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Lecture 1: Introduction & Max Clique in Erdős-Rényi graphs

Lecturer: Yihong Wu Scribe: Brandon Chow, August 29, 2018 [Ed. Sep 8]

1.1 Introduction

1.1.1 Basic Definitions

A graph G = (V,E) consists of

• A vertex set V . With loss of generality (WLOG), we shall assume V = [n] ≡ {0, 1, . . . , n}
for some positive integer n.

• An edge set E ⊂
(
V
2

)
. Each element of E is an edge e = (i, j) (unordered pair). We say i

and j are connected and write i ∼ j if (i, j) ∈ E.

For the most part, we will be focusing on graphs that are undirected (i.e., edges do not have
orientation) and simple (i.e., no multi-edges or self-loops).

Alternatively, one can also represent a graph as an adjacency matrix A = (Aij)i,j∈[n], which is an
n× n symmetric binary matrix with zero diagonal. In particular, for a simple and undirected graph
G = (V,E), the entries Aij are defined as:

Aij = 1 {i ∼ j} =

{
1 (i, j) ∈ E
0 o.w.

.

Some basic concepts of graphs are defined as follows:

• The neighborhood of a given vertex v ∈ V is defined as N(v) = {u ∈ V : u ∼ v}, i.e., it is
the set of vertices (neighbors) that are connected with v.

• The degree of v is defined as dv = |N(v)|, i.e., the number of neighbors of v.

• Induced subgraph: For any S ⊂ V , the subgraph induced by S is defined as the graph
G[S] = (S,ES), where ES , {(u, v) ∈ E : u, v ∈ S}.

• A clique is a complete subgraph. A graph is complete iff every pair of vertices in the graph
are connected.

1.1.2 Sample topics

The goal of statistical inference is to using data to make informed decisions (hypotheses testing,
estimation, etc). The usual framework of statistical inference is the following:

θ ∈ Θ︸ ︷︷ ︸
parameter

7→ X︸︷︷︸
data

7→ θ̂︸︷︷︸
estimate

.
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The theoretical objectives of this class are two-fold:

1. Understand and characterize the fundamental (statistical) limits: What is possible/impossible
information-theoretically?

2. Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes,
how? If not, why?

In this course,

• Data = graphs;

• Parameter = hidden (latent, or planted) structure;

• We will focus on large-graph limit (number of vertices →∞).

As a preview, we briefly describe two models that we will study below: the Planted Clique Model
and the Stochastic Block Model.

The Planted Clique Model Let V be a vertex set and n = |V |, and let k ≤ n be a given
positive integer. The edge set E in a graph G = (V,E) is generated in the following manner:

1. A set S of k vertices is selected out of n vertices to form a clique (all possible edges between
them are added to E).

2. Remaining edges are added independently with probability 1
2 .

Given the resulting graph G = (V,E), the goal is to find the planted (hidden) clique S.

To start, notice that this set up follows a classical statistical framework: a sample (here, the graph
G) is generated from a distribution (i.e., the random process described above), and we want to
estimate a parameter of that distribution (here, the set S) via the sample (here, G).

A decision-theoretic setting is to consider the minimax framework for the worst-case analysis, in
which the goal is to find an estimator Ŝ = Ŝ(G) that correctly recover S with probability close to 1,
regardless of the true set S used to generate the graph G. In other words,

min
S∈([n]

k )
¶S
[
Ŝ(G) = S

]
≈ 1,

where ¶S denotes the law of G conditioned on the location of the planted clique S. Alternatively,
one can consider the more relaxed Bayesian setting, assuming S is drawn uniformly at random.
Equivalently, this amounts to finding an Ŝ that preforms well on average:

E
S∼Unif

(
([n]

k )
)¶S[Ŝ(G) = S

]
≈ 1.

Remark 1.1. For problems with symmetry, these two formulations are often equivalent, in the
sense that

sup
Ŝ

min
S∈([n]

k )
¶S
[
Ŝ(G) = S

]
= sup

Ŝ

E
S∼Unif

(
([n]

k )
)¶S[Ŝ(G) = S

]
.

This follows from the permutation invariance of the model, which implies the least favorable prior is
uniform.
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The Stochastic Block Model (SBM) Given a vertex set V , suppose V can be partitioned into
two “communities” of equal size. Community membership is represented by a vector

σ = (σ1, . . . , σn) ∈ {±1}n,

where σi = σj means that i and j belong to the same community, and
∑n

i=1 σi = 0 because the size
of the two communities are equal. An edge between two vertices i, j ∈ V is added to E according to
the following probabilities:

¶
[
(i, j) ∈ E

]
=

{
p σi = σj

q σi 6= σj
,

where 0 ≤ p, q ≤ 1 (note that p, q need not sum to 1). Thus, in this model, in-group ties and
out-group ties have a different probability of forming. There are also several different statistical
inference tasks associated with this problem that SBMs address. For example, if p and q are known,
then our goal could be to estimate the parameter σ. Or, if p and q are unknown, then we may be
interested in jointly estimating p, q, and σ.

1.2 Asymptotic Behavior of Max Clique in G(n, 1
2)

We start with the ensemble of the Erdős-Rényi graph: G ∼ G(n, p) is a graph on n vertices where
each pair of vertices is connected independently with probability p. Next, as a warmup, we will
focus on the behavior of the maximum size of a clique in G(n, 1

2).

In particular, let Gn ∼ G(n, 1
2). Define its clique number ω(Gn) , size of the max clique in Gn.

We will show that ω(Gn) ≈ 2 log2 n for large n: for any ε > 0, with high probability (whp),

ω(Gn) ≤ (2 + ε) log2 n, (1.1)

ω(Gn) ≥ (2− ε) log2 n. (1.2)

In other words, ω(Gn)
log2 n

→ 2 in probability.

1.2.1 Proof of (1.1): First moment method

Let any ε > 0 be given. We will show that ¶
[
ω(Gn) ≥ (2 + ε) log2 n

]
→ 0.

To start, consider any positive integer k, as well as any S ⊂ [n] where |S| = k. Notice that there
are

(
k
2

)
possible edges that can form between the k vertices in S, meaning that:

P (Gn[S] is a k-clique) = 2−(k2).

And, there are
(
n
k

)
different sets of k vertices in a graph with n vertices. So, by the union bound,

¶(∃S ⊂ [n] : Gn[S] is a k-clique) ≤
(
n

k

)
2−(k2).
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Now, let k0 = (2 + ε) log2 n. Again by the union bound, we have that:

¶(ω(G) ≥ k0) ≤
n∑

k=k0

(
n

k

)
2−(k2)

(a)

≤
n∑

k=k0

(
n2−

(k0−1)
2

)k
≤

∞∑
k=k0

(
n2−

(k0−1)
2

)k (b)

≤ 2(n2−
(k0−1)

2 )k0 ,

where (a) follows from
(
n
k

)
≤ nk and k0 ≤ k, (b) follows from n2−

k0−1
2 =

√
2n−ε/2 < 1/2 for

sufficiently large n.

1.2.2 Proof of (1.2): Second moment method

We will now show that lim
n→∞

¶[ω(Gn) ≥ k]→ 1, where k , (2− ε) log2 n. Define:

Tn , # of cliques of size k in Gn =
∑
|S|=k

1 {Gn[S] is a k clique}. (1.3)

Note that if a graph contains at least one clique of size k, then the max clique must be of size ≥ k,
implying that ¶[ω(Gn) ≥ k] ≥ ¶[Tn > 0]. So, to show that ¶[ω(Gn) ≥ k]→ 1 as n→∞, it suffices
to show instead that ¶[Tn > 0]→ 1.

Intuition

But, before trying to prove that ¶[Tn > 0]→ 1, let’s first build some intuition. What we computed
in the union bound is in fact computing the first moment of E[Tn]. By linearity of expectation, we
have

E[Tn] =

(
n

k

)
2−(k2). (1.4)

Clearly, when k = (2 + ε) log2 n, E[Tn]� 0, which implies that P[Tn > 0]� 0 since Tn is integer-
valued. As Tn is a positive random variable, it tempting to think that a sufficient condition for
¶[Tn > 0]� 0 is E[Tn]� 0. However, this direction is generally false: a counterexample would be a
distribution that places almost all of its probability mass at zero, and the remaining very small
amount of probability mass at, say, 10100. Indeed, while the expected value of a random variable
with this distribution would be very large, the probability that this random variable is non-zero
would still be very small.

So, to show that ¶[Tn > 0] is large, it won’t be enough to show that E[Tn] is large. What to do?
Well, one way to characterize the distribution in the counterexample above is that it has very high
variance. If we can show that the variance of Tn is not so large, then that would essentially show
that Tn’s distribution does not assign low probability to extremely high valued integers, essentially
ruling out counterexamples like the one previously entertained. Will this be enough?
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Second Moment Method

As it turns out, this approach works and is called the Second Moment Method. Briefly, suppose
Xn is a non-negative, integer-valued random variable. In this approach, one shows that ¶[Xn > 0]→ 1
by showing that:

Var[Xn] = o(E2[Xn]),

where Var stands for variance. Since we are going to apply the Second Moment Method to show
that ¶[Tn > 0]→ 1, let’s first take a small detour to prove it works for the general random variable
Xn describe above. And, the first step in doing so will be to prove the Paley-Zygmund inequality.

Lemma 1.1 (Paley-Zygmund Inequality). Let X ≥ 0 be a random variable with 0 < E[X2] <∞.
Then for any 0 ≤ c ≤ 1,

¶(X > cE[X]) ≥ (1− c)2E2[X]

E[X2]
= (1− c)2 E2[X]

E2[X] + Var[X]
. (1.5)

Proof. First, note that:

E[X] = E[X1 {X ≤ cE[X]}] + E[X1 {X > cE[X]}] ≤ cE[X] + E[X1 {X > cE[X]}],

meaning that (1− c)E[X] ≤ E[X1 {X > cE[X]}]. Next, note that by Cauchy Swartz:

E[X1 {X > cE[X]}] ≤
√
E[X2]

√
¶(X > cE[X]).

Thus:
(1− c)2E2[X] ≤ E[X2]¶(X > cE[X]),

which implies the desired inequality.

To show that the Second Moment Method works, notice that choosing c = 0 in the Paley Zygmund
inequality gives us

¶(Xn > 0) ≥ E2[Xn]

E2[Xn] + Var[Xn]
=

1

1 + Var[Xn]
E2[Xn]

,

so if Var[Xn] = o(E2[Xn]), then ¶(Xn > 0)→ 1, as desired.

Applying the Second Moment Method

We now return to our original goal of showing that ¶[Tn > 0] → 1, which we shall prove via the
Second Moment Method. In particular, we need to show that Var[Tn] = o(E2[Tn]). To start, notice
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that:

Var[Tn] = Var

[ ∑
|S|=k

1 {Gn[S] is a k clique}

]

=
∑
S,S′

|S|=|S′|=k

Cov
[
1 {Gn[S] is a k clique},1

{
Gn[S′] is a k clique

}]
(a)
=

∑
|S∩S′|≥2
|S|=|S′|=k

Cov
[
1 {Gn[S] is a k clique},1

{
Gn[S′] is a k clique

}]

≤
∑

|S∩S′|≥2
|S|=|S′|=k

¶
[

both Gn[S] and Gn[S′] are k cliques
]
,

where (a) follows from the fact that, for any two vertex sets S and S′. If |S ∩ S′| ≤ 1 (at most one
node shared between S and S′), then the set of edges formed among nodes in S are disjoint from
the set of edges formed among nodes in S′. Thus, by independence, the covariance is zero.

Now, for any given pair of sets S,S′, let ` = |S∩S′|. In order for S and S′ to both be k-cliques, there
are a total of 2

(
k
2

)
−
(
l
2

)
possible edges that must be formed (think: inclusion-exclusion principle),

so we have

Var[Tn] =
k∑
`=2

∣∣∣{(S, S′) : |S| = |S′| = k, |S ∩ S′| = `
}∣∣∣ · 2−2(k2)+(`

2) (1.6)

=
k∑
`=2

(
n

k

)(
k

`

)(
n− k
k − `

)
· 2−2(k2)+(`

2), (1.7)

where the last step follows from the following reasoning: there are
(
n
k

)
ways of picking a set S of k

vertices from a graph on n vertices. And, for each such set S, there are exactly
(
k
`

)
ways to pick

` nodes from S that will also be part of another set S′. Once S and the nodes of S that will be
shared with S′ have been determined, it remains to pick from Sc the remaining k − l nodes of S′,
and there are exactly

(
n−k
k−`
)

ways of doing that.

At this point, one can analyze the above sum by brute force, focusing on the exponent of each term.
Next we present a more “statistician’s approach”. Note that the counting step in (1.6) is precisely
how hypergeometric distribution (sampling without replacement) arises. Indeed, if we have an urn
of n balls among which k balls are red, let H denote the number of red balls if we draw k balls from
the urn uniformly at random without replacements. Then H ∼ Hypergeometric(n, k, k). Thus, we
can express the same quantity in terms of H as follows:

Var[Tn]

E2[Tn]
=

k∑
`=2

(
k
`

)(
n−k
k−`
)(

n
k

) · 2(`
2) ≤

k∑
`=2

(
k
`

)(
n−k
k−`
)(

n
k

) · 2`k/2 (1.8)

= E[2kH/21 {H ≥ 2}] ≤ E[2kH/2]− ¶[H = 0].

Next we will show that both ¶[H = 0]→ 1 and E[2kH/2]→ 1. Indeed,

¶[H = 0] =

(
n−k
k

)(
n
k

) =

(
1− k

n

)(
1− k

n− 1

)
· · ·
(

1− k

n− k + 1

)
→ 1,
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since k = (2− ε) log2 n = o(
√
n).

To bound the generating function, we use the comparison between sampling with replacements
(binomial) and sampling without replacements (hypergeometric). The following result of Hoeffding
(proved in the homework) will be useful in several places in this course:

Lemma 1.2 (Hoeffding’s lemma). Binom(k, kn) dominates Hypergeometric(n, k, k) in the order of

convex functions. In other words, if B ∼ Binomial(k, kn), then E[f(H)] ≤ E[f(B)] for all convex
functions f .

Using this lemma, we have

E[2kH/2] ≤ E[2kB/2] =

(
1 +

k

n

(
2

k
2 − 1

))k
≤ exp

(
k2

n

(
2

k
2 − 1

))
→ 1.

since k22
k
2 � n by the assumption that k = (2− ε) log2 n.

To summarize, we have shown that
Var[Tn]

E2[Tn]
→ 0. By Paley-Zygmund (Lemma 1.1), it follows that

¶[Tn > 0]→ 1, i.e., ¶[ω(Gn) ≥ (2− ε) log2 n]→ 1, so we’ve proven the desiderata.

Remark 1.2. Note that in computing the second moment, (1.8) can be equivalently written as

Var[Tn]

E2[Tn]
= E[2k|S∩S

′|/2
1
{
|S ∩ S′| ≥ 2

}
],

where S and S′ are independent random k-sets drawn uniformly. This is something we will frequently
encounter in computing the second moment, which typically involves two independent copies of the
same randomness and their overlap |S ∩ S′|.

Remark 1.3. As a small aside, we can further show that not only there exists a clique of size
k = (2− ε) log2 n, there are an abundance of them. Indeed, by (1.4) and using

(
n
k

)
≥ (nk )k, we have

E[Tn] =

(
n

k

)
2−(k2) ≥

(n
k

)k
2−(k2) = nΩ(logn) →∞.

By Lemma 1.1, we have Tn > o(E[Tn]) with probability 1 − o(1). This shows that there exists
superpolynomially many cliques of size (2 − ε) log2 n. Unfortunately, the best polynomial-time
algorithm can only guarantee to find a clique of size (1− ε) log2 n with high probability. We will
discuss this next time.
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