S&DS 684: Statistical inference on graphs

Fall 2018



Administrivia

e Schedule: Wed 2:30-5pm, 24 Hillhouse Rm 107

e Instructor: Prof. Yihong Wu yihongwu@illinois.edu, Rm 235 Dunham
Lab (10 Hillhouse)

» Office hours: by appointment
o Website: http://stat.yale.edu/~yw562/684.html


yihongwu@illinois.edu
http://stat.yale.edu/~yw562/684.html
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@ Course prerequisites:
> Maturity with probability theory, familiarity with mathematical statistics.
> Linear algebra
@ Participation (30%):
» attendance :-)
> scribe: take turns, due in one week from the lecture, KTEX template online
® Homeworks (30%): three to four problem sets
O Final project (40%)
> either presenting paper(s) or a standalone reseach project.
> topics announced around week 6

©® Materials: Lecture notes and additional reading materials will be posted
online.



Statistical problems

e Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

parameter data estimate



Statistical problems

e Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

fle® — X — 0
—_—— =~ ~~

parameter data estimate

e Understanding the fundamental limits:



Statistical problems

e Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

fle® — X — 0
—_—— =~ ~~

parameter data estimate

e Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?



Statistical problems

e Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

fle® — X — 0
—_—— =~ ~~

parameter data estimate

e Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?



Statistical problems

e Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

fle® — X — 0
—_—— =~ ~~

parameter data estimate

e Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

e |n this course:



Statistical problems

e Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

fle® — X — 0
—_—— =~ ~~

parameter data estimate

e Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?
Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?
e |n this course:

» Data = graph



Statistical problems

e Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

fle® — X — 0
—_—— =~ ~~

parameter data estimate

e Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

e |n this course:

» Data = graph
> Parameter = hidden (latent, or planted) structure



Statistical problems

e Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, etc)

fle® — X — 0
—_—— =~ ~~

parameter data estimate

e Understanding the fundamental limits:
Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?
Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

e |n this course:

» Data = graph
> Parameter = hidden (latent, or planted) structure
> Focus on large-graph limit (number of vertices — c0)
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Planted clique — graph view

@ A clique of k vertices are chosen randomly to form a clique
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Community detection in networks

e Networks with community structures arise in many applications



Community detection in networks

e Networks with community structures arise in many applications

e Task: Discover underlying communities based on the network topology
alone



Example 1

Santa Fe Institute Collaboration network [Girvan-Newman

Agent-based
Models

Mathematical
Ecology

'02]



Example 2

Protein-protein interaction networks [Jonsson et al. 06']

Karyopherin &
docking complex

EGF-like domains
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Example 3

Political blogosphere and the 2004 U.S. election [Adamic-Glance '05]
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Stochastic block model — graph view

@ n nodes are randomly partitioned into 2 equal-sized communities
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® For every pair of nodes in same community, add an edge w.p. p
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Stochastic block model — graph view

@ n nodes are randomly partitioned into 2 equal-sized communities
® For every pair of nodes in same community, add an edge w.p. p
© For every pair of nodes in diff. community, add an edge w.p. g
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Stochastic block model — adjacency matrix view
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