
S&DS 684 Lecture 11: Hidden Hamiltonian cycle
problem and Linear Programming

Yihong Wu

Department of Statistics and Data Science
Yale University

Based on: Vivek Bagaria, Jian Ding, David Tse, Yihong Wu, and Jiaming Xu,
“Hidden Hamiltonian Cycle Recovery via Linear Programming”, Operations
Research, vol. 68, no. 1, 2020, https://arxiv.org/abs/1804.05436.

Apr 11, 2023

https://arxiv.org/abs/1804.05436

Some elements from graph theory

A Hamiltonian cycle is a cycle that visits each vertex exactly once.

1 2

3

4

5
6

7
8

9

10

1112

13
14

15

16

17

18

19

20

2/58

Some elements from graph theory

An Eulerian circuit (or walk, tour) is is a circuit that visits each edge
exactly once.

A

B

C

D

E

F

G
H

I

J

K

Euler (Seven bridges of Könisberg): Every connected graph with even
degrees has an Eulerian circuit.

Euler first pointed out that the choice of route inside each land mass is irrelevant. The only important
feature of a route is the sequence of bridges crossed. This allowed him to reformulate the problem in
abstract terms (laying the foundations of graph theory), eliminating all features except the list of land
masses and the bridges connecting them. In modern terms, one replaces each land mass with an
abstract "vertex" or node, and each bridge with an abstract connection, an "edge", which only serves
to record which pair of vertices (land masses) is connected by that bridge. The resulting mathematical
structure is a graph.

 → →

Since only the connection information is relevant, the shape of pictorial representations of a graph
may be distorted in any way, without changing the graph itself. Only the existence (or absence) of an
edge between each pair of nodes is significant. For example, it does not matter whether the edges
drawn are straight or curved, or whether one node is to the left or right of another.

Next, Euler observed that (except at the endpoints of the walk), whenever one enters a vertex by a
bridge, one leaves the vertex by a bridge. In other words, during any walk in the graph, the number of
times one enters a non-terminal vertex equals the number of times one leaves it. Now, if every bridge
has been traversed exactly once, it follows that, for each land mass (except for the ones chosen for the
start and finish), the number of bridges touching that land mass must be even (half of them, in the
particular traversal, will be traversed "toward" the landmass; the other half, "away" from it). However,
all four of the land masses in the original problem are touched by an odd number of bridges (one is
touched by 5 bridges, and each of the other three is touched by 3). Since, at most, two land masses can
serve as the endpoints of a walk, the proposition of a walk traversing each bridge once leads to a
contradiction.

In modern language, Euler shows that the possibility of a walk through a graph, traversing each edge
exactly once, depends on the degrees of the nodes. The degree of a node is the number of edges
touching it. Euler's argument shows that a necessary condition for the walk of the desired form is that
the graph be connected and have exactly zero or two nodes of odd degree. This condition turns out
also to be sufficient—a result stated by Euler and later proved by Carl Hierholzer. Such a walk is now
called an Eulerian path or Euler walk in his honor. Further, if there are nodes of odd degree, then any
Eulerian path will start at one of them and end at the other. Since the graph corresponding to
historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path.

An alternative form of the problem asks for a path that traverses all bridges and also has the same
starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit
exists if, and only if, the graph is connected and all nodes have even degree. All Eulerian circuits are
also Eulerian paths, but not all Eulerian paths are Eulerian circuits.

3/58

Some elements from graph theory

An Eulerian circuit (or walk, tour) is is a circuit that visits each edge
exactly once.

A

B

C

D

E

F

G
H

I

J

K

Euler (Seven bridges of Könisberg): Every connected graph with even
degrees has an Eulerian circuit.

Euler first pointed out that the choice of route inside each land mass is irrelevant. The only important
feature of a route is the sequence of bridges crossed. This allowed him to reformulate the problem in
abstract terms (laying the foundations of graph theory), eliminating all features except the list of land
masses and the bridges connecting them. In modern terms, one replaces each land mass with an
abstract "vertex" or node, and each bridge with an abstract connection, an "edge", which only serves
to record which pair of vertices (land masses) is connected by that bridge. The resulting mathematical
structure is a graph.

 → →

Since only the connection information is relevant, the shape of pictorial representations of a graph
may be distorted in any way, without changing the graph itself. Only the existence (or absence) of an
edge between each pair of nodes is significant. For example, it does not matter whether the edges
drawn are straight or curved, or whether one node is to the left or right of another.

Next, Euler observed that (except at the endpoints of the walk), whenever one enters a vertex by a
bridge, one leaves the vertex by a bridge. In other words, during any walk in the graph, the number of
times one enters a non-terminal vertex equals the number of times one leaves it. Now, if every bridge
has been traversed exactly once, it follows that, for each land mass (except for the ones chosen for the
start and finish), the number of bridges touching that land mass must be even (half of them, in the
particular traversal, will be traversed "toward" the landmass; the other half, "away" from it). However,
all four of the land masses in the original problem are touched by an odd number of bridges (one is
touched by 5 bridges, and each of the other three is touched by 3). Since, at most, two land masses can
serve as the endpoints of a walk, the proposition of a walk traversing each bridge once leads to a
contradiction.

In modern language, Euler shows that the possibility of a walk through a graph, traversing each edge
exactly once, depends on the degrees of the nodes. The degree of a node is the number of edges
touching it. Euler's argument shows that a necessary condition for the walk of the desired form is that
the graph be connected and have exactly zero or two nodes of odd degree. This condition turns out
also to be sufficient—a result stated by Euler and later proved by Carl Hierholzer. Such a walk is now
called an Eulerian path or Euler walk in his honor. Further, if there are nodes of odd degree, then any
Eulerian path will start at one of them and end at the other. Since the graph corresponding to
historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path.

An alternative form of the problem asks for a path that traverses all bridges and also has the same
starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit
exists if, and only if, the graph is connected and all nodes have even degree. All Eulerian circuits are
also Eulerian paths, but not all Eulerian paths are Eulerian circuits.

3/58

Hidden Hamiltonian cycle model

• Observation: a weighted undirected complete graph on n vertices
with weighted adjacency matrix W

• Latent: a Hamiltonian cycle

• Edge weight

We
ind.∼

{
P e ∈ C∗

Q e /∈ C∗

e.g. two Gaussians/Poissons with
different means

• Goal: observe W , recover C∗ with high probability

Remarks:

• P,Q depends on the graph size n

• Hidden Hamiltonian cycle planted in Erdös-Rényi graph
[Broder-Frieze-Shamir ’94]

4/58

Hidden Hamiltonian cycle model

• Observation: a weighted undirected complete graph on n vertices
with weighted adjacency matrix W

• Latent: a Hamiltonian cycle

• Edge weight

We
ind.∼

{
P e ∈ C∗

Q e /∈ C∗

e.g. two Gaussians/Poissons with
different means

• Goal: observe W , recover C∗ with high probability

Remarks:

• P,Q depends on the graph size n

• Hidden Hamiltonian cycle planted in Erdös-Rényi graph
[Broder-Frieze-Shamir ’94]

4/58

Hidden Hamiltonian cycle model

• Observation: a weighted undirected complete graph on n vertices
with weighted adjacency matrix W

• Latent: a Hamiltonian cycle

• Edge weight

We
ind.∼

{
P e ∈ C∗

Q e /∈ C∗

e.g. two Gaussians/Poissons with
different means

• Goal: observe W , recover C∗ with high probability

Remarks:

• P,Q depends on the graph size n

• Hidden Hamiltonian cycle planted in Erdös-Rényi graph
[Broder-Frieze-Shamir ’94]

4/58

Link information in Chicago datasets (Hi-C reads)

1 Reconstitute chromatin in vitro upon naked DNA

2 Produce cross-links by fixing chromatin with formaldehyde

Chicago datasets generate cross-links among contigs [Putnam et al. ’16]

On average more cross-links exist between adjacent contigs

5/58

Ordering DNA contigs with Chicago cross-links

DNA	Scaffolding

Reduces to traveling salesman problem (TSP)

Find a path (tour) that visits every contig exactly once with the
maximum number of cross-links

6/58

Traveling salesman problem
Given a weighted graph, find the Hamiltonian cycle (path) with
maximum or minimum total weight

Mathematically,

max
π∈Sn

n∑
i=1

Wπ(i)π(i+1)

where each Hamiltonian cycle is represented as π(1), π(2), . . . , π(n)

7/58

Key challenges

• Computational: TSP is NP-hard in the worst-case

• Statistical: spurious cross-links between contigs that are far apart

Key questions:

• How to efficiently order hundreds of thousands of contigs?

• How much noise can be tolerated for accurate DNA scaffolding?

8/58

Key challenges

• Computational: TSP is NP-hard in the worst-case

• Statistical: spurious cross-links between contigs that are far apart

Key questions:

• How to efficiently order hundreds of thousands of contigs?

• How much noise can be tolerated for accurate DNA scaffolding?

8/58

Mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Chicago dataset [Putnam et al. ’16]

Simulated Poisson data

9/58

Mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Chicago dataset [Putnam et al. ’16]

Simulated Poisson data

9/58

Mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Chicago dataset [Putnam et al. ’16]

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

5

10

15

20

25

30

35

40

Simulated Poisson data

9/58

Mathematical model for DNA scaffolding

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

10

20

30

40

50

60

Chicago dataset [Putnam et al. ’16]

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

5

10

15

20

25

30

35

40

Simulated Poisson data

9/58

What is known information-theoretically
Maximum likelihood estimator reduces to solving TSP

X̂TSP = argmax
X

⟨L,X⟩

s.t. X is the adjacency matrix of some Hamiltonian cycle

where L is the log likelihood ratio matrix Lij = log dP
dQ(Wij).

• For Gaussian or Poisson (with bigger mean under P), can take
L = W .

• For simplicity, consider the Gaussian model throughout the lecture:

P = N(µ, 1), Q = N(0, 1).

Theorem (Sharp threshold)

If µ2 < 4 log n, exact recovery is information-theoretically impossible;
If µ2 > 4 log n, MLE succeeds in exact recovery.

10/58

What is known information-theoretically
Maximum likelihood estimator reduces to solving TSP

X̂TSP = argmax
X

⟨L,X⟩

s.t. X is the adjacency matrix of some Hamiltonian cycle

where L is the log likelihood ratio matrix Lij = log dP
dQ(Wij).

• For Gaussian or Poisson (with bigger mean under P), can take
L = W .

• For simplicity, consider the Gaussian model throughout the lecture:

P = N(µ, 1), Q = N(0, 1).

Theorem (Sharp threshold)

If µ2 < 4 log n, exact recovery is information-theoretically impossible;
If µ2 > 4 log n, MLE succeeds in exact recovery.

10/58

What is known algorithmically

Spectral method fails (1)

W = µ · X∗︸︷︷︸
“signal”

+ Z︸︷︷︸
noise (GOE)

where X∗ is adj matrix of C∗ and can be written as X∗ = Π∗X
†Π⊤

∗ ,
• Π∗: permutation matrix corresponding to C∗

• X† is a circulant matrix: X†
ij = 1{i−j=±1 mod n}

▶ eigenvalues λk = 2 cos 2kπ
n , k = 0, . . . , n− 1

▶ eigenvectors vk = (1, ei
2kπ
n , ei

4kπ
n , . . . , ei

2(n−1)kπ
n) (Fourier basis)

In the noiseless case, second eigenvector recovers the Hamiltonian cycle
perfectly:

Re

Im

12/58

Spectral method fails (1)

W = µ · X∗︸︷︷︸
“signal”

+ Z︸︷︷︸
noise (GOE)

where X∗ is adj matrix of C∗ and can be written as X∗ = Π∗X
†Π⊤

∗ ,
• Π∗: permutation matrix corresponding to C∗

• X† is a circulant matrix: X†
ij = 1{i−j=±1 mod n}

▶ eigenvalues λk = 2 cos 2kπ
n , k = 0, . . . , n− 1

▶ eigenvectors vk = (1, ei
2kπ
n , ei

4kπ
n , . . . , ei

2(n−1)kπ
n) (Fourier basis)

In the noiseless case, second eigenvector recovers the Hamiltonian cycle
perfectly:

Re

Im

12/58

Spectral method fails (2)

W = µ ·X∗ + Z : full-rank signal + noise

In the noisy case:

• Spectral gap of cycle: 2− 2 cos 2π
n ≍ 1

n2 vs noise spectrum:
√
n

• So we need µ ≫ n2.5 (we will see that simple thresholding requires
only µ ≍

√
log n)

Lesson

Without “low-rank signal + noise”, one needs to be careful with spectral
method (will revisit this point for the graph matching problem in Lec 14).

13/58

Spectral method fails (2)

W = µ ·X∗ + Z : full-rank signal + noise

In the noisy case:

• Spectral gap of cycle: 2− 2 cos 2π
n ≍ 1

n2 vs noise spectrum:
√
n

• So we need µ ≫ n2.5 (we will see that simple thresholding requires
only µ ≍

√
log n)

Lesson

Without “low-rank signal + noise”, one needs to be careful with spectral
method (will revisit this point for the graph matching problem in Lec 14).

13/58

Thresholding

• Simple thresholding (“nearest neighbor”): for each vertex, keep the
two edges with the largest weights
▶ µ >

√
8 log n

▶ Why:
• For each vertex, two planted edges N(µ, 1) and n− 2 null edges

N(0, 1) (maximum fluctuation of the latter ≈
√
2 logn)

• There are n vertices in total.
• So we need P

{
N(µ, 1) <

√
2 logn

}
= o(1/n)

• Greedy merging [Motahari-Bresler-Tse ’13]:
▶ µ >

√
6 log n

14/58

Thresholding

• Simple thresholding (“nearest neighbor”): for each vertex, keep the
two edges with the largest weights
▶ µ >

√
8 log n

▶ Why:
• For each vertex, two planted edges N(µ, 1) and n− 2 null edges

N(0, 1) (maximum fluctuation of the latter ≈
√
2 logn)

• There are n vertices in total.
• So we need P

{
N(µ, 1) <

√
2 logn

}
= o(1/n)

• Greedy merging [Motahari-Bresler-Tse ’13]:
▶ µ >

√
6 log n

14/58

Thresholding

• Simple thresholding (“nearest neighbor”): for each vertex, keep the
two edges with the largest weights
▶ µ >

√
8 log n

▶ Why:
• For each vertex, two planted edges N(µ, 1) and n− 2 null edges

N(0, 1) (maximum fluctuation of the latter ≈
√
2 logn)

• There are n vertices in total.
• So we need P

{
N(µ, 1) <

√
2 logn

}
= o(1/n)

• Greedy merging [Motahari-Bresler-Tse ’13]:
▶ µ >

√
6 log n

14/58

Main result

Theorem

Linear programming (LP) relaxation achieves sharp threshold

µ2

log n
> 4 : LP succeeds

µ2

log n
< 4 : Everything fails

15/58

In general

Threshold are determined by Rényi divergence of order ρ > 0 from P to
Q:

Dρ(P∥Q) ≜
1

ρ− 1
log

∫
(dP)ρ(dQ)1−ρ.

• LP works when
D1/2(P∥Q)− log n → ∞

optimal under mild assumptions

• Thresholding works when

D1/2(P∥Q)− 2 log n → ∞

• Greedy works when

D1/3(Q∥P)− log n → ∞

16/58

Experiments

Synthetic data experiment

18/58

Real-data experiment

• 1000 DNA contigs of size 100 kbps

• 0.45 million Chicago cross-links

• Edge weights = raw number of HiC reads between each pair of
contigs

• Ground truth obtained by other (expensive) sequencing technologies

19/58

Homosapiens [Putnam et al 16, Genome Research]

20/58

Aedes Aegypti (zika mosquito) [Dudchenko et al ’16, Science]

21/58

Convex relaxations of TSP

Integer Linear Programming reformulation of TSP

X̂TSP = argmax
X

⟨W,X⟩

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ {0, 1}∑
i∈I,j /∈I

Xij ≥ 2, ∀∅ ≠ I ⊂ [n]

• The last constraint: subtour elimination

23/58

Integer Linear Programming reformulation of TSP

X̂TSP = argmax
X

⟨W,X⟩

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ {0, 1}∑
i∈I,j /∈I

Xij ≥ 2, ∀∅ ≠ I ⊂ [n]

• The last constraint: subtour elimination

23/58

Subtour LP

X̂SUB = argmax
X

⟨W,X⟩

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ [0, 1]∑
i∈I,j /∈I

Xij ≥ 2, ∀∅ ≠ I ⊂ [n]

• Replacing the integrality constraint with box constraint: SUBTOUR
LP relaxation [Dantzig-Fulkerson-Johnson ’54, Held-Karp ’70]

• Exponentially many linear constraints, nevertheless solvable using
interior point method

24/58

Subtour LP

X̂SUB = argmax
X

⟨W,X⟩

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ [0, 1]∑
i∈I,j /∈I

Xij ≥ 2, ∀∅ ≠ I ⊂ [n]

• Replacing the integrality constraint with box constraint: SUBTOUR
LP relaxation [Dantzig-Fulkerson-Johnson ’54, Held-Karp ’70]

• Exponentially many linear constraints, nevertheless solvable using
interior point method

24/58

F2F LP

X̂F2F = argmax
X

⟨W,X⟩

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ [0, 1]

• Further dropping subtour elimination constraints =⇒ Fractional
2-factor (F2F) LP

• Extensively studied in worst case [Boyd-Carr ’99,Schalekamp-Williamson-van

Zuylen ’14]

▶ The integrality gap 2F
F2F ≤ 4

3 for metric TSP (min formulation)

• What is the integrality gap whp in our random instance?

25/58

F2F LP

X̂F2F = argmax
X

⟨W,X⟩

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ [0, 1]

• Further dropping subtour elimination constraints =⇒ Fractional
2-factor (F2F) LP

• Extensively studied in worst case [Boyd-Carr ’99,Schalekamp-Williamson-van

Zuylen ’14]

▶ The integrality gap 2F
F2F ≤ 4

3 for metric TSP (min formulation)

• What is the integrality gap whp in our random instance?

25/58

F2F LP

X̂F2F = argmax
X

⟨W,X⟩

s.t.
∑
j

Xij = 2, ∀i

Xij ∈ [0, 1]

• Further dropping subtour elimination constraints =⇒ Fractional
2-factor (F2F) LP

• Extensively studied in worst case [Boyd-Carr ’99,Schalekamp-Williamson-van

Zuylen ’14]

▶ The integrality gap 2F
F2F ≤ 4

3 for metric TSP (min formulation)

• What is the integrality gap whp in our random instance?

25/58

Optimality of Fractional 2-Factor LP

Theorem

If µ2 − 4 log n → ∞, then X̂F2F = X∗ with high probability.

Remarks

• The solution is integral whp.

• This achieves the optimal threshold µ2 = 4 log n.

26/58

Optimality of Fractional 2-Factor LP

Theorem

If µ2 − 4 log n → ∞, then X̂F2F = X∗ with high probability.

Remarks

• The solution is integral whp.

• This achieves the optimal threshold µ2 = 4 log n.

26/58

Belief propagation

Max-Product Belief Propagation

mi→j(t) = wij − 2ndmax
ℓ̸=j

{mℓ→i(t− 1)}

mi→j(0) = wij

After T iterations, for each vertex i, keep the two largest incoming
messages mℓ→i(T) and delete the rest.

• BP is exact provided the solution is integral [Bayati-Borgs-Chayes-Zecchina
’11]

• It can be shown that T = O(n2 log n) whp

27/58

SDP relaxations for TSP

Add more constraints to F2F LP

• SDP1 [Cvetković et al ’99]: PSD constraint based on second largest
eigenvalue of cycle (cf. slide 12)

X ⪯ 2

n
J+ 2 cos

2π

n

(
I − 1

n
J

)

▶ provably weaker than Subtour LP [Goemans-Rendl ’00]

• SDP2 [Zhao et al ’98]: Quadratic Assignment Problem

⟨W,X⟩ = ⟨W,Π X0︸︷︷︸
fixed
cycle

Π⊤⟩ =

〈
W ⊗X0, vec(Π)vec(Π)⊤︸ ︷︷ ︸

relax..

〉

▶ decision variable: n2 × n2 matrix
▶ provably stronger than SDP1 [de Klerk et al ’08]

28/58

SDP relaxations for TSP

Add more constraints to F2F LP

• SDP1 [Cvetković et al ’99]: PSD constraint based on second largest
eigenvalue of cycle (cf. slide 12)

X ⪯ 2

n
J+ 2 cos

2π

n

(
I − 1

n
J

)
▶ provably weaker than Subtour LP [Goemans-Rendl ’00]

• SDP2 [Zhao et al ’98]: Quadratic Assignment Problem

⟨W,X⟩ = ⟨W,Π X0︸︷︷︸
fixed
cycle

Π⊤⟩ =

〈
W ⊗X0, vec(Π)vec(Π)⊤︸ ︷︷ ︸

relax..

〉

▶ decision variable: n2 × n2 matrix
▶ provably stronger than SDP1 [de Klerk et al ’08]

28/58

SDP relaxations for TSP

Add more constraints to F2F LP

• SDP1 [Cvetković et al ’99]: PSD constraint based on second largest
eigenvalue of cycle (cf. slide 12)

X ⪯ 2

n
J+ 2 cos

2π

n

(
I − 1

n
J

)
▶ provably weaker than Subtour LP [Goemans-Rendl ’00]

• SDP2 [Zhao et al ’98]: Quadratic Assignment Problem

⟨W,X⟩ = ⟨W,Π X0︸︷︷︸
fixed
cycle

Π⊤⟩ =

〈
W ⊗X0, vec(Π)vec(Π)

⊤︸ ︷︷ ︸
relax..

〉

▶ decision variable: n2 × n2 matrix
▶ provably stronger than SDP1 [de Klerk et al ’08]

28/58

SDP relaxations for TSP

Add more constraints to F2F LP

• SDP1 [Cvetković et al ’99]: PSD constraint based on second largest
eigenvalue of cycle (cf. slide 12)

X ⪯ 2

n
J+ 2 cos

2π

n

(
I − 1

n
J

)
▶ provably weaker than Subtour LP [Goemans-Rendl ’00]

• SDP2 [Zhao et al ’98]: Quadratic Assignment Problem

⟨W,X⟩ = ⟨W,Π X0︸︷︷︸
fixed
cycle

Π⊤⟩ =

〈
W ⊗X0, vec(Π)vec(Π)

⊤︸ ︷︷ ︸
relax..

〉

▶ decision variable: n2 × n2 matrix
▶ provably stronger than SDP1 [de Klerk et al ’08]

28/58

Different relaxations

TSPSubtour LP

SDP 2

SDP 1

F2F LP

F2F LP succeeds =⇒ all other relaxations succeeed.

29/58

Theoretical analysis of convex relaxation

Primal approach vs Dual approach: high level

• Dual argument:
▶ Construct dual witness that certifies the ground truth whp (KKT

conditions)
▶ Successful in proving SDP relaxation attaining sharp threshold for

graph partitions: planted clique (Chap. 6), community detection
(Chap. 10), etc

▶ Limitations: construction is ad hoc

• Primal argument:
▶ No feasible solution other than the ground truth has a better

objective value whp
▶ Key: for LP, can restrict to extremal points (vertices of the feasible

polytope)

31/58

Primal approach vs Dual approach: high level

• Dual argument:
▶ Construct dual witness that certifies the ground truth whp (KKT

conditions)
▶ Successful in proving SDP relaxation attaining sharp threshold for

graph partitions: planted clique (Chap. 6), community detection
(Chap. 10), etc

▶ Limitations: construction is ad hoc

• Primal argument:
▶ No feasible solution other than the ground truth has a better

objective value whp
▶ Key: for LP, can restrict to extremal points (vertices of the feasible

polytope)

31/58

Primal approach vs Dual approach: high level

• Dual argument:
▶ Construct dual witness that certifies the ground truth whp (KKT

conditions)
▶ Successful in proving SDP relaxation attaining sharp threshold for

graph partitions: planted clique (Chap. 6), community detection
(Chap. 10), etc

▶ Limitations: construction is ad hoc

• Primal argument:
▶ No feasible solution other than the ground truth has a better

objective value whp

▶ Key: for LP, can restrict to extremal points (vertices of the feasible
polytope)

31/58

Primal approach vs Dual approach: high level

• Dual argument:
▶ Construct dual witness that certifies the ground truth whp (KKT

conditions)
▶ Successful in proving SDP relaxation attaining sharp threshold for

graph partitions: planted clique (Chap. 6), community detection
(Chap. 10), etc

▶ Limitations: construction is ad hoc

• Primal argument:
▶ No feasible solution other than the ground truth has a better

objective value whp
▶ Key: for LP, can restrict to extremal points (vertices of the feasible

polytope)

31/58

Dual approach

• KKT conditions (Farkas’ lemma): X̂F2F = X∗ ⇐⇒ ∃u ∈ Rn (dual
certificate):

ui + uj ≤ Wij , for i ∼ j in C∗

ui + uj ≥ Wij , for i ̸∼ j in C∗

• One feasible choice of dual:

ui =
1

2
min{Wij : j ∼ i}

• This certificate shows correctness if µ2 > 6 log n (same as greedy
merging)

32/58

Dual approach

• KKT conditions (Farkas’ lemma): X̂F2F = X∗ ⇐⇒ ∃u ∈ Rn (dual
certificate):

ui + uj ≤ Wij , for i ∼ j in C∗

ui + uj ≥ Wij , for i ̸∼ j in C∗

• One feasible choice of dual:

ui =
1

2
min{Wij : j ∼ i}

• This certificate shows correctness if µ2 > 6 log n (same as greedy
merging)

32/58

Dual approach

• KKT conditions (Farkas’ lemma): X̂F2F = X∗ ⇐⇒ ∃u ∈ Rn (dual
certificate):

ui + uj ≤ Wij , for i ∼ j in C∗

ui + uj ≥ Wij , for i ̸∼ j in C∗

• One feasible choice of dual:

ui =
1

2
min{Wij : j ∼ i}

• This certificate shows correctness if µ2 > 6 log n (same as greedy
merging)

32/58

Primal approach

• Show whp for all extremal points X ̸= X∗:

⟨W,X⟩ < ⟨W,X∗⟩

• F2F polytope: X ∈ [0, 1]n×n :

n∑
j=1

Xij = 2


• The proof heavily exploits the characterization of extremal points

▶ F2F polytope is not integral: fractional vertices exist

▶ Characterization [Balinski ’65]: for any vertex X of F2F polytope

• Half integrality
Xij ∈ {0, 1/2, 1}

• 1/2’s form disjoint odd cycle connected by path of 1’s.

33/58

Primal approach

• Show whp for all extremal points X ̸= X∗:

⟨W,X⟩ < ⟨W,X∗⟩

• F2F polytope: X ∈ [0, 1]n×n :

n∑
j=1

Xij = 2


• The proof heavily exploits the characterization of extremal points

▶ F2F polytope is not integral: fractional vertices exist

▶ Characterization [Balinski ’65]: for any vertex X of F2F polytope

• Half integrality
Xij ∈ {0, 1/2, 1}

• 1/2’s form disjoint odd cycle connected by path of 1’s.

33/58

Primal approach

• Show whp for all extremal points X ̸= X∗:

⟨W,X⟩ < ⟨W,X∗⟩

• F2F polytope: X ∈ [0, 1]n×n :

n∑
j=1

Xij = 2


• The proof heavily exploits the characterization of extremal points

▶ F2F polytope is not integral: fractional vertices exist
▶ Characterization [Balinski ’65]: for any vertex X of F2F polytope

• Half integrality
Xij ∈ {0, 1/2, 1}

• 1/2’s form disjoint odd cycle connected by path of 1’s.

33/58

Primal approach

• Show whp for all extremal points X ̸= X∗:

⟨W,X⟩ < ⟨W,X∗⟩

• F2F polytope: X ∈ [0, 1]n×n :

n∑
j=1

Xij = 2


• The proof heavily exploits the characterization of extremal points

▶ F2F polytope is not integral: fractional vertices exist
▶ Characterization [Balinski ’65]: for any vertex X of F2F polytope

• Half integrality
Xij ∈ {0, 1/2, 1}

• 1/2’s form disjoint odd cycle connected by path of 1’s.

33/58

Primal approach

• Show whp for all extremal points X ̸= X∗:

⟨W,X⟩ < ⟨W,X∗⟩

• F2F polytope: X ∈ [0, 1]n×n :

n∑
j=1

Xij = 2


• The proof heavily exploits the characterization of extremal points

▶ F2F polytope is not integral: fractional vertices exist
▶ Characterization [Balinski ’65]: for any vertex X of F2F polytope

• Half integrality
Xij ∈ {0, 1/2, 1}

• 1/2’s form disjoint odd cycle connected by path of 1’s.

33/58

Why half integral?

Usual proofs:

• combinatorial proof [Lovasz-Plummer ’86, Schrijver ’04]

• linear-algebraic proof
▶ F2F polytope (in adjacency vector):

{x ∈ R(
n
[2]) : Ax = 21}

▶ A is n×
(
n
2

)
zero-one matrix: Aie = 1{i∈e}

▶ Each column of A has exactly two 1’s

34/58

Why half integral?

Extremal point (basic feasible solution) x is of the following form

x = (xS︸︷︷︸
fractional

, xSc︸︷︷︸
integral

)

for some S ⊂
(
n
[2]

)
of size n, where

• xS is the solution to the following linear system:

ASxS = b′

• Cramer’s rule:

(xS)i =
det(A

(i)
S)

det(AS)

▶ A
(i)
S is obtained by substituting the ith column by b′, hence

det(A
(i)
S) ∈ Z.

▶ Each column of AS has two 1’s =⇒ det(AS) ∈ {0,±1,±2} [Balinski

’65]

35/58

Why half integral?

Extremal point (basic feasible solution) x is of the following form

x = (xS︸︷︷︸
fractional

, xSc︸︷︷︸
integral

)

for some S ⊂
(
n
[2]

)
of size n, where

• xS is the solution to the following linear system:

ASxS = b′

• Cramer’s rule:

(xS)i =
det(A

(i)
S)

det(AS)

▶ A
(i)
S is obtained by substituting the ith column by b′, hence

det(A
(i)
S) ∈ Z.

▶ Each column of AS has two 1’s =⇒ det(AS) ∈ {0,±1,±2} [Balinski

’65]

35/58

Balinski’s theorem

Any square irreducible zero-one matrix with at most two 1’s in each
column has determinant in {0,±1,±2}.

Proof (induction on the matrix size n).

Base case n = 2: Direct verification.

Induction from n− 1 to n: Fix such
an A ∈ {0, 1}n×n.

• Suppose some row (or column) contains zero or one 1’s. Then the
theorem follows from the induction hypothesis for n− 1.

• Suppose every row and every column contains exactly two 1’s. Then
A is the adjacency matrix of a 2-regular bipartite graph G. We
apply two facts:
▶ Every 2-regular graph is a disjoint union of even cycles.
▶ G is connected by assumption of irreducibility of A.

So A is the adjacency matrix of a 2n-cycle. We can compute such a
det(A) easily:

36/58

Balinski’s theorem

Any square irreducible zero-one matrix with at most two 1’s in each
column has determinant in {0,±1,±2}.

Proof (induction on the matrix size n).

Base case n = 2: Direct verification. Induction from n− 1 to n: Fix such
an A ∈ {0, 1}n×n.

• Suppose some row (or column) contains zero or one 1’s. Then the
theorem follows from the induction hypothesis for n− 1.

• Suppose every row and every column contains exactly two 1’s. Then
A is the adjacency matrix of a 2-regular bipartite graph G. We
apply two facts:
▶ Every 2-regular graph is a disjoint union of even cycles.
▶ G is connected by assumption of irreducibility of A.

So A is the adjacency matrix of a 2n-cycle. We can compute such a
det(A) easily:

36/58

Balinski’s theorem

Any square irreducible zero-one matrix with at most two 1’s in each
column has determinant in {0,±1,±2}.

Proof (induction on the matrix size n).

Base case n = 2: Direct verification. Induction from n− 1 to n: Fix such
an A ∈ {0, 1}n×n.

• Suppose some row (or column) contains zero or one 1’s. Then the
theorem follows from the induction hypothesis for n− 1.

• Suppose every row and every column contains exactly two 1’s. Then
A is the adjacency matrix of a 2-regular bipartite graph G. We
apply two facts:
▶ Every 2-regular graph is a disjoint union of even cycles.
▶ G is connected by assumption of irreducibility of A.

So A is the adjacency matrix of a 2n-cycle. We can compute such a
det(A) easily:

36/58

Balinski’s theorem

(Proof continued).

That is, A = ΠA0Π
′, where Π,Π′ are permutation matrices and

A0 =


1 1 0 . . . 0
0 1 1 . . . 0
...

...
...

1 0 0 . . . 1


Direct calculation gives

det(A0) =

{
0 n even

2 n odd

So det(A) = 0 or ±2.

37/58

Warmup: proof of correctness for 2F ILP

2F Integer LP (ILP)

X̂2F = argmax
X

⟨W,X⟩

s.t.
∑
j

Xij = 2

Xij ∈ {0, 1}

• Solvable using blossom algorithm O(n4) time [Letchford-Reinelt-Theis ’08]

but in practice challenging to implement

• Any feasible solution corresponds to a 2-factor (disjoint union of
cycles)

• Goal: true Hamiltonian cycle has maximal weight w.h.p.

⟨W,X⟩ < ⟨W,X∗⟩ , ∀ 2-factor X ̸= X∗

39/58

Encode the solution with difference graph

G and H: simple graphs on the same vertex set with adjacency matrix A
and B

• difference graph G−H: a bicolored graph with signed adjacency
matrix A−B, with red edge for − and blue edge for +
▶ Red edge in G−H ⇐⇒ edge in H but not in G – “Type-II error”
▶ Blue edge in G−H ⇐⇒ edge in G but not in H – “Type-I error”

• Fact: difference graph of two k-regular graphs is balanced (for each
vertex, red degree = blue degree).

40/58

Encode the solution with difference graph

G and H: simple graphs on the same vertex set with adjacency matrix A
and B

• difference graph G−H: a bicolored graph with signed adjacency
matrix A−B, with red edge for − and blue edge for +
▶ Red edge in G−H ⇐⇒ edge in H but not in G – “Type-II error”
▶ Blue edge in G−H ⇐⇒ edge in G but not in H – “Type-I error”

• Fact: difference graph of two k-regular graphs is balanced (for each
vertex, red degree = blue degree).

40/58

Encode the solution with difference graph

• X∗: the true Hamiltonian cycle; X an arbitrary 2-factor.

• The difference graph GX is a balanced bicolored simple graph
encoding X −X∗ .
Example:

5

61

2

3 4
X∗

5

6

4

1

2

3
X

61

43
GX

41/58

Encode the solution with difference graph

5

61

2

3 4
x∗

5

6

4

1

2

3
x

61

43
Gy

• Weight of a bicolored graph:

w(B) ≜
∑

blue e ∈ E(B)

we −
∑

red e ∈ E(B)

we .

Then w(GX) = ⟨W,X −X∗⟩.
• Decomposition into connected components:

w(GX) =
∑

w(Bi)

where each component Bi is a connected balanced bicolored graph.
42/58

Union bound

Let B be a connected balanced graph with ℓ edges

• ℓ/2 red and ℓ/2 blue.

• w(B) ∼ N(−µℓ/2, ℓ)

• P {w(B) ≥ 0} ≤ exp(−µ2ℓ/8)

• The number of distinct B with ℓ edges ≤ (2n)ℓ/2, so that∑
ℓ≥2

(2n)ℓ/2e−µ2ℓ/8 =
∑
ℓ≥2

(2ne−µ2/4)ℓ/2
µ2=(4+ϵ) logn−−−−−−−−−→ 0

▶ [Euler (Seven bridges of Könisberg)]: Every connected graph
with even degrees has an Eulerian circuit.

▶ [Kotzig ’68]: Every connected balanced bicolored multigraph
has an alternating Eulerian circuit.

▶ # of B’s ≤ # of alternating Eulerian circuits

2

2n

2 n

43/58

Union bound

Let B be a connected balanced graph with ℓ edges

• ℓ/2 red and ℓ/2 blue.

• w(B) ∼ N(−µℓ/2, ℓ)

• P {w(B) ≥ 0} ≤ exp(−µ2ℓ/8)

• The number of distinct B with ℓ edges ≤ (2n)ℓ/2, so that∑
ℓ≥2

(2n)ℓ/2e−µ2ℓ/8 =
∑
ℓ≥2

(2ne−µ2/4)ℓ/2
µ2=(4+ϵ) logn−−−−−−−−−→ 0

▶ [Euler (Seven bridges of Könisberg)]: Every connected graph
with even degrees has an Eulerian circuit.

▶ [Kotzig ’68]: Every connected balanced bicolored multigraph
has an alternating Eulerian circuit.

▶ # of B’s ≤ # of alternating Eulerian circuits

2

2n

2 n

43/58

Union bound

Let B be a connected balanced graph with ℓ edges

• ℓ/2 red and ℓ/2 blue.

• w(B) ∼ N(−µℓ/2, ℓ)

• P {w(B) ≥ 0} ≤ exp(−µ2ℓ/8)

• The number of distinct B with ℓ edges ≤ (2n)ℓ/2, so that∑
ℓ≥2

(2n)ℓ/2e−µ2ℓ/8 =
∑
ℓ≥2

(2ne−µ2/4)ℓ/2
µ2=(4+ϵ) logn−−−−−−−−−→ 0

▶ [Euler (Seven bridges of Könisberg)]: Every connected graph
with even degrees has an Eulerian circuit.

▶ [Kotzig ’68]: Every connected balanced bicolored multigraph
has an alternating Eulerian circuit.

▶ # of B’s ≤ # of alternating Eulerian circuits

2

2n

2 n

43/58

Union bound

Let B be a connected balanced graph with ℓ edges

• ℓ/2 red and ℓ/2 blue.

• w(B) ∼ N(−µℓ/2, ℓ)

• P {w(B) ≥ 0} ≤ exp(−µ2ℓ/8)

• The number of distinct B with ℓ edges ≤ (2n)ℓ/2, so that∑
ℓ≥2

(2n)ℓ/2e−µ2ℓ/8 =
∑
ℓ≥2

(2ne−µ2/4)ℓ/2
µ2=(4+ϵ) logn−−−−−−−−−→ 0

▶ [Euler (Seven bridges of Könisberg)]: Every connected graph
with even degrees has an Eulerian circuit.

▶ [Kotzig ’68]: Every connected balanced bicolored multigraph
has an alternating Eulerian circuit.

▶ # of B’s ≤ # of alternating Eulerian circuits

2

2n

2 n

43/58

Union bound

Let B be a connected balanced graph with ℓ edges

• ℓ/2 red and ℓ/2 blue.

• w(B) ∼ N(−µℓ/2, ℓ)

• P {w(B) ≥ 0} ≤ exp(−µ2ℓ/8)

• The number of distinct B with ℓ edges ≤ (2n)ℓ/2, so that∑
ℓ≥2

(2n)ℓ/2e−µ2ℓ/8 =
∑
ℓ≥2

(2ne−µ2/4)ℓ/2
µ2=(4+ϵ) logn−−−−−−−−−→ 0

▶ [Euler (Seven bridges of Könisberg)]: Every connected graph
with even degrees has an Eulerian circuit.

▶ [Kotzig ’68]: Every connected balanced bicolored multigraph
has an alternating Eulerian circuit.

▶ # of B’s ≤ # of alternating Eulerian circuits

2

2n

2 n

43/58

Aside: information-theoretic optimality
Let’s show µ ≥ 2

√
log n is necessary. Consider the following cycles:

i i+ 1

j + 1 j

i i+ 1

j j + 1

The difference graph B between the true cycle (1, 2, . . . , n) and the cycle
(1, 2, . . . , i, j, j − 1, . . . , i+ 1, j + 1, j + 2, . . . , n) is a four-cycle.

• w(B) ∼ N(−2µ, 4).

• Number of such cycles ∼ n2.

• Need: −2µ+
√
2 · 4 log(n2) < 0; otherwise, MLE fails (this

heuristic can be justified)

44/58

Aside: information-theoretic optimality
Let’s show µ ≥ 2

√
log n is necessary. Consider the following cycles:

i i+ 1

j + 1 j

i i+ 1

j j + 1

The difference graph B between the true cycle (1, 2, . . . , n) and the cycle
(1, 2, . . . , i, j, j − 1, . . . , i+ 1, j + 1, j + 2, . . . , n) is a four-cycle.

• w(B) ∼ N(−2µ, 4).

• Number of such cycles ∼ n2.

• Need: −2µ+
√

2 · 4 log(n2) < 0; otherwise, MLE fails (this
heuristic can be justified)

44/58

Reflection

What we have learned from the previous proof:

• Encode the solution by the difference graph

• Decomposition

• Counting: conditioned on one end of a red edge, the other end has
at most 2 choices

Next, for F2F LP

• X −X∗ ∈ {0,±1,±1
2}

45/58

Reflection

What we have learned from the previous proof:

• Encode the solution by the difference graph

• Decomposition

• Counting: conditioned on one end of a red edge, the other end has
at most 2 choices

Next, for F2F LP

• X −X∗ ∈ {0,±1,±1
2}

45/58

Proof of correctness for F2F LP

Proof Outline

1 Encode the solution: for any extremal point X, represent
2(X −X∗) as a bicolored multigraph GX

w(GX) = ⟨W, 2(X −X∗)⟩

2 Divide and conquer: decompose GX as edge-disjoint union of
graphs in certain family F

w(GX) =
∑
i

w(Fi), Fi ∈ F

3 Counting: Show that whp w(F) < 0 for all F ∈ F

47/58

Proof Outline

1 Encode the solution: for any extremal point X, represent
2(X −X∗) as a bicolored multigraph GX

w(GX) = ⟨W, 2(X −X∗)⟩

2 Divide and conquer: decompose GX as edge-disjoint union of
graphs in certain family F

w(GX) =
∑
i

w(Fi), Fi ∈ F

3 Counting: Show that whp w(F) < 0 for all F ∈ F

47/58

Proof Outline

1 Encode the solution: for any extremal point X, represent
2(X −X∗) as a bicolored multigraph GX

w(GX) = ⟨W, 2(X −X∗)⟩

2 Divide and conquer: decompose GX as edge-disjoint union of
graphs in certain family F

w(GX) =
∑
i

w(Fi), Fi ∈ F

3 Counting: Show that whp w(F) < 0 for all F ∈ F

47/58

Step 1: Bicolored multigraph representation
Example 1

1

1 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX encodes 2(X −X∗)

Key observation

GX is always balanced: red degree = blue degree

48/58

Step 1: Bicolored multigraph representation
Example 1

11 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX encodes 2(X −X∗)

Key observation

GX is always balanced: red degree = blue degree

48/58

Step 1: Bicolored multigraph representation
Example 1

11 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX encodes 2(X −X∗)

Key observation

GX is always balanced: red degree = blue degree

48/58

Step 1: Bicolored multigraph representation
Example 1

11 1

1
2

1
2

1 1

1 1

X∗: true cycle

1
2

1
2

1
2

1
2

X: extremal solution

=⇒

GX encodes 2(X −X∗)

Key observation

GX is always balanced: red degree = blue degree

48/58

Example 2

1
2

1
2

1
1
2

1
2

1
2

1
2

11
21

2

1

1
2

1
2

1

1

⇓

49/58

Step 2: Edge decomposition

Theorem (Kotzig ’68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.

Remarks

• An Eulerian circuit traverses a double edge twice

Recall: Example 1

“Dumbbell” structure

50/58

Step 2: Edge decomposition

Theorem (Kotzig ’68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.

Remarks

• An Eulerian circuit traverses a double edge twice

Recall: Example 1

“Dumbbell” structure

50/58

Example 2

1
2

1
2

1
1
2

1
2

1
2

1
2

11
21

2

1

1
2

1
2

1

1

⇓

Decompose as C4 + C4 + C8.

51/58

Example: even cycles

Consider an ℓ-cycle

• ℓ/2 red and ℓ/2 blue.

• w(B) ∼ N(−µℓ/2, ℓ).

• Number of alternating ℓ-cyles ≍ nℓ/2

• Need

ℓµ/2︸︷︷︸
“signal”

>
√

2 · ℓ · log(nℓ/2)︸ ︷︷ ︸
“noise fluctuation”

= ℓ
√
log n

which is ensured by µ = (2 + ϵ)
√
log n. (This is the same

calculation in the proof of correctness for 2F IP – slide 40)

52/58

53/58

Example: Dumbbell calculation

Consider a dumbbell B with k double edges and ℓ single edges. Then

• w(B) ∼ N(−µ(k + ℓ/2),4k + ℓ).

• # of labelings for double edges: n
k+2
2

• # of labelings for single edges conditioned on double edges: n
ℓ
2
−2

• Since µ = (2 + ϵ)
√
log n, we have1

(k + ℓ/2)µ︸ ︷︷ ︸
“signal”

>

√
2 · 4k · log(n

k+2
2) +

√
2 · ℓ · log(n

ℓ
2
−2)︸ ︷︷ ︸

“noise fluctuation”

1Details: 2k −
√
4k2 + 8k + ℓ−

√
ℓ2 − 4ℓ = − 4k

k+
√

k2+2k
+ 4ℓ

ℓ+
√

ℓ2−4ℓ
> 0.

53/58

Step 2: Edge decomposition
U : collection of graphs recursively constructed

1 Start with an even cycle in alternating colors

2 Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (path of double edges followed by an
alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 4 times

However, not every GX is of this form...

54/58

Step 2: Edge decomposition
U : collection of graphs recursively constructed

1 Start with an even cycle in alternating colors

2 Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (path of double edges followed by an
alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 4 times

However, not every GX is of this form...

54/58

• Graph homomorphism ϕ : H → F is a vertex map that preserves
edges and edge multiplicity

2

1

3

9

8

11

10

7

12
4

5

6

H

ϕ−−−→ 2

1

3

9

8

11

10

7

4

5

6

F

Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an union of elements in

F = {F : V (F) ⊂ [n], H → F for some H ∈ U}

21

34

5

6

decompose−−−−−−−−→
21

34

2

3

5

6

• It remains to show minF∈F w(F) < 0 whp

55/58

• Graph homomorphism ϕ : H → F is a vertex map that preserves
edges and edge multiplicity

2

1

3

9

8

11

10

7

12
4

5

6

H

ϕ−−−→ 2

1

3

9

8

11

10

7

4

5

6

F

Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an union of elements in

F = {F : V (F) ⊂ [n], H → F for some H ∈ U}

21

34

5

6

decompose−−−−−−−−→
21

34

2

3

5

6

• It remains to show minF∈F w(F) < 0 whp

55/58

• Graph homomorphism ϕ : H → F is a vertex map that preserves
edges and edge multiplicity

2

1

3

9

8

11

10

7

12
4

5

6

H

ϕ−−−→ 2

1

3

9

8

11

10

7

4

5

6

F

Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an union of elements in

F = {F : V (F) ⊂ [n], H → F for some H ∈ U}

21

34

5

6

decompose−−−−−−−−→
21

34

2

3

5

6

• It remains to show minF∈F w(F) < 0 whp

55/58

Step 3: Counting

Fk,ℓ = {F ∈ F : E(F) consists of k double edges and ℓ single edges }

Lemma (Counting isomorphism classes)

The number of distinct H ∈ U with k double edges and ℓ single edges is
at most Ck+ℓ for universal constant C.

Lemma (Counting homomorphisms)

For each H ∈ U , there exists 0 ≤ r ≤ ℓ/2

• Number of labelings for double edges:

≤ (Cn)k/2+r/2

• Number of labelings for single edges conditioned on double edges

≤ (Cn)ℓ/2−r

56/58

Step 4: Probabilistic arguments

Fk,ℓ = {F ∈ F : E(F) consists of k double edges and ℓ single edges }

Lemma

For any k ≥ 0 and ℓ ≥ 3, with probability at least 1− n−Θ(k+ℓ),

max
F∈Fk,ℓ

(w(F)− E [w(F)]) ≤ (1 + ϵ) (2k + ℓ)
√
log n

Remarks

• Total: 2k + ℓ edges, half red half blue. Weights on red edges
∼ N(µ, 1). Weights on blue edges ∼ N(0, 1).

w(F) ∼ N(−(k + ℓ/2)µ,4k + ℓ)

• Proof: Counting Fk,ℓ and large deviation bounds

57/58

Step 4: Probabilistic arguments

Fk,ℓ = {F ∈ F : E(F) consists of k double edges and ℓ single edges }

Lemma

For any k ≥ 0 and ℓ ≥ 3, with probability at least 1− n−Θ(k+ℓ),

max
F∈Fk,ℓ

(w(F)− E [w(F)]) ≤ (1 + ϵ) (2k + ℓ)
√
log n

Remarks

• Total: 2k + ℓ edges, half red half blue. Weights on red edges
∼ N(µ, 1). Weights on blue edges ∼ N(0, 1).

w(F) ∼ N(−(k + ℓ/2)µ,4k + ℓ)

• Proof: Counting Fk,ℓ and large deviation bounds

57/58

Conclusion and remarks

µ2/ log n
4

IT limit/F2F LP

6

greedy

8

thresholding

Extensions/Open problems

• More realistic models: k-NN graph (Watts-Strogatz small-world
graph)
▶ IT limit becomes

√
2 log n for k ≥ 2 [Ding-W-Xu-Yang, ’19]

▶ NOT achieved by LP. Efficient algo remains open

References

• Vivek Bagaria, Jian Ding, David Tse, W. & Jiaming Xu (2018). Hidden
Hamiltonian Cycle Recovery via Linear Programming,
https://arxiv.org/abs/1804.05436

58/58

https://arxiv.org/abs/1804.05436

Conclusion and remarks

µ2/ log n
4

IT limit/F2F LP

6

greedy

8

thresholding

Extensions/Open problems
• More realistic models: k-NN graph (Watts-Strogatz small-world
graph)
▶ IT limit becomes

√
2 log n for k ≥ 2 [Ding-W-Xu-Yang, ’19]

▶ NOT achieved by LP. Efficient algo remains open

References

• Vivek Bagaria, Jian Ding, David Tse, W. & Jiaming Xu (2018). Hidden
Hamiltonian Cycle Recovery via Linear Programming,
https://arxiv.org/abs/1804.05436

58/58

https://arxiv.org/abs/1804.05436

Conclusion and remarks

µ2/ log n
4

IT limit/F2F LP

6

greedy

8

thresholding

Extensions/Open problems
• More realistic models: k-NN graph (Watts-Strogatz small-world
graph)
▶ IT limit becomes

√
2 log n for k ≥ 2 [Ding-W-Xu-Yang, ’19]

▶ NOT achieved by LP. Efficient algo remains open

References

• Vivek Bagaria, Jian Ding, David Tse, W. & Jiaming Xu (2018). Hidden
Hamiltonian Cycle Recovery via Linear Programming,
https://arxiv.org/abs/1804.05436

58/58

https://arxiv.org/abs/1804.05436

Conclusion and remarks

µ2/ log n
4

IT limit/F2F LP

6

greedy

8

thresholding

Extensions/Open problems
• More realistic models: k-NN graph (Watts-Strogatz small-world
graph)
▶ IT limit becomes

√
2 log n for k ≥ 2 [Ding-W-Xu-Yang, ’19]

▶ NOT achieved by LP. Efficient algo remains open

References

• Vivek Bagaria, Jian Ding, David Tse, W. & Jiaming Xu (2018). Hidden
Hamiltonian Cycle Recovery via Linear Programming,
https://arxiv.org/abs/1804.05436

58/58

https://arxiv.org/abs/1804.05436

Conclusion and remarks

µ2/ log n
4

IT limit/F2F LP

6

greedy

8

thresholding

Extensions/Open problems
• More realistic models: k-NN graph (Watts-Strogatz small-world
graph)
▶ IT limit becomes

√
2 log n for k ≥ 2 [Ding-W-Xu-Yang, ’19]

▶ NOT achieved by LP. Efficient algo remains open

References

• Vivek Bagaria, Jian Ding, David Tse, W. & Jiaming Xu (2018). Hidden
Hamiltonian Cycle Recovery via Linear Programming,
https://arxiv.org/abs/1804.05436

58/58

https://arxiv.org/abs/1804.05436

