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Our goal is to use the spectral method to pursue inference. As we will see, in planted clique and
many related planted problems, the first few eigenvectors of the population matrix EX contain the
information about the planted structures that we are interested in. Since we only have observations
X at hand and do not know EX, we compute the first few eigenvectors of X instead. Writing
X = EX + (X − EX), we expect that the error of estimating the first few eigenvectors of EX can
be bounded by the size of the pertubation X − EX.

3.1 Review of linear algebra

3.1.1 Eigendecomposition

Suppose that X is a symmetric real valued matrix in Rn×n.

Definition 3.1. The pair (λ, v) with λ ∈ R and v ∈ Rn is an eigenpair of X, consisting of an
eigenvalue λ and an eigenvector v, if

Xv = λv.

We order the eigenvalues of X by their sizes such that λ1 ≥ λ2 ≥ · · · ≥ λn. The corresponding
eigenvectors [v1, . . . , vn] form an orthonormal basis (ONB) of Rn. Denote V = [v1, . . . , vn], Λ =
diag(λ1, . . . , λn). We can write the eigendecomposition of X as

X = V ΛV > =

n∑
i=1

λiviv
>
i .

Also note that rank(X) = r ⇔ there exist exactly r nonzero λi’s.

3.1.2 Singular value decomposition (SVD)

Now suppose that X ∈ Rm×n is a real valued rectangular matrix. The singular value decomposition
(SVD) of X is

X = UΣV > =
∑

σiUiV
>
i

where Σ = diag(σ1, . . . , σr) ∈ Rr×r, σi ≥ 0, U = [U1, . . . , Ur] ∈ Rm×r and V = [V1, . . . , Vr] ∈ Rn×r.
The columns of U are orthonormal and we call them left singular vectors and likewise the columns
of V are orthonormal too and we call them right singular vectors.
We can calculate Σ, U and V by taking eigendecompositions of XX> and X>X. Indeed,

XX> = UΣ2U> ∈ Rm×m and X>X = V Σ2V > ∈ Rn×n,

and

σi =
√
λi(XX>) =

√
λi(X>X).
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3.1.3 Matrix norms

Suppose again that X ∈ Rm×n. There are multiple ways to define a norm on X.

• We view X as a mn-dimensional vector with euclidean norm and define the Frobenius norm

‖X‖F = ‖vec(X)‖2 =

√∑
i,j

X2
ij .

• We view X as a linear operator from (Rn, ‖ · ‖p)→ (Rm, ‖ · ‖q) with operator norm

‖X‖p→q = sup
‖v‖p=1

‖Av‖q.

For this course the most relevant matrix is the case of p = q = 2, where we equip Rn with the
euclidean inner product. We denote

‖X‖2→2 =: ‖X‖op,

also known as the spectral norm.

We now prove that
‖X‖op = σmax(X)

Using the SVD of X:

‖X‖2op = sup
‖v‖2=1

‖Xv‖22 = sup
‖v‖2=1

∥∥∥∑σiUiV
>
i v
∥∥∥2
2

= sup
‖v‖2=1

∑
σ2i 〈Vi, v〉2 = σmax(X)2.

Remark 3.1. • ‖ · ‖op is a norm and ‖X‖op = ‖X>‖op.

• ‖XY ‖ ≤ ‖X‖op‖Y ‖op.

• If X = x is a vector then ‖X‖op = ‖x‖2.

• ‖ · ‖op is orthogonal invariant, i.e. for any R ∈ O(n), R′ ∈ O(m) we have ‖R′XR‖op = ‖X‖op.

• If X = [X1, . . . , Xn] has orthonormal rows (columns), then ‖X‖op = 1.

Remark 3.2. Recall the matrix inner product: 〈X,Y 〉 = trace(Y >X) =
∑

i,j XijYij . Using this
we can write

‖X‖op = σmax(X) = sup
‖A‖F=1, rank(A)=1

〈X,A〉 = sup
‖u‖2=‖v‖2=1

〈X,uv>〉.

Likewise, if X is real and symmetric we have that

λmax(X) = sup
‖v‖2=1

〈X, vv>〉, ‖X‖op = σmax(X) = sup
‖v‖2=1

|〈X, vv>〉|.

Similar relations hold for σmin and λmin if one substitutes the sup’s above for inf’s.
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3.2 Pertubation of eigenstructures

In this section we assume that we are given two matrices, X and Y = X + Z where Z is a
‘pertubation’ of X. We are interested if eigenvectors and eigenvalues of X and Y are close when Z
is ‘small’. Unfortunately, in general this is not the case.

3.2.1 Negative results

Eigenvalues The eigenvalues λi are the roots of the polynomial det(λI − X) = 0, which is a
polynomial in λ of degree n. Although the roots are continuous in the coefficients of the polynomial,
in general the modulus of continuity is not Lipschitz and only 1

degree -Hölder, and this is tight. Indeed,
consider the two matrices

X =

[
0 1
0 0

]
and Xε =

[
0 1
ε 0

]
Then λ1(X) = λ2(X) = 0, but λ1(Xε) =

√
ε and λ2 = −

√
ε. More generally consider

X =


0 1 0 . . . 0
...

. . .
. . .

...
0 . . . . . . . . . 1
0 . . . . . . . . . 0

 and Xε =


0 1 0 . . . 0
...

. . .
. . .

...
0 . . . . . . . . . 1
ε . . . . . . . . . 0.


One can show that λi(X) = 0 but that λi(Xε) = ε1/n.

Therefore we need more assumptions on X to be able to obtain Lipschitz bounds, e.g. that X is a
real and symmetric matrix.

Eigenvectors But even in the symmetric case eigenvector pertubations may fail dramatically.
For ε > 0 consider

X =

[
1 + ε 0

0 1 + ε

]
and Y =

[
1 ε
ε 1

]
.

The eigenvalues of these two matrices are the same

λ1(X) = λ1(Y ) = 1 + ε, λ2(X) = λ2(Y ) = 1− ε.

However, the eigenvectors are far apart:

v1(X) =

[
1
0

]
, v2(X) =

[
0
1

]
but v1(Y ) =

1√
2

[
1
1

]
, v2(Y ) =

1√
2

[
1
−1

]
The lesson from this is that we need separation between the eigenvalues, a spectral (eigen) gap.
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3.2.2 Pertubation bound for eigenvalues

Let X,Y, Z be real symmetric matrices in Rn×n and suppose Y = X + Z. We have that

λ1(X) + λn(Z) = λ1(X) + inf
‖v‖2=1

〈Z, vv>〉

≤ sup
‖v‖2=1

〈X + Z, vv>〉 = λ1(Y )

≤λ1(X) + sup
‖v‖2=1

〈Z, vv>〉 = λ1(X) + λ1(Z)

and therefore
|λ1(X)− λ1(Y )| ≤ max(|λ1(Z)|, |λn(Z)|) = ‖Z‖op.

More generally we have the following theorem (homework):

Theorem 3.1 (Weyl’s inequality / Lidski’s inequality).

|λi(X)− λi(Y )| ≤ ‖Z‖op.

3.2.3 Pertubation bounds for eigenspaces

Let X,Y, Z again be real symmetric matrices in Rn×n and suppose Y = X + Z. Suppose that
X =

∑
i λiuiu

>
i and Y =

∑
ρiviv

>
i . We want to prove a pertubation bound for u , u1 and v , v1

and more generally for U = [u1, . . . , ur] and V = [v1, . . . , vr]. However, considering ‖u− v‖2 makes
no sense as u and v are only determined up to their sign, and similarly U and V are only defined
up to orthogonal transformation. There are two possible workarounds:

• Consider the distance

min
s∈{±1}

‖u+ sv‖2 =
√

2− 2|〈u, v〉| =
√

2− 2 cos θ =
√

2 sin
θ

2
,

and, more generally, infR∈O(r) ‖U − V R‖.

• Consider the distance between the linear subspaces spanned by u and v, defined through their
respective projection matrices:∥∥∥uu> − vv>∥∥∥2

F
= 2(1− 〈u, v〉2) = 2 sin2(θ),

and in the general case ‖UU> − V V >‖F or ‖UU> − V V >‖op.

Theorem 3.2 (Davis-Kahan). Let cos θ = |〈u1, v1〉|. Then

sin θ ≤ ‖Z‖op
max(ρ1 − λ2, λ1 − ρ2)

.

Proof. Assume that ρ1 ≥ λ2. Let us start from the eigenvalue equations:

Xu = λ1u and Y v = ρ1v.

4



Denote U⊥ = [u2, . . . , un] ∈ Rn×n−1. Then

U>⊥X =

u
>
2
...
u>n

X =

λ2u
>
2

...
λnu

>
n

 =

λ2 . . .

λn


u
>
2
...
u>n .


Hence

U>⊥ (X + Z)v = ρ1U
>
⊥ v ⇔

λ2 . . .

λn

U>⊥ v + U>⊥ZV = ρ1U
>
⊥ v

⇔

ρ1 − λ2 . . .

ρ1 − λn

U>⊥ v = U>⊥ZV

⇔ U>⊥ v =


1

ρ1−λ2
. . .

1
ρ1−λn

U>⊥ZV
Taking the ‖ · ‖2-norm on both sides gives

‖U>⊥ v‖2 ≤

∥∥∥∥∥∥∥


1
ρ1−λ2

. . .
1

ρ1−λn


∥∥∥∥∥∥∥
op

∥∥∥U>⊥∥∥∥
op
‖Z‖op =

‖Z‖op
|ρ1 − λ2|

.

Finally, note that

‖U>⊥ v‖22 = v>U⊥U
>
⊥ v = v>(I − uu>)v = 1− 〈u, v〉2 = sin2(θ).

If ρ1 < λ2, then λ1 > ρ2. Exchanging the roles of X and Y we obtain the other statement.

More generally, considering the first r eigenvectors we have for U = [U1, . . . , Ur] and V = [V1, . . . Vr]
that for any unitarily invariant norm ‖ · ‖,

‖U>⊥V ‖ ≤
‖Z‖

max(|ρr − λr+1|, |λr − ρr+1|)
.

One can generalize this to singular vectors by a technique sometimes called self-adjoint dilation:1

For X = UΣV > ∈ Rm×n, Y = Ũ Σ̃Ṽ > consider the matrix[
0 X
X> 0

]
∈ R(m+n)×(m+n),

and likewise for Y . Observe that[
0 X
X> 0

] [
u1
v1

]
= σ1

[
u1
v1

]
and

[
0 X
X> 0

] [
u1
−v1

]
= −σ1

[
u1
−v1

]
.

Now we can apply the Davis-Kahan Theorem (and sin θ
2 ≤ sin θ) to obtain

min
s∈{±1}

∥∥∥∥[u1v1
]

+ s

[
ũ1
ṽ1

]∥∥∥∥
2

≤
2

∥∥∥∥[ 0 Z
Z> 0

]∥∥∥∥
op

|σ1(X)− σ2(Y )|
=

2‖Z‖op
|σ1(X)− σ2(Y )|

.

1Thanks for Cheng Mao for pointing this out.
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