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Some elements from graph theory

A Hamiltonian cycle is a cycle that visits each vertex exactly once.
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Some elements from graph theory

An Eulerian circuit (or walk, tour) is is a circuit that visits each edge
exactly once.
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Some elements from graph theory

An Eulerian circuit (or walk, tour) is is a circuit that visits each edge

exactly once.

Euler (Seven bridges of Konisberg): Every connected graph with even
degrees has an Eulerian circuit.
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Hidden Hamiltonian cycle model

® QObservation: a weighted undirected complete graph on n vertices
with weighted adjacency matrix W

® | atent: a Hamiltonian cycle
® Edge weight

‘4/é iﬂﬂ' P ec(C*
Q e¢C”

e.g. two Gaussians/Poissons with
different means
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Hidden Hamiltonian cycle model

® QObservation: a weighted undirected complete graph on n vertices
with weighted adjacency matrix W

® | atent: a Hamiltonian cycle
® Edge weight

‘/t/é 1553_ P ec(C*
Q e¢C”

e.g. two Gaussians/Poissons with
different means

® Goal: observe W, recover C* with high probability
Remarks:
® P () depends on the graph size n

® Hidden Hamiltonian cycle planted in Erdos-Rényi graph
[Broder-Frieze-Shamir '94]

4/58



Link information in Chicago datasets (Hi-C reads)

@ Reconstitute chromatin in vitro upon naked DNA

® Produce cross-links by fixing chromatin with formaldehyde

Il - ==

Chicago datasets generate cross-links among contigs [Putnam et al. '16 ]

On average more cross-links exist between adjacent contigs
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Ordering DNA contigs with Chicago cross-links
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Reduces to traveling salesman problem (TSP)

Find a path (tour) that visits every contig exactly once with the
maximum number of cross-links
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Traveling salesman problem
Given a weighted graph, find the Hamiltonian cycle (path) with
maximum or minimum total weight

Waltham
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Holyoke
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where each Hamiltonian cycle is represented as 7(1),7(2),...,7(n)
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Key challenges

® Computational: TSP is NP-hard in the worst-case

e Statistical: spurious cross-links between contigs that are far apart
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Key challenges

® Computational: TSP is NP-hard in the worst-case

e Statistical: spurious cross-links between contigs that are far apart

Key questions:
® How to efficiently order hundreds of thousands of contigs?

® How much noise can be tolerated for accurate DNA scaffolding?
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Mathematical model for DNA scaffolding
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Chicago dataset [Putnam et al. '16]
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Mathematical model for DNA scaffolding
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Mathematical model for DNA scaffolding
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Chicago dataset [Putnam et al. '16] Simulated Poisson data
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What is known information-theoretically
Maximum likelihood estimator reduces to solving TSP

)/(\'Tsp = arg max (L, X)
s.t. X is the adjacency matrix of some Hamiltonian cycle

where L is the log likelihood ratio matrix L;; = log %(Wij).

® For Gaussian or Poisson (with bigger mean under P), can take
L=W.

® For simplicity, consider the Gaussian model throughout the lecture:

P=N(u1), Q=N(0,1).
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What is known information-theoretically
Maximum likelihood estimator reduces to solving TSP

)/(\'Tsp = arg max (L, X)
s.t. X is the adjacency matrix of some Hamiltonian cycle

where L is the log likelihood ratio matrix L;; = log %(Wij).

® For Gaussian or Poisson (with bigger mean under P), can take
L=W.

® For simplicity, consider the Gaussian model throughout the lecture:

P=N(u1), Q=N(0,1).

Theorem (Sharp threshold)

If u? < 4logn, exact recovery is information-theoretically impossible;
If u? > 4logn, MLE succeeds in exact recovery.
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What is known algorithmically



Spectral method fails (1)

W=pn X*
K ~—~ + \Z/J
“signal”  noise (GOE)
where X* is adj matrix of C* and can be written as X* = H*XTH*T,
® [I,: permutation matrix corresponding to C*

e XTis a circulant matrix: X;rj =1 j=+1 mod n}
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Spectral method fails (1)

W=p X* + Z
“signal”  noise (GOE)

where X* is adj matrix of C* and can be written as X* = H*XTH*T,
® [I,: permutation matrix corresponding to C*
e XTis a circulant matrix: X;rj =1 j=+1 mod n}
> eigenvalues A\, = 2COS2kT'7r, k=0,....,n—1

. 2km dkmw 2(n—1)kn
> eigenvectors vy, = (1,e"7n €' n ... € A

) (Fourier basis)

In the noiseless case, second eigenvector recovers the Hamiltonian cycle
perfectly:

Re

12/58



Spectral method fails (2)

W=u-X*+7: full-rank signal 4+ noise

In the noisy case:
® Spectral gap of cycle 2 — 2cos 2“ = n% Vs noise spectrum: +/n

® So we need p > n?5 (we will see that simple thresholding requires

only u =< +/logn)

13/58



Spectral method fails (2)

W=u-X*+7: full-rank signal 4+ noise

In the noisy case:
® Spectral gap of cycle 2 — 2cos 2“ = n% Vs noise spectrum: +/n

® So we need p > n?5 (we will see that simple thresholding requires

only u =< +/logn)

Lesson

Without “low-rank signal + noise”, one needs to be careful with spectral
method (will revisit this point for the graph matching problem in Lec 14).
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Thresholding

® Simple thresholding (“nearest neighbor”): for each vertex, keep the
two edges with the largest weights

> 1> +/8logn
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Thresholding

® Simple thresholding (“nearest neighbor”): for each vertex, keep the
two edges with the largest weights
> 1> /Blogn
> Why:
® For each vertex, two planted edges N(u, 1) and n — 2 null edges

N(0,1) (maximum fluctuation of the latter ~ 1/2logn)
® There are n vertices in total.

® So we need P {N(, 1) < v/2logn} = o(1/n)
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Thresholding

® Simple thresholding (“nearest neighbor”): for each vertex, keep the
two edges with the largest weights
> 1> /Blogn
> Why:
® For each vertex, two planted edges N(u, 1) and n — 2 null edges

N(0,1) (maximum fluctuation of the latter ~ 1/2logn)
® There are n vertices in total.

® So we need P {N(, 1) < v/2logn} = o(1/n)
® Greedy merging [Motahari-Bresler-Tse '13]:

> 1> +/6logn
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Main result

Theorem
Linear programming (LP) relaxation achieves sharp threshold

12

logn

12

logn

>4: LP succeeds

< 4: Everything fails
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In general

Threshold are determined by Rényi divergence of order p > 0 from P to

Q:

D,(P|Q) & — log / (dP)P(dQ)"".

p—1

® | P works when

Dl/z(PHQ) —logn — oo

optimal under mild assumptions

® Thresholding works when
Dy j2(P||Q) — 2logn — oo
® Greedy works when

Dyya(QIIP) ~logn — o0
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Synthetic data experiment

Error probability

Planted Hamiltonian cycle model with Gaussian weights (n =1000)

0.0

Merge greedy limit:
2 —6logn

IT limit: 2 =dlogn
—

—— F2F

-~e— Belief Propagation
-+ Greedy Merging
~~— Simple Thresholding

Simple Thresholding limit:
1? =8logn

20
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Real-data experiment

1000 DNA contigs of size 100 kbps
0.45 million Chicago cross-links

Edge weights = raw number of HiC reads between each pair of
contigs

Ground truth obtained by other (expensive) sequencing technologies
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Homosapiens [Putnam et al
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Aedes Aegypti (zika mosquito) [Dudchenko et al '16, Science]
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Convex relaxations of TSP



Integer Linear Programming reformulation of TSP

Xpgp = arg max (W, X)
S.t. ZXZ']' =2, Vi
J

ij € {071}
Z Xij227 VQ#IC[TL]

il jgl
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Integer Linear Programming reformulation of TSP

Xpgp = arg max (W, X)

S.t. ZXZ']' =2, Vi
J
Xz] € {Oa 1}
Z Xij227 VQ#IC[R]

il jgl

® The last constraint: subtour elimination
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Subtour LP

Xgup = arg max (W, X)

S.t. ZXZ']' =2, Vi
J
Xz] € [07 1]
Z Xz'j227 VQ#IC[TL}

i€l jel
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Subtour LP

Xgup = arg max (W, X)

S.t. ZXZ']' =2, Vi
J
Xij € [0, 1]
Z Xz'jZQ; VQ#IC[’H}

i€l jel

® Replacing the integrality constraint with box constraint: SUBTOUR
LP relaxation [Dantzig-Fulkerson-Johnson '54, Held-Karp '70]

® Exponentially many linear constraints, nevertheless solvable using
interior point method
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F2F LP

)?FQF = arg max (W, X)
s.t. ZXZ']' =2, Vi
J

Xij € [07 1]

® Further dropping subtour elimination constraints = Fractional
2-factor (F2F) LP
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F2F LP

)?FQF = arg max (W, X)
s.t. ZXZ']' =2, Vi
J

Xij € [07 1]

® Further dropping subtour elimination constraints = Fractional
2-factor (F2F) LP

® Extensively studied in worst case [Boyd-Carr '99,Schalekamp-Williamson-van
Zuylen '14]

» The integrality gap % < % for metric TSP (min formulation)
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F2F LP

)?FQF = arg max (W, X)
s.t. ZXZ']' =2, Vi
J

Xij € [07 1]

® Further dropping subtour elimination constraints = Fractional
2-factor (F2F) LP

® Extensively studied in worst case [Boyd-Carr '99,Schalekamp-Williamson-van
Zuylen '14]

» The integrality gap % < % for metric TSP (min formulation)

® What is the integrality gap whp in our random instance?
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Optimality of Fractional 2-Factor LP

Theorem

If u? — 4logn — oo, then )?ng = X with high probability.
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Optimality of Fractional 2-Factor LP

Theorem
If u?> — 4logn — oo, then )?ng = X with high probability.
Remarks

® The solution is integral whp.

® This achieves the optimal threshold ;2 = 4logn.
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Belief propagation

Max-Product Belief Propagation

Mi—j (t) = wj; — QD(él;glaX {mgﬂi(t — 1)}
mi—;(0) = wi;

After T iterations, for each vertex ¢, keep the two largest incoming
messages my_,;(1") and delete the rest.
® BP is exact provided the solution is integral [Bayati-Borgs-Chayes-Zecchina
'11]
® It can be shown that T'= O(n?logn) whp
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SDP relaxations for TSP

Add more constraints to F2F LP

® SDP1 [Cvetkovi¢ et al '99]: PSD constraint based on second largest
eigenvalue of cycle (cf. slide 12)

2 2 1
Xj—J—i—Qcos—7T (I—J)
n n n
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SDP relaxations for TSP

Add more constraints to F2F LP

® SDP1 [Cvetkovi¢ et al '99]: PSD constraint based on second largest
eigenvalue of cycle (cf. slide 12)

2 2 1
Xj—J—i—Qcos—7T (I—J)
n n n

» provably weaker than Subtour LP [Goemans-Rendl '00]
® SDP2 [Zhao et al '98]: Quadratic Assignment Problem

(W, X) = (W, H&HU = <W®X0,vec(n)vec(H)T>

fixed relax..
cycle
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SDP relaxations for TSP

Add more constraints to F2F LP

® SDP1 [Cvetkovi¢ et al '99]: PSD constraint based on second largest
eigenvalue of cycle (cf. slide 12)

2
X < J—i—QCOS(I—J)
n n

» provably weaker than Subtour LP [Goemans-Rendl '00]
® SDP2 [Zhao et al '98]: Quadratic Assignment Problem

(W, X) = (W,1I XO ' = <W®X0,vec(H)vec(H)T>
~—

flxed relax..
cycle

» decision variable: n? x n? matrix

» provably stronger than SDP1 [de Klerk et al '08]
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Different relaxations

F2F LP

U

SDP

F2F LP succeeds — all other relaxations succeeed.
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Theoretical analysis of convex relaxation



Primal approach vs Dual approach: high level

® Dual argument:
» Construct dual witness that certifies the ground truth whp (KKT

conditions)

» Successful in proving SDP relaxation attaining sharp threshold for
graph partitions: planted clique (Chap. 6), community detection
(Chap. 10), etc
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Primal approach vs Dual approach: high level

® Dual argument:
» Construct dual witness that certifies the ground truth whp (KKT
conditions)
» Successful in proving SDP relaxation attaining sharp threshold for
graph partitions: planted clique (Chap. 6), community detection
(Chap. 10), etc
» Limitations: construction is ad hoc

® Primal argument:
» No feasible solution other than the ground truth has a better
objective value whp
> Key: for LP, can restrict to extremal points (vertices of the feasible

polytope)
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Dual approach

e KKT conditions (Farkas' lemma): )?FQF = X* <= Ju e R" (dual
certificate):

Ui"’ujSWij, for i ~ 7 in C*
u; +uj > Wi, for i 4 7 in C*
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Dual approach

o KKT conditions (Farkas’ lemma): Xpop = X* <= Ju € R" (dual

certificate):

u; +u; < Wiy, fori~jinC*
u; +uj > Wi, for i 4 7 in C*

® QOne feasible choice of dual:

1
ui =g min{W;; : j ~ i}
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Dual approach

e KKT conditions (Farkas' lemma): )?FQF = X* <= Ju e R" (dual
certificate):

ui—|—uj§Wij, for i ~ 7 in C*
u; +uy > Wiy, for i 4 7 in C*

® QOne feasible choice of dual:

1
ui =g min{W;; : j ~ i}

e This certificate shows correctness if 42 > 6logn (same as greedy
merging)
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Primal approach

® Show whp for all extremal points X # X*:
(W, X) < (W, X7)
® F2F polytope:
n
X e01]"m: > Xy =2
j=1

® The proof heavily exploits the characterization of extremal points
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Primal approach

® Show whp for all extremal points X # X*:
(W, X) < (W, X7)

® F2F polytope:

n
X e01]"m: > Xy =2
j=1

® The proof heavily exploits the characterization of extremal points

» F2F polytope is not integral: fractional vertices exist
» Characterization [Balinski '65]: for any vertex X of F2F polytope
® Half integrality
Xi; € {0,1/2,1}

® 1/2's form disjoint odd cycle connected by path of 1's.
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Primal approach

® Show whp for all extremal points X # X*:
(W, X) < (W, X7)

® F2F polytope:

n
X e01]"m: > Xy =2
j=1

® The proof heavily exploits the characterization of extremal points
» F2F polytope is not integral: fractional vertices exist
» Characterization [Balinski '65]: for any vertex X of F2F polytope

® Half integrality
X,y €{0,1/2,1}
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Why half integral?

Usual proofs:

® combinatorial proof [Lovasz-Plummer '86, Schrijver '04]
® linear-algebraic proof
» F2F polytope (in adjacency vector):

{z € R(E) : A = 21}

> Aisn x (Z) zero-one matrix: Aje = lyicey
» Each column of A has exactly two 1's
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Why half integral?

Extremal point (basic feasible solution) x is of the following form

x=( zs , Tge )
— =~

fractional integral

for some S C ([Z]) of size n, where
® xg is the solution to the following linear system:

Agrg = A
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Why half integral?

Extremal point (basic feasible solution) x is of the following form
r=( zs , zs )
~— =~
fractional integral

for some S C ([Z]) of size n, where
® xg is the solution to the following linear system:

Agrg = b
® Cramer's rule: .
det(AY)
(o) = T80
et(AS)

> A% is obtained by substituting the ith column by ¥/, hence
det(AY) € Z.
> Each column of Ag has two 1's = det(Ag) € {0, 1, +2} [Balinski
'65]
35/58



Balinski's theorem

Any square irreducible zero-one matrix with at most two 1's in each
column has determinant in {0, +1, £2}.

Proof (induction on the matrix size n).

Base case n = 2: Direct verification.
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Balinski's theorem

Any square irreducible zero-one matrix with at most two 1's in each
column has determinant in {0, +1, £2}.
Proof (induction on the matrix size n).

Base case n = 2: Direct verification. Induction from n — 1 to n: Fix such
an A € {0,1}"*".

® Suppose some row (or column) contains zero or one 1's. Then the
theorem follows from the induction hypothesis for n — 1.
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Balinski's theorem

Any square irreducible zero-one matrix with at most two 1's in each
column has determinant in {0, +1, £2}.
Proof (induction on the matrix size n).

Base case n = 2: Direct verification. Induction from n — 1 to n: Fix such
an A € {0,1}"*".

® Suppose some row (or column) contains zero or one 1's. Then the
theorem follows from the induction hypothesis for n — 1.

® Suppose every row and every column contains exactly two 1's. Then
A is the adjacency matrix of a 2-regular bipartite graph G. We
apply two facts:
» Every 2-regular graph is a disjoint union of even cycles.
» (G is connected by assumption of irreducibility of A.

So A is the adjacency matrix of a 2n-cycle. We can compute such a
det(A) easily:
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Balinski's theorem

(Proof continued).

That is, A = ITAQII’, where II, II' are permutation matrices and

11 0 ...0
01 1 ...0
Ao =| . :
10 0 1

Direct calculation gives

0 n even
det(Ao) = {2 nodd

So det(A) =0 or +2. O
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Warmup: proof of correctness for 2F ILP



2F Integer LP (ILP)

Xop = argmax (W, X)
s.t. ZX” =2
J
Xij S {U, l}

® Solvable using blossom algorithm O(n?) time [Letchford-Reinelt-Theis '08]
but in practice challenging to implement

¢ Any feasible solution corresponds to a 2-factor (disjoint union of
cycles)

® Goal: true Hamiltonian cycle has maximal weight w.h.p.

(W, X) < (W,X*), V 2-factor X # X*
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Encode the solution with difference graph

G and H: simple graphs on the same vertex set with adjacency matrix A
and B
e difference graph G — H: a bicolored graph with signed adjacency
matrix A — B, with red edge for — and blue edge for +

» Red edge in G — H <= edge in H but not in G — “Type-Il error”
> Blue edge in G — H <= edge in G but not in H — “Type-I error”
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Encode the solution with difference graph

G and H: simple graphs on the same vertex set with adjacency matrix A
and B
e difference graph G — H: a bicolored graph with signed adjacency
matrix A — B, with red edge for — and blue edge for +
> Red edge in G — H <= edge in H but not in G — “Type-Il error”
» Blue edge in G — H <= edge in G but not in H — “Type-| error”
e Fact: difference graph of two k-regular graphs is balanced (for each
vertex, red degree = blue degree).
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Encode the solution with difference graph

® X*: the true Hamiltonian cycle; X an arbitrary 2-factor.

® The difference graph Gx is a balanced bicolored simple graph
encoding X — X* .
Example:

X* X Gx
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Encode the solution with difference graph

1 6 1 6 L 6
2<:>5 2@ D5
3 4 3 4
* T

T

® Weight of a bicolored graph:
w(B) = IZE:: We — :EE:: W .
blue e € E(B) red e € E(B)
Then w(Gx) = (W, X — X*).
® Decomposition into connected components:
w(Gx) = w(By)

where each component B; is a connected balanced bicolored graph.
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Union bound

Let B be a connected balanced graph with ¢ edges
® (/2 red and ¢/2 blue.
® w(B)~ N(—ul/2,0)
e P{w(B) > 0} < exp(—p*¢/8)
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Union bound
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The number of distinct B with £ edges < (2n)"/?, so that

S7(2n) /2678 = 3 (ane it Aytr2 =R losn,
=2 >2

P [Euler (Seven bridges of Konisberg)]: Every connected graph
with even degrees has an Eulerian circuit.

> [Kotzig '68]: Every connected balanced bicolored multigraph
has an alternating Eulerian circuit.
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Union bound

Let B be a connected balanced graph with ¢ edges

¢/2 red and ¢/2 blue.

w(B) ~ N(—ut/2,0)

P{w(B) > 0} < exp(—u?¢/8)

The number of distinct B with £ edges < (2n)"/?, so that

S7(2n) /2678 = 3 (ane it Aytr2 =R losn,
=2 >2

P [Euler (Seven bridges of Konisberg)]: Every connected graph
with even degrees has an Eulerian circuit.

> [Kotzig '68]: Every connected balanced bicolored multigraph
has an alternating Eulerian circuit.

> +# of B's < # of alternating Eulerian circuits 2 n
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Aside: information-theoretic optimality
Let's show u > 2+/logn is necessary. Consider the following cycles:

% i+ 1

i P41

J j+1

j+1 J

The difference graph B between the true cycle (1,2,...,n) and the cycle
(1,2,...,4,45,5—1,...,i+ 1,5+ 1,7+2,...,n) is a four-cycle.
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Aside: information-theoretic optimality
Let's show u > 2+/logn is necessary. Consider the following cycles:

% 141

i P41

J j+1

j+1 J

The difference graph B between the true cycle (1,2,...,n) and the cycle
(1,2,...,4,45,5—1,...,i+ 1,5+ 1,7+2,...,n) is a four-cycle.

® w(B) ~ N(—2pu,4).
® Number of such cycles ~ n?.

® Need: —2p + /2 - 4log(n?) < 0; otherwise, MLE fails (this
heuristic can be justified)
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Reflection

What we have learned from the previous proof:
® Encode the solution by the difference graph
® Decomposition
® Counting: conditioned on one end of a red edge, the other end has
at most 2 choices
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Reflection

What we have learned from the previous proof:
® Encode the solution by the difference graph
® Decomposition
® Counting: conditioned on one end of a red edge, the other end has
at most 2 choices

Next, for F2F LP
e X — X*e{0,£1,+3}
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Proof of correctness for F2F LP



Proof Outline

@ Encode the solution: for any extremal point X, represent
2(X — X™*) as a bicolored multigraph Gx

w(Gx) = (W,2(X — X7))
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Proof Outline

@ Encode the solution: for any extremal point X, represent
2(X — X™*) as a bicolored multigraph Gx

w(Gx) = (W,2(X — X7))

® Divide and conquer: decompose G x as edge-disjoint union of
graphs in certain family F

w(Gx)=> w(F), FeF

i

©® Counting: Show that whp w(F') <0 for all F € F

47/58



Step 1: Bicolored multigraph representation
Example 1

A
AN

X*: true cycle
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Step 1: Bicolored multigraph representation

Example 1
1
2
1 1
2 2
1 1 1
1 1
2 2

1
2

X: extremal solution
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X: extremal solution Gy encodes 2(X — X*)
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Step 1: Bicolored multigraph representation
Example 1

1
2
1 1
2 2
1 1 1 =
1 1
2 2
1
2

X: extremal solution Gy encodes 2(X — X*)

Key observation
Gx is always balanced: red degree = blue degree
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—Ie
N =
—|o/ o
— — — —
AN\ N
=l =l
— |

Example 2
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Step 2: Edge decomposition

Theorem (Kotzig '68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.
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Step 2: Edge decomposition

Theorem (Kotzig '68)

Every connected balanced bicolored multigraph has an alternating
Eulerian circuit.

Remarks

® An Eulerian circuit traverses a double edge twice
Recall: Example 1

“Dumbbell” structure
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Example 2

%,_.
[SIEENIE
N

N|=
N[0 [
N| \»—A

Ry e i

Decompose as C4 + Cy + Cs.
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Example: even cycles

Consider an f-cycle

¢/2 red and ¢/2 blue.
w(B) ~ N(—ul/2,0).

Number of alternating f-cyles < n

Need
lu/2 > /2 0-log(nt/?) = {y/logn
—~—

“signal”

02

“noise fluctuation”

which is ensured by it = (2 + €)y/logn. (This is the same
calculation in the proof of correctness for 2F IP — slide 40)
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Example: Dumbbell calculation

Consider a dumbbell B with k& double edges and ¢ single edges. Then
® w(B)~ N(—u(k+1£/2),4k + ).
42

® £ of labelings for double edges: n's

e # of labelings for single edges conditioned on double edges: ns=2

® Since it = (2 + ¢)y/logn, we havel

(k+20/2)pu > \/2 -4k - log(n%) + \/2 - E-log(n§_2)
—_——

“signal” “noise fluctuation”
!Details: 2k — V4k2 + 8k + £ — /02 — 4l = ak___ 4t

- > 0.
2 ) 2 _
k+vk242k  04+/02—4¢ 53/58



Step 2: Edge decomposition
U: collection of graphs recursively constructed
@ Start with an even cycle in alternating colors

® Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (path of double edges followed by an
alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 4 times
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Step 2: Edge decomposition
U: collection of graphs recursively constructed
@ Start with an even cycle in alternating colors

® Blossoming procedure: At each step, contract an edge in any
cycle and attach a flower (path of double edges followed by an
alternating odd cycle)

Obtained by starting with an 10-cycle and blossoming 4 times

However, not every G x is of this form...

o<
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® Graph homomorphism ¢ : H — F'is a vertex map that preserves
edges and edge multiplicity

1 9 10

n
-
©
-
o
5

55/58



® Graph homomorphism ¢ : H — F'is a vertex map that preserves
edges and edge multiplicity

1 9 10 5 1 9 10 5

3 8 7 6 3 8 7 6

Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an union of elements in

F={F:V(F)C|[n],H— F for some Hc U}

O decompose
—_—>
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® Graph homomorphism ¢ : H — F'is a vertex map that preserves
edges and edge multiplicity

1 9 10 5 1 9 10 5

3 8 7 6 3 8 7 6

Lemma (Decomposition)

Every balanced bicolored multigraph G with edge multiplicity at most 2
can be decomposed as an union of elements in

F={F:V(F)C|[n],H— F for some Hc U}

1 2 5 1 2 2 5
O decompose
—_—>
4 3 6 4 3 3 6

® It remains to show minger w(F) < 0 whp
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Step 3: Counting

Firy={F € F: E(F) consists of k double edges and / single edges }

Lemma (Counting isomorphism classes)

The number of distinct H € U with k double edges and ¢ single edges is
at most C*** for universal constant C.

Lemma (Counting homomorphisms)
For each H € U, there exists 0 < r < (/2
® Number of labelings for double edges:

< (Cn)k'/Q—f—r/Z
® Number of labelings for single edges conditioned on double edges

< (Cn)f/Zfr
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Step 4: Probabilistic arguments

Fie = {F € F : E(F) consists of k double edges and / single edges }

Lemma
For any k > 0 and ¢ > 3, with probability at least 1 — n=k+0),

Jpax (w(F) —Ew(F)]) <(1+¢€) (2k+ 1) /logn
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Step 4: Probabilistic arguments

Fie = {F € F : E(F) consists of k double edges and / single edges }

Lemma
For any k > 0 and ¢ > 3, with probability at least 1 — n~©k+0),

Jpax (w(F) —Ew(F)]) <(1+¢€) (2k+ 1) /logn

Remarks

® Total: 2k + £ edges, half red half blue. Weights on red edges
~ N(p,1). Weights on blue edges ~ N(0,1).

w(F) ~ N(—(k+¢/2)p, 4k + 1)

® Proof: Counting F}, ¢ and large deviation bounds
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Conclusion and remarks

4 6
: ; ©?/logn

-

IT limit/F2F LP greedy thresholding
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Conclusion and remarks

©?/logn
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-

IT limit/F2F LP greedy thresholding

Extensions/Open problems
® More realistic models: k-NN graph (Watts-Strogatz small-world
graph)
» |IT limit becomes y/2logn for k > 2 [Ding-W-Xu-Yang, '19]
» NOT achieved by LP. Efficient algo remains open

References

® Vivek Bagaria, Jian Ding, David Tse, W. & Jiaming Xu (2018). Hidden
Hamiltonian Cycle Recovery via Linear Programming,
https://arxiv.org/abs/1804.05436

58/58


https://arxiv.org/abs/1804.05436

