
S&DS 684: Statistical Inference on Graphs Fall 2018

Lecture 4: Basic Random Matrix Theory/ Spectral method for Planted Clique

Lecturer: Yihong Wu Scribe: Jiyi Liu, Sep 19, 2018

Let Z = (Zij)n×n be a real symmetric matrix. Three main goals for this lecture:

1. When Zij ∼i.i.d N(0, 1) for i < j, show rigorously that ‖Z‖op ≤ C
√
n w.h.p. with ε-net

argument. We have seen intuitions for this from last lecture.

2. Extend the result to sub-Gaussian r.v.s.

3. Apply to the hidden clique problem.

4.1 Gaussian Random Matrix

For simplicity, let’s consider Z having independent N(0, 1) off-diagonals and N(0, 2) diagonals. It
will become transparent that the variance of the diagonal is immaterial, provided it is small, say, a
constant. This model is referred to as Gaussian Orthogonal Ensemble (GOE).

‖Z‖op = σmax = max
‖v‖2=1

|〈Z, vvT 〉|.

For ∀ fixed v ∈ Sn−1,

〈Z, vvT 〉 =
∑
i

Ziiv
2
i + 2

∑
i<j

Zijvivj ∼ N(0, 2
∑
i

v4i + 4
∑
i<j

v2i v
2
j ) = N(0, 2).

⇒ P(|〈Z, vvT 〉| > t) ≤ 2e−
t2

4 ,∀t > 0.

Remark 4.1. The distributions of the diagonals are not important for the operator norm. To see
this, note

‖Z‖op ≤ ‖Zo‖op + ‖diag(Z)‖op
where Zo is the same as Z except the diagonals are set to zero, and diag(Z) = diag(Zii). By union
bound, ‖Zo‖op = max1≤i≤n |Zi| = Op(

√
log n)� Op(

√
n) thus negligible.

To bound P(maxv∈Sn−1 |〈Z, vvT 〉| > t), we would like to apply the union bound. However, the Sn−1
here is continuous and |Sn−1| =∞. In order to handle this, we use the discretization technique —
the ε-net argument.

Definition 4.1. V ⊂ Sn−1 is called an ε-net (covering), if ∀u ∈ Sn−1, ∃v ∈ V s.t. ‖u− v‖2 ≤ ε.

Lemma 4.1. For V an ε-net,

max
v∈V
|〈Z, vvT 〉| ≤ ‖Z‖op ≤

1

1− 2ε
max
v∈V
|〈Z, vvT 〉|.

1



Proof. Choose u ∈ Sn−1 such that |〈Z, uuT 〉| = ‖Z‖op. ∃v ∈ V , ‖u− v‖2 ≤ ε.

‖Z‖op = |〈Z, uuT 〉| ≤ |〈Z, vvT 〉|+ |〈Z, uuT − vvT 〉|
= |〈Z, vvT 〉|+ |〈Z, uuT − uvT + uvT − vvT 〉|
≤ |〈Z, vvT 〉|+ |〈Z, u(u− v)T 〉|+ |〈Z, (u− v)vT 〉|
≤ |〈Z, vvT 〉|+ 2‖Z(u− v)‖2
≤ max

v∈V
|〈Z, vvT 〉|+ 2ε‖Z‖op.

Definition 4.2. For A ⊂ Rd, V = {v1, . . . , vm} ⊂ A is called an ε-packing, if ∀i 6= j, ‖vi− vj‖2 ≥ ε.

Definition 4.3. An ε-packing V is a maximal packing, if ∀u ∈ A\V , V ∪ {u} is not an ε-packing.

We make two key observation for these concepts:

• Any maximal ε-packing is an ε-net.

• ∀ ε-packing V of A, |V | ≤ V ol(A+ ε
2B)/V ol( ε2B). Here the sum of two sets A+B := {x+ y :

x ∈ A, y ∈ B} is the Minkowski sum.

The first observation is just by definition. We can construct a maximal ε-packing through greedy
search. The second one is because we can put |V | balls of radius ε

2 into A + ε
2B and keep them

disjoint. So the total volume of balls should not exceed that of the A+ ε
2B. Among many measures

of objects, we choose volume because it’s location invariant. We can summarize the observations as

covering # ≤ packing # ≤ volume ratio.

Now set A = Sn−1. Then A+ ε
2B ⊂ B + ε

2B = (1 + ε
2)B.1 The volume ratio

V ol(A+ ε
2B)

V ol( ε2B)
≤
V ol((1 + ε

2)B)

V ol( ε2B)
=

(1 + ε
2)nV ol(B)

( ε2)nV ol(B)
= (1 +

2

ε
)n.

What we discussed above concludes the following lemma.

Lemma 4.2 (Size of ε-net). There exists an ε-net V for Sn−1, of size |V | ≤ (1 + 2
ε )n.

Theorem 4.1. ‖Z‖op ≤ C
√
n w.h.p..

Proof. Set ε = 1
4 and choose V as in Lemma 4.2. By Lemma 4.1, ‖Z‖op ≤ 2 maxv∈V |〈Z, vvT 〉|. For

∀t > 0,

P(max
v∈V
|〈Z, vvT 〉| > t) ≤

∑
v∈V

P(|〈Z, vvT 〉| > t)

≤ |V | · 2e−
t2

4 = 2en log 9− t
2

4 .

Choose t = C
2

√
n with C > 4

√
log 9 a universal constant, then we know ‖Z‖op ≤ C

√
n with

probability at lesat 1− 2e−C
′n, where C ′ = C2/16− log 9 > 0.

1The first inclusion does not lose much volume, because the volume of a ball in high dimension is concentrated
near the shell anyway.
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4.2 sub-Gaussian Random Matrix

Reviewing the whole proof of Theorem 4.1, we can see there is only one part that the Gaussian

assumption is used: the tail bound P(|〈Z, vvT 〉| > t) ≤ 2e−
t2

4 . Thus the result of Theorem 4.1 can
be naturally extended to other r.v.s with such tail bound.

Definition 4.4. A r.v. X is sub-Gaussian (SG) with parameter σ2 if ∀λ, Eeλ(X−EX) ≤ eσ2λ2/2.

For a σ2-SG r.v. X and t > 0, a direct result of Chernoff bound is P(X − EX > t) ≤ eσ2λ2/2−λt,∀λ.

Choose λ = t/σ2, and we have P(X − EX > t) ≤ e−
t2

2σ2 . The similar result for the other side tail

combines to show P(|X − EX| > t) ≤ 2e−
t2

2σ2 . Thus, a σ2-SG r.v. do have the same tail bound as
N(0, σ2). We can also view the tail bound as the definition of σ2-SG. σ2-SG r.v.s have variance at
most σ2, which can be shown easily through Taylor expansion.

Lemma 4.3 (Hoeffding). Bounded r.v.s are SG. If X ∈ [−a, a] a.s. for some a > 0, then it’s
4a2-SG.

Proof. First, we prove for X a Rademacher r.v..

EeλX =
1

2
(eλ + e−λ) =

∑
k≥0,2|k

λk

k!
=

∞∑
k=0

λ2k

(2k)!
≤
∞∑
k=0

λ2k

2kk!
= eλ

2/2.

Second, when |X| ≤ a a.s., we apply so-called symmetrization technique. Let X ′ ∼ X and ε be a
Rademacher r.v., and they three are independent. Then X −X ′ has symmetric distribution and
ε(X −X ′) =D X −X ′.

Eeλ(X−EX) = Eeλ(X−EX
′) = EeλXe−λEX

′

≤ EeλXEe−λX
′

= Eeλ(X−X
′)

= Eeλε(X−X
′)

= E
(
E(eλε(X−X

′)|X,X ′)
)

≤ E
(
eλ

2(X−X′)2/2
)
≤ e2λ2a2 .

The last inequality is because |X −X ′| ≤ 2a a.s..

Remark 4.2. This bound is good (tight enough) if V ar(X) � a2 and is loose when V ar(X) = o(a2).
For example, let’s consider X ∼ Bern(p). By Lemma 4.3, it’s 1-SG regardless of the value of p. But
when p = o(1), V ar(X) ≈ p = o(1), so X will be strongly concentrated around 0 and the tail bound
cannot be tight. For this specific example, we can improve the result as σ2(p) = Ω(p log 1

p), where
σ(·) is sub-Gaussian norm.

Lemma 4.4. 1. If X is σ2-SG, then αX is α2σ2-SG.

2. If X1, . . . , Xn are independent σ2i -SG, then
∑n

i=1Xi is (
∑n

i=1 σ
2
i )-SG.

3. If X is σ2-SG, τ2 > σ2, then X is τ2-SG.
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Theorem 4.2. Suppose Z = (Zij)n×n a real symmetric matrix with EZ = 0. For i ≤ j, Zij ∼ σ2-SG
and are independent. Then ‖Z‖op ≤ C

√
nσ2 with probability at least 1− 2e−C

′n for some universal
constant C,C ′.

Proof. For ∀v ∈ Sn−1, 〈Z, vvT 〉 =
∑

i Ziiv
2
i + 2

∑
i<j Zijvivj is SG with parameter

σ2

∑
i

v4i + 4
∑
i<j

v2i v
2
j

 ≤ 2σ2

(∑
i

v2i

)2

= 2σ2.

We have P(|X − EX| > t) ≤ 2e−
t2

4σ2 . The rest is identical to the proof of Theorem 4.1.

4.3 Spectral methods for Planted Clique Model

We now apply the random matrix theory above to the planted clique model. Let G ∼ G(12 , n, k). In
other words, K ⊂ [n] is a hidden k-clique, and G has adjacency matrix

Aij =

{
1 i, j ∈ K
Bern(12) o/w

.

Let W be a real symmetric matrix that

Wij =

{
2Aij − 1 i 6= j

0 i = j
.

The following spectral method to find the clique is by [AKS98]:

1. Find the top eigenvector u of W .

2. Let K̃ be the index vector of k largest |ui|.

3. (Clean up) Define K̂ = the set of vertices in G having ≥ 3k
4 neighbors in K̃. In other words,

K̂ = {v ∈ G : dK̃(v) ≥ 3k
4 }.

Theorem 4.3 ([AKS98]). k ≥ C
√
n for C large enough, P(K̂ = K)→ 1.

Proof. First, we show K̃ is approximately correct: |K̃ ∩K| ≥ (1− ε)k w.h.p for some ε = ε(C).
Fix some small ε > 0 that we will choose later. Let W ∗ = ξξT , ξ = I{K} = (I{i ∈ K})1≤i≤n. Now
W ∗ is rank one, so v = 1√

k
ξ is its top eigenvector. By sin Θ-theorem (Davis-Kahan): Providing

λ1(W
∗)− λ2(W ) > 0,

min
±
‖u± v‖2 ≤

‖W −W ∗‖op
λ1(W ∗)− λ2(W )

. (4.1)

WLOG, assume the LHS is ‖u − v‖2. ‖W −W ∗‖op ≤ ‖EW −W‖op + ‖EW −W ∗‖op ≤ ‖EW −
W‖op + 1 ≤ C0

√
n + 1 w.h.p for some universal C0 > 1 by Theorem 4.2. By Weyl’s inquality,
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|λ2(W )| = |λ2(W ∗) − λ2(W )| ≤ ‖W −W ∗‖op ≤ C0
√
n + 1 under the event above. And we know

λ1(W
∗) = ‖ξ‖22 = k. Plug back into (4.1),

‖u− v‖2 ≤
C0
√
n+ 1

C
√
n− C0

√
n− 1

≤ ε (4.2)

w.h.p for C big enough.

Second, ‖u− v‖2 ≤ ε actually implies

|K̃ ∩K| ≥ (1− ε′)k. (4.3)

To see this, note that |K| = |K̃| = k, thus |K\K̃| = |K̃\K|.

ε2 ≥ ‖u− v‖22 =
∑
i∈K

(ui −
1√
k

)2 +
∑
i 6∈K

u2i .

If |ui| ≤ 1
2
√
k
, ∀i 6∈ K̃, then

ε2 ≥
∑

i∈K\K̃

(
1√
k
− ui)2 ≥

1

4k
|K\K̃|.

If ∃j 6∈ K̃, |uj | > 1
2
√
k
, by the definition of K̃, ∀i ∈ K̃, |ui| > 1

2
√
k
.

ε2 ≥
∑

i∈K̃\K

u2i ≥
1

4k
|K̃\K|.

In all, in either case, (4.3) holds with ε′ = 8ε2.

Third, we claim K̂ = K with high probability. Think under the event of ‖u − v‖ ≤ ε. If v ∈ K,
dK̃(v) ≥ dK̃∩K(v) ≥ |K̃∩K|−1 ≥ (1−ε′)k. So v ∈ K̂ when ε′ < 1

4 . If v 6∈ K, dK̃(v) ≤ dK(v)+|K̃\K|.
From above, we know |K̃\K| ≤ ε′

2 k. And dK(v) ∼ Bin(k, 12). By Chernoff bound,

P(dK(v) ≥ (
3

4
− ε′

2
)k) ≤ P(dK(v) ≥ 5

8
k) ≤ e−

k
32 .

In all, under events ‖u− v‖ ≤ ε and dK(v) ≤ (34 −
ε′

2 )k, we have K̂ = K. To wrap up the whole
proof, we choose ε = 1

8 . Then ε′ = 8ε2 = 1
8 . Choose C ≥ 17C0 then the second inequality in (4.2) is

guaranteed.

P(K̂ 6= K) ≤ P(‖u− v‖ > ε) + P(dK(v) > (
3

4
− ε′

2
)k)

≤ P(‖W − EW‖op > C0

√
n) + e−

k
32

≤ 2e−C
′
0n + e−

C
32

√
n → 0.

Remark 4.3. 1. An alternative algorithm can take u as the second leading eigenvector of A.
The top eigenvector of A is almost deterministic and not informative, since it is almost ∝ 1.

2. Thresholding technique is widely used in non-parametric estimation. Here, the step 3 (clean
up) can be viewed as a version of thresholding.
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4.4 Improving the constant

Next we show that the constant C in Theorem 4.3 can be made arbitrarily small, at the pricing of
increasing the time complexity (still poly(n) but with bigger exponent). The part is generic and
applies to any algorithm. The idea is as following. Fix a subset of vertices S ⊂ V , |S| = s. Define
N∗(S) as the common neighbor of S, or N∗(S) = {v ∈ V \S : ∃u ∈ S, v ∼ u} =

⋂
u∈S N(u)\S. Let’s

say s = 2. Then N∗(S) ∼ Bin(n− 2, 14) ≈ n
4 . Next, look at the induced subgraph G′ = G[N∗(S)],

|V ′| ≈ n
4 . If S ⊂ K, then G′ = G(N∗(S), 12 , k − 2). So as we can see, by this subgraph operation, n

decays exponentially while k decays linearly. The upgraded algorithm is summarized below:

Search for ∀S ⊂ V , |S| = s. Run the existing algorithm on G′ = G[N∗(S)] and output Q.
Iterate until S ∪Q is a k-clique. And the final output is S ∪Q.

When the search over S finds S ⊂ K, the requirement in Theorem 4.3 asks for k − s ≥ C
√
n · 2−s

to guarantee consistency of Q, thus also guarantees the consistency of S ∪Q in the original graph
G. Pick s ≈ 2 log2

C
δ , then the algorithm above is guaranteed to be consistent with requirement

k ≥ δ
√
n. The extra search time is at most

(
n
s

)
� ns that is polynomial in n.

References

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a
random graph. Random Structures & Algorithms, 13(3-4):457–466, 1998.

6


	4.1 Gaussian Random Matrix
	4.2 sub-Gaussian Random Matrix
	4.3 Spectral methods for Planted Clique Model
	4.4 Improving the constant

