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7.1 Planted partition model and overview

In the second part of the course, we will study the problem of community detection in a broad
sense. Consider the following abstract planted partition model, where a matrix A = (Aij)1≤i<j≤n is
observed whose distribution depends on the latent labels σ = (σ1, . . . , σn) ∈ {±}n, such that

Aij ∼

{
P σi = σj

Q σi 6= σj

Given A, the goal is to recover the labels σ accurately.

Two prominent special cases are the following:

Stochastic block model (SBM) Here P = Bern(p) and Q = Bern(q). In this case the set of
vertices [n] is partitioned into two communities V+ = {i : σi = +} and V− = {i : σi = +}, and A is
the adjacency matrix of a random graph, such that two nodes i and j are connected with probability
p if they belong to the same community, and with probability q if otherwise. The case of p > q is
referred to as “assortative” and p < q as “disassortative”.

The community structure is determined by the vector σ, which, depending on the problem formulation,
could either be fixed or random. We will frequently consider special cases:

• iid model: Each σi is equally likely to be ± (Rademacher) and independently.

• exact bisection: |V+| = |V−| = n/2 (when n is even) and the partition is chosen uniformly at
random from all bisections.

Typically these two models behave very similarly.

Spiked Wigner model (Rank-one deformation) Here P = N(
√

λ
n , 1) and Q = N(−

√
λ
n , 1).

In matrix notation,

A =

√
λ

n
σσ> + Z (7.1)

where Z is such that {Zij : 1 ≤ i < j ≤ n} are iid N(0, 1). Therefore A can be viewed is a rank-one
perturbation of a Gaussian Wigner matrix.

As opposed to the treatment of the planted clique problem in Part ??, we will be focusing on

• Sharp threshold, i.e., finding the exact constant in the fundamental limit (and achieving them
with fast algorithms).
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• “Sparse” graphs, where the edge density tends to zero (at different speed), unlike the hidden
clique model G(n, 12 , k)

We will focus on the following three formulations (recovery guarantees):

Detection Here there is a null model. For example,

• For spiked Wigner model, the null hypothesis is A is iid Gaussian. The sharp threshold is
given by λ = 1, in the sense that for any fixed ε, it is possible to test the hypotheses with
vanishing error probability if λ ≥ 1 + ε, and impossible if λ ≤ 1− ε.

• For SBM with bisection, we want to test against the null hypothesis of no community structure,
that is, an Erdős-Rényi graph G(n, p+q2 ) with the same average degree. The most interesting

regime is bounded average degree p = a
n , q = b

n for constants a, b, and the sharp threshold is

given by (a−b)2
2(a+b) = 1.

Correlated (weak) recovery Here and below, there is no null model. The goal is to recovery
the community structure (labels) better than random guessing. Let σ̂ = σ̂(A) be the estimator. Its
overlap with the true labels σ is |〈σ̂, σ〉| and the number of misclassification errors (up to a global
sign flip) is expressed as

`(σ, σ̂) = min
±
‖σ̂ ± σ‖1 = n− |〈σ̂, σ〉|.

In the iid setting, random guessing would yield, by CLT, |〈σ̂, σ〉 = OP (
√
n)| and E[|〈σ̂, σ〉|] = o(n).

The goal of weak recovery is to achieve a positive correlation, namely

E[|〈σ̂, σ〉|] = Ω(n)

Although in general detection and correlated recovery are two different problems, for both SBM and
spiked Wigner the thresholds coincide. In fact, for certain models one can have a generic reduction
between the problems (e.g. spiked Wigner, see Homework).

(Almost) exact recovery Almost exact recovery means achieving a vanishing misclassification
rate: E`(σ, σ̂) = o(n). Typically the sharp threshold is expressed in terms of Hellinger distance as
H2(P,Q)� 1

n .

Exact recovery means `(σ, σ̂) = 0 with probability tending to 1. Typically the sharp threshold is

given by H2(P,Q) = (2+ε) logn
n .

A more statistical flavored question is to characterize the optimal (in the sense of minimax)

misclassification rate 1
n`(σ, σ̂), which typically behaves as exp(−H2(P,Q)

2 ).

7.2 Detection threshold for SBM

We want to test the hypothesis

H0 : G ∼ G(n,
p+ q

2
) vs. H1 : G ∼ SBM(n, p, q).
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Under the SBM model, we assume the the labels σ = (σ1, . . . , σn) are either iid Rad(12), or drawn
uniformly at random from all bisections. The detection problem is non-trivial in the regime of
bounded average degree:

p =
a

n
, q =

b

n
, (7.2)

where a, b are constants.

Theorem 7.1. If (a−b)2
2(a+b) > 1, detection is possible, in the sense of total variation that

TV(Law(G|H0),Law(G|H1))→ 1 (7.3)

If (a−b)2
2(a+b) ≤ 1, detection is impossible, in the sense that

TV(Law(G|H0),Law(G|H1)) ≤ 1− Ω(1). (7.4)

We start with the impossibility part. For non-detection it is enough to show

χ2(Law(G|H0)||Law(G|H1)) = O(1). (7.5)

Remark 7.1 (Contiguity). Recall the notion of contiguity (of two sequences of probability measures
(Pn) and (Qn)). We say (Pn) is continguous to (Qn) if for any sequence of events En, Qn(En)→
0 =⇒ P (En)→ 0. Contiguity implies non-detection, because for any sequence of tests

Qn(failure)→ 0 =⇒ Pn(success)→ 0

which is bad news.

A sufficient condition of continguity is bounded second moment of likelihood, i.e., χ2(Pn‖Qn) = O(1).
Indeed, by Cauchy-Schwarz,

Pn(En) = EQn
[
Pn
Qn

1 {En}
]
≤

√√√√EQn

[(
Pn
Qn

)2
]

︸ ︷︷ ︸√
χ2+1

Qn(En)→ 0

The following lemma is very useful for computing χ2(mixture distribution||simple distribution). The
introduction of two iid copies of randomness is typical in second moment calculation (cf. Section ??).

Lemma 7.1 (Second moment trick). Suppose we have a parametric family of distributions {Pθ :
θ ∈ Θ}. Given a prior on the parameter space Θ, define the mixture distribution:

Pπ ,
∫
Pθπ(dθ).

Then we have χ2(Pπ||Q) = EG(θ, θ̃)− 1, where θ, θ̃
iid∼ π and G(θ, θ̃) is defined by

G(θ, θ̃) ,
∫
PθPθ̃
Q

.
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Proof. The proof is just by Fubini:∫
P 2
π

Q
=

∫
(
∫
Pθ(x)π(dθ))(

∫
Pθ̃(x)π(dθ̃))

Q(x)
µ(dx)

=

∫
π(dθ)π(dθ̃)

(
Pθ(x)Pθ̃(x)

Q(x)
µ(dx)

)
︸ ︷︷ ︸

G(θ,θ̃)

Example 7.1 (Gaussian). Consider Pθ = N(θ, Id) and Q = N(0, Id), and let π be some distribution

on Rd. Then χ2(Pπ‖Q) = E[〈θ, θ̃〉]− 1, where θ, θ̃
i.i.d.∼ π.

The calculation for SBM can be carried out in a very general setting. Consider P and Q in place of
Bern(p) and Bern(q). For each label σ ∈ {±}n, the distribution of the adjacency matrix is

Pσ = Law(A|σ) =
∏
i<j

(P1{σi=σj} +Q1{σi 6=σj}) =
∏
i<j

(
P +Q

2
+
P −Q

2
σiσj

)
(7.6)

and the null distribution is P0 =
∏
i<j

(P+Q)
2 . Fix two assignment σ, σ̂ ∈ {±1}n. Then

G(σ, σ̂) =

∫
PσPσ̂
P0

=

∫ ∏
i<j

(
P+Q
2 + P−Q

2 σiσj

)(
P+Q
2 + P−Q

2 σ̃iσ̃j

)
P+Q
2

=
∏
i<j


∫
P +Q

2︸ ︷︷ ︸
=1

+

∫
P −Q

2︸ ︷︷ ︸
=0

σiσj +

∫
P −Q

2︸ ︷︷ ︸
=0

σ̂iσ̂j +

∫
(P −Q)2

2(P +Q)︸ ︷︷ ︸
, τ

2n

σiσj σ̂iσ̂j


=
∏
i<j

[1 + ρσiσj σ̂iσ̂j ]

≤ exp

ρ∑
i<j

σiσj σ̂iσ̂j

 ≤ exp
(ρ

2
〈σ, σ̂〉2

)
Thus, by Lemma ??, we have

χ2(P1‖P0) + 1 = Eσ,σ̃
[
exp

(ρ
2
〈σ, σ̂〉2

)]
where σ̃ is an iid copy of σ.

For SBM(n, p, q), under the scaling (??), we have

ρ =
τ + o(1)

n
, τ ,

(a− b)2

2(a+ b)
.

Next we consider two situations:
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Random labels: σ, σ̂
iid∼ {±1}n. By CLT, 1√

n
〈σ, σ̂〉 = 1√

n

∑n
i=1 σiσ̂i

D−→Z ∼ N(0, 1). Assuming

convergence of MGF (see Lemma ?? next), we have

χ2(P1‖P0) + 1 = E exp

(
τ + o(1)

2n
〈σ, σ̂〉2

)
→ E

(
τ + o(1)

2
Z2

)
=

{
∞ if τ ≥ 1

constant if τ < 1.
(7.7)

Exact bisection: Let us consider the case where σ, σ̂ are drawn iid and uniformly at random
from the set {θ ∈ {±1}n :

∑
θi = 0}. For simplicity, write

σ = 2ξ − 1, σ̃ = 2ξ̃ − 1,

Then 〈σ, σ̂〉 = 4〈ξ, ξ̂〉 − n. Both ξ, ξ̃ are iid uniform random n
2 -sparse binary vectors. So

〈ξ, ξ̂〉 ∼ Hypergeometric(n,
n

2
,
n

2
),

which means (check!)1

〈ξ, ξ̂〉 − n
4√

n
16

D−→Z ∼ N(0, 1).

Thus the dichotomy (??) applies to bisection as well.

To pass from weak convergence to convergence of the MGF, the following lemma is useful:

Lemma 7.2 (Convergence of MGF). Assume that Xn
D−→X. Let Mn(t) = E exp(tXn) and M(t) =

E exp(tX). If there exists some constant α > 0 such that

sup
n
P (|Xn| > x) ≤ exp(−αx)

for all x > 0, then Mn(t)→M(t) for all |t| < α.

Remark 7.2. • The critical case of (a−b)2
2(a+b) = 1 also implies non-detection. Proving this is

outside the scope of this section as the χ2 truly blows up.

• The threshold of the spiked Wigner model (??) is given by λ = 1. This can be proved by the
same second moment method (homework).

7.3 Test by counting cycles

Below we describe a test for

H0 : G ∼ G(n,
p+ q

2
) vs. H1 : G ∼ SBM(n, p, q).

1Note that the variance of Hypergeometric(n, n
2
, n
2

) is exactly half of its counterpart Binom(n
2
, 1
2
). Why? Think

about sampling with and without replacements.
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that achieves the sharp threshold in Theorem ??, following ?. We will consider the labels being iid
Rad(12). The test is based on counting “short” cycles – by short we mean much shorter than the
longest cycle, but the length still need to be slowing growing. As there is no generic polynomial-time
algorithm for counting k-cycles (Ck) for growing k, in the next section we make it polynomial-time
relying on the randomness of the graph.

Consider the number of k-cycles (not induced cycles) as the test statistic, denoted by Xk. As a
warmup, consider the behavior of Xk in G(n, dn). Then by union bound,

P(Xk > 0) ≤ E[Xk] =

(
n

k

)
k!

1

2k

(
d

n

)k
≤ dk,

where the overcounting factor 2k is the number of symmetries (automorphisms) of Ck, namely, cyclic
shift and flip. Thus there are no cycles of growing length if d < 1. Of course, this first-moment
calculation does not tell us about existence. Nevertheless it is known that if d ≥ 1, the longest cycle
is of length Ω(n) (?, Chap. 8).

Now let’s get back to the original problem of testing G(n, a+b2n ) versus SBM(n, an ,
b
n). Assume that

a > b. Define

s =
a− b

2
, d =

a+ b

2
.

The threshold is then given by s2 ≥ d. Since d > s, this implies s > 1 and a > 2.

Intuition: For k not too big, Xk has a Poisson limit under both model with different parameters.
To prove the success of the test (based on thresholding Xk), it suffices to compute its mean and
variance. We will show

Under H0: EXk ≈ dk, VarXk ≤ dk,
Under H1: EXk ≈ dk + sk, VarXk ≤ dk

Under the condition s2 > d, we have

E1[Xk]− E0[Xk]�
√

Var0(Xk) + Var1(Xk)

as k growing, and hence the test 1
{
Xk ≤ dk + sk

2

}
succeeds.

7.3.1 First moment calculation

Under H0. First we note that

Xk =
1

2k

∑
v1,...,vk;

all ordered k-tuple
from V (G)

1{v1∼v2,v2∼v3,...,vk∼v1},

which implies

EXk =
1

2k

(
n

k

)
k!︸ ︷︷ ︸

,[n]k

P{v1 ∼ v2, v2 ∼ v3, . . . , vk ∼ v1}︸ ︷︷ ︸
=( d

n
)
k

≈ 1 + o(1)

2k
dk (7.8)

under H0, where the last equality holds provided k = o(
√
n) (Why? Think about birthday problem).
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Under H1. We just need to recompute the probability in (??), which now depends on the labels
of the vertices. Consider the adjacency matrix A. Then given any two vertices vi, vi+1, we have

Avi,vi+1 ∼

{
Bern(p) if σi = σi+1

Bern(q) if σi 6= σi+1.

Given any k-tuple {v1, v2, . . . , vk} of vertices, suppose N denotes the number of disagreements of
adjacent labels, given by

N =
k∑
i=1

1{σ(vi)6=σ(vi+1)}

with k + 1 understood as 1 circularly. Write

N =
k−1∑
i=1

1{σ(vi) 6=σ(vi+1)}︸ ︷︷ ︸
,T

+1{σ(vk)6=σ(v1)}︸ ︷︷ ︸
,S

Then we have T ∼ Binom(k − 1, 12) and

S =

{
0 T is even

1 T is odd

is a parity bit, so that N = S + T is always even.

It is clear that conditioned on N = m, the probability of v1, . . . , vk forming a cycle is qmpk−m. Note
that

P(N = m) =

{
0 m odd

P(Binom(k − 1, 12) = m− 1 or m) =
(
k
m

)
2−k+1 m even

Thus

P(v1 ∼ v2 ∼ · · · ∼ vk) =

k∑
m=0

qmpk−m · P(N = m)

=
k∑

m=0
m even

qmpk−m
(
k

m

)
2−k+1

=
k∑

m=0

(−q)mpk−m + qmpk−m

2

(
k

m

)
2−k+1

=

(
p+ q

2

)k
+

(
p− q

2

)k
= n−k(sk + dk).

Thus, under H1,

E(Xk) =
[n]k
2k

{(
p+ q

2

)k
+

(
p− q

2

)k}
k=o(

√
n)

=
1 + o(1)

2k

(
sk + dk

)
.
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7.3.2 Variance analysis

We only consider the variance under the null, as the alternative is similar. Given ordered k-tuple of
vertices T = (v1, . . . , vk), define bT = 1 {v1 ∼ v2, · · · , vk ∼ v1}. Then under H0, we have

Var(Xk) =
1

4k2

∑
T,T ′

Cov(bT , bT ′) =
1

4k2

∑
T

Var(bT )︸ ︷︷ ︸
≤E[bT ]=dk

+
∑
T 6=T ′
T∩T ′ 6=∅

Cov(bT , b
′
T )

 .

Consider two distinct k-cycles T and T ′ that are overlapping. Let

` = number of common edges, v = number of common vertices.

Note that

• Cov(bT , bT ′) ≤ E[bT bT ′ ] = p2k−`

• Crucially,
v ≥ `+ 1.

This is because the intersection of two cycles is a forest (each connected component is a path),
so that v = `+ cc.

Combining all this, we get

∑
T 6=T ′
T∩T ′ 6=∅

Cov(bT , b
′
T ) ≤

k−1∑
`=1

[n]2k−v[k]v

(
d

n

)2k−`

v≥`+1
≤

k−1∑
`=1

n2k−`−1k!

(
d

n

)2k−`

≤ 1

n
kk+1d2k

= o(1), provided that k = o(log n/ log log n).

So we get

Var(Xk) =
1

4k2
dk + o(1).

7.4 Approximately counting cycles in polynomial time

A caveat: The naive way of counting (exhaustive search) k-cycles takes nk time, which is not
polynomial in n if k →∞. From the previous analysis, we see that we need to count k-cycles with
slowly growing k.

Fix: The trick is to use the sparsity of the random graph and approximately count the number of
k-cycles.
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Definition 7.1 (`-tangle free). An `-tangle is a connected subgraph of diameter at most 2` that
contains atleast two cycles.

A graph G is called `-tangle free if no subgraph of G is an `-tangle. In other words, for all v ∈ V (G),
its `-hop neighborhood N`(v) contains at most one cycle.

Lemma 7.3. If G ∼ G(n, dn) and d is a constant, then G is `-tangle free if ` = o(log n) (In general
` log d = c log n for small constant c suffices).

Proof. Suppose G contains an `-tangle. Then G must contain a subgraph of the following form

with m edges and v vertices, such that m ≤ 4` and m ≥ v + 1. Then by union bound, such a graph
exists with probability

≤ nv
(
d

n

)m
≤ dO(`)

n
→ 0,

when ` log d� log n.

Next we discuss the connection between counting and linear algebra. Let’s start with triangles
(k = 3):

Example 7.2 (Counting triangles). Suppose that A is the adjecency matrix of G. Given any vertex
v in G,

(A3)vv =
∑
a,b

AvaAabAbv

is in fact twice the number of triangles incident to v. Therefore, Tr(A3) = 6× the number of triangles
in G.

To count find k-cycles one can consider computing Tr(Ak), which can be done in the time of
eigenvalue decomposition. But

Tr(Ak) = number of closed walks of length k � number of k-cycles .

The strategy next is use the tangle-free structure and count the number of non-backtracking (NB)
paths.

Definition 7.2 (Non-backtracking walk). We say

• (v1, v2, . . . , vk) is a NB walk if vt ∼ vt+1 and vt 6= vt−2 for all t.

• (v1, v2, . . . , vk) is a NB cycle if vt ∼ vt+1 and vt 6= vt−2 for all t and v1 = vk.

For example,

Consequences: Conditioned on G being 2k-tangle free, any NB cycle of k steps is either a k-cycle,
or an m cycle traversed for k

m times. Otherwise, we have a 2k-tangle such as two short cycles
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Figure 7.1: Examples of backtracking and non-backtracking.

sharing a vertex (see Fig. ?? above). This reduces the problem to counting the number of NB cycles
of length m, for all m = 1, . . . , 2k.

It is easy to count NB walk of length k recursively: Let Nm
uv = # of NB walks from u→ v for k steps.

Then our goal is expressed as ∑
v∈V (G)

Nm
vv

So it suffices to compute Nm
uv for all pairs u, v.

It turns out Nm
uv is given by the following three-term recursion:

Nm+1
uv =

∑
w∼v

Nm
uw − (dv − 1)Nm−1

uv . (7.9)

In matrix notation: let N (m) = (Nm
uv) and D = diag(dv). Then we have2{

N (m+1) = N (m) ·A−N (m−1)(D − I),

N (1) = A, N (2) = A2 −D
(7.10)

which means we can compute all Nm
uv’s using matrix multiplication.

Finally, to justify (??), simply notice that the first term on the RHS counts all NB walks of m steps
from u to a neighbor w of v, which, followed by another step from w to v, constitute a walk of
m+ 1 steps from u to v. But, it can be backtracking. So we need to subtract those out, and that
it precisely the second term: fix any NB walk from u to v of m− 1 steps, say, u, . . . , v′, v, where
v′ ∈ N(v). Append this walk by w ∈ N(v)\{v′} constitutes a NB walk from u to w in m steps.

2In the special case of d-regular graphs, (??) becomes N (m+1) = N (m) ·A− (d− 1)N (m−1). This means N (m) is a
polynomial of A, in fact, the Chebyshev polynomial, which satisfies the same three-term recurrence. See ? for more.
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