1, G2) are Erdős-Rényi graphs correlated through the latent vertex
correspondence π:

1

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)1

s

G∗
2

1
π

G2

7

2

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

2

s

G∗
2

2

π

G2

3

3

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

3

s

G∗
2

3

π

G2

5

4

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

4

s

G∗
2

4

π

G2

2

5

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

5

s

G∗
2

5

π

G2

8

6

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)6

s

G∗
2

6
π

G2

10

7

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

7

s

G∗
2

7
π

G2

1

8

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

8

s

G∗
2

8

π

G2

9

9

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

9

s

G∗
2

9

π

G2

4

10

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

10

s

G∗
2

10
π

G2

6

Statistical model: Correlated Erdős-Rényi graphs

Permutation π ∈ Sn −→ graphs (G1, G2) −→ Estimator π̂

where (G1, G2) are Erdős-Rényi graphs correlated through the latent vertex
correspondence π:

1

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)1

s

G∗
2

1

π

G2

7

2

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

2

s

G∗
2

2

π

G2

3

3

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

3

s

G∗
2

3

π

G2

5

4

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

4

s

G∗
2

4

π

G2

2

5

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

5

s

G∗
2

5

π

G2

8

6

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)6

s

G∗
2

6

π

G2

10

7

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

7

s

G∗
2

7

π

G2

1

8

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

8

s

G∗
2

8

π

G2

9

9

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

9

s

G∗
2

9

π

G2

4

10

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

10

s

G∗
2

10

π

G2

6

Statistical model: Correlated Erdős-Rényi graphs

Permutation π ∈ Sn −→ graphs (G1, G2) −→ Estimator π̂

where (G1, G2) are Erdős-Rényi graphs correlated through the latent vertex
correspondence π:

1

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)1

s

G∗
2

1
π

G2

7

2

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

2

s

G∗
2

2

π

G2

3

3

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

3

s

G∗
2

3

π

G2

5

4

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

4

s

G∗
2

4

π

G2

2

5

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

5

s

G∗
2

5

π

G2

8

6

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)6

s

G∗
2

6
π

G2

10

7

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

7

s

G∗
2

7
π

G2

1

8

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

8

s

G∗
2

8

π

G2

9

9

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

9

s

G∗
2

9

π

G2

4

10

G0 ∼ G(n, p)

s G1 ∼ G(n, q ≜ ps)

10

s

G∗
2

10
π

G2

6

Asymptotic Notation (Big-Oh)

For two sequences of positive numbers an and bn,

• an = O(bn) or an≲bn, if there exist a constant C such that |an| ≤ Cbn for
all sufficiently large n.

• an = Ω(bn) or an≳bn, if bn = O(an)

• an = Θ(bn) or an≍bn, if an = O(bn) and an = Ω(bn).

• an = o(bn) or an≪bn, if an/bn → 0 as n → ∞.

• an = ω(bn) or an≫bn, if an/bn → ∞ as n → ∞.

• an = poly(n) if an = nO(1).

• an = polylog(n) if an = (log n)O(1).

Also, we say that a sequence of events En holds with high probability (whp), if
P {En} → 1 as n → ∞.

When an is not positive, O(·) and o(·) also make sense by applying to |an|.
We use subscript to indicate the dependency of proportionality constants on some other

quantity, for example an = Om(bn) or an≲mbn if an ≤ C(m)bn.

We use tilde to hide logarithmic factors, for example an = Õ(bn) if
an = O(bnpolylog(n)).

Asymptotic Notation (Big-Oh)

For two sequences of positive numbers an and bn,

• an = O(bn) or an≲bn, if there exist a constant C such that |an| ≤ Cbn for
all sufficiently large n.

• an = Ω(bn) or an≳bn, if bn = O(an)

• an = Θ(bn) or an≍bn, if an = O(bn) and an = Ω(bn).

• an = o(bn) or an≪bn, if an/bn → 0 as n → ∞.

• an = ω(bn) or an≫bn, if an/bn → ∞ as n → ∞.

• an = poly(n) if an = nO(1).

• an = polylog(n) if an = (log n)O(1).

Also, we say that a sequence of events En holds with high probability (whp), if
P {En} → 1 as n → ∞.

When an is not positive, O(·) and o(·) also make sense by applying to |an|.
We use subscript to indicate the dependency of proportionality constants on some other

quantity, for example an = Om(bn) or an≲mbn if an ≤ C(m)bn.

We use tilde to hide logarithmic factors, for example an = Õ(bn) if
an = O(bnpolylog(n)).

Asymptotic Notation (Big-Oh)

For two sequences of positive numbers an and bn,

• an = O(bn) or an≲bn, if there exist a constant C such that |an| ≤ Cbn for
all sufficiently large n.

• an = Ω(bn) or an≳bn, if bn = O(an)

• an = Θ(bn) or an≍bn, if an = O(bn) and an = Ω(bn).

• an = o(bn) or an≪bn, if an/bn → 0 as n → ∞.

• an = ω(bn) or an≫bn, if an/bn → ∞ as n → ∞.

• an = poly(n) if an = nO(1).

• an = polylog(n) if an = (log n)O(1).

Also, we say that a sequence of events En holds with high probability (whp), if
P {En} → 1 as n → ∞.

When an is not positive, O(·) and o(·) also make sense by applying to |an|.
We use subscript to indicate the dependency of proportionality constants on some other

quantity, for example an = Om(bn) or an≲mbn if an ≤ C(m)bn.

We use tilde to hide logarithmic factors, for example an = Õ(bn) if
an = O(bnpolylog(n)).

Asymptotic Notation (Big-Oh)

For two sequences of positive numbers an and bn,

• an = O(bn) or an≲bn, if there exist a constant C such that |an| ≤ Cbn for
all sufficiently large n.

• an = Ω(bn) or an≳bn, if bn = O(an)

• an = Θ(bn) or an≍bn, if an = O(bn) and an = Ω(bn).

• an = o(bn) or an≪bn, if an/bn → 0 as n → ∞.

• an = ω(bn) or an≫bn, if an/bn → ∞ as n → ∞.

• an = poly(n) if an = nO(1).

• an = polylog(n) if an = (log n)O(1).

Also, we say that a sequence of events En holds with high probability (whp), if
P {En} → 1 as n → ∞.

When an is not positive, O(·) and o(·) also make sense by applying to |an|.
We use subscript to indicate the dependency of proportionality constants on some other

quantity, for example an = Om(bn) or an≲mbn if an ≤ C(m)bn.

We use tilde to hide logarithmic factors, for example an = Õ(bn) if
an = O(bnpolylog(n)).

Asymptotic Notation (Big-Oh)

For two sequences of positive numbers an and bn,

• an = O(bn) or an≲bn, if there exist a constant C such that |an| ≤ Cbn for
all sufficiently large n.

• an = Ω(bn) or an≳bn, if bn = O(an)

• an = Θ(bn) or an≍bn, if an = O(bn) and an = Ω(bn).

• an = o(bn) or an≪bn, if an/bn → 0 as n → ∞.

• an = ω(bn) or an≫bn, if an/bn → ∞ as n → ∞.

• an = poly(n) if an = nO(1).

• an = polylog(n) if an = (log n)O(1).

Also, we say that a sequence of events En holds with high probability (whp), if
P {En} → 1 as n → ∞.

When an is not positive, O(·) and o(·) also make sense by applying to |an|.
We use subscript to indicate the dependency of proportionality constants on some other

quantity, for example an = Om(bn) or an≲mbn if an ≤ C(m)bn.

We use tilde to hide logarithmic factors, for example an = Õ(bn) if
an = O(bnpolylog(n)).

Asymptotic Notation (Big-Oh)

For two sequences of positive numbers an and bn,

• an = O(bn) or an≲bn, if there exist a constant C such that |an| ≤ Cbn for
all sufficiently large n.

• an = Ω(bn) or an≳bn, if bn = O(an)

• an = Θ(bn) or an≍bn, if an = O(bn) and an = Ω(bn).

• an = o(bn) or an≪bn, if an/bn → 0 as n → ∞.

• an = ω(bn) or an≫bn, if an/bn → ∞ as n → ∞.

• an = poly(n) if an = nO(1).

• an = polylog(n) if an = (log n)O(1).

Also, we say that a sequence of events En holds with high probability (whp), if
P {En} → 1 as n → ∞.

When an is not positive, O(·) and o(·) also make sense by applying to |an|.
We use subscript to indicate the dependency of proportionality constants on some other

quantity, for example an = Om(bn) or an≲mbn if an ≤ C(m)bn.

We use tilde to hide logarithmic factors, for example an = Õ(bn) if
an = O(bnpolylog(n)).

