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7.1 Planted partition model and overview

In the second part of the course, we will study the problem of community detection in a broad
sense. Consider the following abstract planted partition model, where a matrix A = (Ajj)i<i<j<n is
observed whose distribution depends on the latent labels o = (071,...,0,) € {£}", such that

P o;=o0;
Aij ~ ’ J
Q 0i#0j
Given A, the goal is to recover the labels o accurately.

Two prominent special cases are the following;:

Stochastic block model (SBM) Here P = Bern(p) and @ = Bern(g). In this case the set of
vertices [n] is partitioned into two communities Vi = {i:0; =+} and V_ = {i: 0; = +}, and A is
the adjacency matrix of a random graph, such that two nodes i and j are connected with probability
p if they belong to the same community, and with probability ¢ if otherwise. The case of p > q is
referred to as “assortative” and p < g as “disassortative”.

The community structure is determined by the vector o, which, depending on the problem formulation,
could either be fixed or random. We will frequently consider special cases:

e iid model: Each o; is equally likely to be + (Rademacher) and independently.

e exact bisection: |V4| = |V_| =n/2 (when n is even) and the partition is chosen uniformly at
random from all bisections.

Typically these two models behave very similarly.

Spiked Wigner model (Rank-one deformation) Here P = N(\/%, 1) and Q = N(—\/%, 1).

In matrix notation,
A
A= \/>O'O'T +Z (7.1)
n

where Z is such that {Z;; : 1 <i < j < n} are iid N(0,1). Therefore A can be viewed is a rank-one
perturbation of a Gaussian Wigner matrix.

As opposed to the treatment of the planted clique problem in Part 7?7, we will be focusing on

e Sharp threshold, i.e., finding the exact constant in the fundamental limit (and achieving them
with fast algorithms).



e “Sparse” graphs, where the edge density tends to zero (at different speed), unlike the hidden
clique model G(n, %, k)

We will focus on the following three formulations (recovery guarantees):

Detection Here there is a null model. For example,

e For spiked Wigner model, the null hypothesis is A is iid Gaussian. The sharp threshold is
given by A = 1, in the sense that for any fixed e, it is possible to test the hypotheses with
vanishing error probability if A > 1 + ¢, and impossible if A <1 —e.

e For SBM with bisection, we want to test against the null hypothesis of no community structure,

that is, an Erdés-Rényi graph G(n, %) with the same average degree. The most interesting

regime is bounded average degree p = ., q = % for constants a, b, and the sharp threshold is

given by é‘g;ﬁ; =1.

Correlated (weak) recovery Here and below, there is no null model. The goal is to recovery
the community structure (labels) better than random guessing. Let 6 = 6(A) be the estimator. Its
overlap with the true labels o is |[(¢, 0)| and the number of misclassification errors (up to a global
sign flip) is expressed as

l(o,0) = miin |6 £oli =n—|(G,0)|

In the iid setting, random guessing would yield, by CLT, |(G,0) = Op(y/n)| and E[[(6,0)|] = o(n).
The goal of weak recovery is to achieve a positive correlation, namely

Ell(6, o)l = Q(n)

Although in general detection and correlated recovery are two different problems, for both SBM and
spiked Wigner the thresholds coincide. In fact, for certain models one can have a generic reduction
between the problems (e.g. spiked Wigner, see Homework).

(Almost) exact recovery Almost exact recovery means achieving a vanishing misclassification
rate: El(o,6) = o(n). Typically the sharp threshold is expressed in terms of Hellinger distance as
H*(P,Q) > L.

Ezact recovery means {(o,d) = 0 with probability tending to 1. Typically the sharp threshold is
given by H2(P,Q) = @tdlosn,

n

A more statistical flavored question is to characterize the optimal (in the sense of minimax)

misclassification rate 1¢(c, &), which typically behaves as exp(—w).

7.2 Detection threshold for SBM

We want to test the hypothesis

P+q

H():GNG(R, 9

) vs. Hy :G~ SBM(n,p,q).



Under the SBM model, we assume the the labels o = (071, ...,0,) are either iid Rad(3), or drawn
uniformly at random from all bisections. The detection problem is non-trivial in the regime of
bounded average degree:

n’ q=— (72)
where a, b are constants.

(a—b)?

Theorem 7.1. If 2ath)

> 1, detection is possible, in the sense of total variation that
TV (Law(G|Hp), Law(G|Hy)) — 1 (7.3)

If gg;ﬁg < 1, detection is impossible, in the sense that

TV(Law(G|Ho), Law(G|Hy)) < 1 — Q(1). (7.4)

We start with the impossibility part. For non-detection it is enough to show
X*(Law (G| Ho)|[Law (G| H1)) = O(1). (7.5)

Remark 7.1 (Contiguity). Recall the notion of contiguity (of two sequences of probability measures
(P,) and (@Qy)). We say (F,) is continguous to (@) if for any sequence of events E,,, Q,(E,) —
0 = P(E,) — 0. Contiguity implies non-detection, because for any sequence of tests

Qn(failure) - 0 = P, (success) — 0

which is bad news.

A sufficient condition of continguity is bounded second moment of likelihood, i.e., x?(P,||@Qx) = O(1).
Indeed, by Cauchy-Schwarz,

P,

P,(E,) =Eq, [Qn

1{5,}) < | Ea.

Vx2+1
The following lemma is very useful for computing y?(mixture distribution||simple distribution). The
introduction of two iid copies of randomness is typical in second moment calculation (cf. Section 77?).

Lemma 7.1 (Second moment trick). Suppose we have a parametric family of distributions {Py :
0 € ©}. Given a prior on the parameter space ©, define the mizture distribution:

P, 2 / Pym(dB).
Then we have x2(Pr||Q) = EG(6,6) — 1, where 6,6 “r and G(0,0) is defined by

. PyP;
Go,6) 42 | —¢
(6,6) 0

w



Proof. The proof is just by Fubini:

P2 [ ([ Py(z)m(d6))([ Py(x)m(d)) .
/5= Q) plde)
= / 7(dO)m(d6) <Wﬂ(dx)>

G(6,6)

]
Example 7.1 (Gaussian). Consider Py = N (0, I;) and Q = N(0, I), and let 7 be some distribution
on R Then x*(Pr|Q) = E[(6,6)] ~ 1, where 6,§"Xm.

The calculation for SBM can be carried out in a very general setting. Consider P and @ in place of
Bern(p) and Bern(g). For each label o € {£}", the distribution of the adjacency matrix is

P+Q P-Q
Pr = Law(4l0) = [[(PLocoy + Qo) = [T (T3 2+ T3 %0is)  (79)
1<j 1<j
and the null distribution is Py = [],_; (P19 Fix two assignment 0,5 € {£1}". Then
Py Ps
G(o,6) = 2

<P+Q + 2Q0z0j> (72Q + 72Q5i&j)

:/H e

i<j 2
1<J *—é;n—/

= H [1 + pO’iO'jOA'ia'j]
1<J

< exp pZUiJijiij < exp (g<a, (3)2)
i<j
Thus, by Lemma ??, we have
VE(PUIPY) +1 = Eog [exp (5(0,5)?)]
where & is an iid copy of o.
For SBM(n, p, q), under the scaling (??), we have

T o a — 2
Tt sla-b?

Next we consider two situations:



Random labels: o,5 {£1}". By CLT, ﬁ(a, 6) = 5= >0, 0627 ~ N(0,1). Assuming

convergence of MGF (see Lemma ?? next), we have
T4 o(1 .
X*(Pi[|Po) +1 =Eexp <2n()<07 U>2)

S E <T+ 0(1)22>
2
_{oo ifr>1

. (7.7)
constant ifr<1.

Exact bisection: Let us consider the case where 0,6 are drawn iid and uniformly at random
from the set {6 € {£1}": > 6; = 0}. For simplicity, write

c=2-1, &=2—1,

Then (o,6) = 4(¢ ,f> — n. Both &, ¢ are iid uniform random 5-sparse binary vectors. So

),

(€, é} ~ Hypergeometric(n, g, g

which means (check!)!

Min_%%z ~ N(0,1).

16
Thus the dichotomy (?7?) applies to bisection as well.

To pass from weak convergence to convergence of the MGF, the following lemma is useful:

Lemma 7.2 (Convergence of MGF). Assume that X, 25X, Let M, (t) = Eexp(tX,) and M(t) =
Eexp(tX). If there exists some constant o > 0 such that

sup P(|Xy| > z) < exp(—az)
n

for all x > 0, then M, (t) — M(t) for all |t| < c.

(a—b)
2(a+b)
outside the scope of this section as the x? truly blows up.

Remark 7.2. e The critical case of = 1 also implies non-detection. Proving this is

e The threshold of the spiked Wigner model (?7) is given by A = 1. This can be proved by the
same second moment method (homework).

7.3 Test by counting cycles

Below we describe a test for

Hy : G ~ G(n, 1%) vs. Hy: G~ SBM(n,p,q).

!Note that the variance of Hypergeometric(n, 5, %) is exactly half of its counterpart Binom(%, %) Why? Think
about sampling with and without replacements.



that achieves the sharp threshold in Theorem 77, following ?. We will consider the labels being iid
Rad( %) The test is based on counting “short” cycles — by short we mean much shorter than the
longest cycle, but the length still need to be slowing growing. As there is no generic polynomial-time
algorithm for counting k-cycles (Cf) for growing k, in the next section we make it polynomial-time
relying on the randomness of the graph.

Consider the number of k-cycles (not induced cycles) as the test statistic, denoted by X;. As a
warmup, consider the behavior of X in G(n, %) Then by union bound,

n 1 /d\"
P(Xy > 0) <E[X}] = K= (-] <d*
(Xi > 0) < E[X] <k> Qk(n) <d,
where the overcounting factor 2k is the number of symmetries (automorphisms) of C, namely, cyclic
shift and flip. Thus there are no cycles of growing length if d < 1. Of course, this first-moment
calculation does not tell us about existence. Nevertheless it is known that if d > 1, the longest cycle
is of length Q(n) (7, Chap. 8).

Now let’s get back to the original problem of testing G(n, "2—‘#’) versus SBM (n, &, %) Assume that

a > b. Define

a—2b a+b
, d= )

2 2

The threshold is then given by s* > d. Since d > s, this implies s > 1 and a > 2.

S =

Intuition: For k£ not too big, X has a Poisson limit under both model with different parameters.
To prove the success of the test (based on thresholding X%), it suffices to compute its mean and
variance. We will show

Under Hy: EXj, ~d*, VarXy < d",
Under Hy: EX, ~dF+s*, VarXy <d*

Under the condition s2 > d, we have

El[Xk] — Eo[Xk] > \/V&I‘()(Xk) + Vary (Xk)

as k growing, and hence the test 1 {X p < dF+ %} succeeds.

7.3.1 First moment calculation

Under Hy. First we note that

1
Xk = ﬂ Z H{v1~v27v2~v3,,..,vkwvl}7

V1,5 Vk;
all ordered k-tuple
from V(G)

which implies

1 (n 1+o(1)
[ | ~ ~ ~ ~ —— .
EXk o <k>k P{Ul V2, U2 V3,y...,Vk ’Ul} 2% d (7 8)
N—— _/d k
S =G)

under Hj, where the last equality holds provided k = o(y/n) (Why? Think about birthday problem).
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Under H;. We just need to recompute the probability in (?7?), which now depends on the labels
of the vertices. Consider the adjacency matrix A. Then given any two vertices v;, v;11, we have

Bern(p) if 0; = 041
ot Bern(q) if 0y # 0iy1.

Given any k-tuple {v1,ve, ..., v} of vertices, suppose N denotes the number of disagreements of
adjacent labels, given by

k
N = L) towin)}
=1

with k£ + 1 understood as 1 circularly. Write
k-1
N =3 Lowtow + Lowtown)

AT

Then we have 7' ~ Binom(k — 1, 1) and

0 T iseven
1 7T is odd

is a parity bit, so that N = S + T is always even.

It is clear that conditioned on N = m, the probability of vy, ..., v; forming a cycle is ¢™pF~™. Note

that
0 m odd

P(Binom(k — 1,1) =m — 1 or m) = (¥)271 m even

P(N:m):{

Thus

m=0
k
— Z qmpk—m<k>2—k+1
m=0 m
m even
k _ _
-y (G A A Ay
2 m

Ptq " p—q . —kk k
=)t ) =n (s" +d").

Thus, under Hy,



7.3.2 Variance analysis

We only consider the variance under the null, as the alternative is similar. Given ordered k-tuple of
vertices T = (v1,...,vg), define by = 1{vy ~ vy, -+ , v ~ v1}. Then under Hy, we have

1
Var(Xy) = 4k2 Z Cov(bp,byr) = 2 Z Var(br) + Z Cov(br, b)

7T T TAT!
<E[br]=d* Tm?’#(?)

Consider two distinct k-cycles T and T that are overlapping. Let
¢ = number of common edges, v = number of common vertices.

Note that

e Cov(bp,br) < E[bpby/] = p2ht

e Crucially,
v>0+ 1.

This is because the intersection of two cycles is a forest (each connected component is a path),
so that v = £+ cc.

Combining all this, we get

??‘

-1

S Covtort) < Sttt (1)

T#T' 1

TNT'#0
vl F d\ 2t
< § an: {— 1]{7' < )

~
I

3

=o0(1), provided that k = o(logn/loglogn).

So we get

Var(Xy) = mdk +o(1).

7.4 Approximately counting cycles in polynomial time

A caveat: The naive way of counting (exhaustive search) k-cycles takes n* time, which is not
polynomial in n if K — oco. From the previous analysis, we see that we need to count k-cycles with
slowly growing k.

Fix: The trick is to use the sparsity of the random graph and approximately count the number of
k-cycles.



Definition 7.1 ({-tangle free). An /¢-tangle is a connected subgraph of diameter at most 2¢ that
contains atleast two cycles.

A graph G is called ¢-tangle free if no subgraph of G is an ¢-tangle. In other words, for all v € V(G),
its ¢-hop neighborhood Ny(v) contains at most one cycle.

Lemma 7.3. If G ~ G(n, %) and d is a constant, then G is {-tangle free if ¢ = o(logn) (In general
Clogd = clogn for small constant ¢ suffices).

Proof. Suppose G contains an ¢-tangle. Then G must contain a subgraph of the following form

with m edges and v vertices, such that m < 4¢ and m > v + 1. Then by union bound, such a graph

exists with probability
d\™ _ d°W
o (420
n n

when £logd < logn. O
Next we discuss the connection between counting and linear algebra. Let’s start with triangles
(k=3):

Example 7.2 (Counting triangles). Suppose that A is the adjecency matrix of G. Given any vertex
vin G,

(Ag)vv = Z AvaAabAbv
a,b

is in fact twice the number of triangles incident to v. Therefore, Tr(A3) = 6x the number of triangles
in G.

To count find k-cycles one can consider computing Tr(A¥), which can be done in the time of
eigenvalue decomposition. But

Tr(A*) = number of closed walks of length & > number of k-cycles .

The strategy next is use the tangle-free structure and count the number of non-backtracking (NB)
paths.

Definition 7.2 (Non-backtracking walk). We say
o (v1,v9,...,vk) is a NB walk if v; ~ v;41 and v, # v_9 for all t.

o (v1,v9,...,vk) is a NB cycle if vy ~ vy11 and vy # vy_g for all ¢ and v; = vg.

For example,

Consequences: Conditioned on G being 2k-tangle free, any NB cycle of k steps is either a k-cycle,
or an m cycle traversed for % times. Otherwise, we have a 2k-tangle such as two short cycles

9



Figure 7.1: Examples of backtracking and non-backtracking.

sharing a vertex (see Fig. ?? above). This reduces the problem to counting the number of NB cycles
of length m, for allm =1,...,2k.

It is easy to count NB walk of length £ recursively: Let N = # of NB walks from u — v for k steps.
Then our goal is expressed as
> N

veV(G)

So it suffices to compute N for all pairs u, v.

It turns out N, is given by the following three-term recursion:

Nt =" N~ (dy — DN (7.9)

w~v

In matrix notation: let N(™) = (N/) and D = diag(d,). Then we have?

{N(m+l) =Nm . 4_ Nm=1)(p_T), (7.10)

N =4 N =42_D

which means we can compute all N]/}’s using matrix multiplication.

Finally, to justify (?7), simply notice that the first term on the RHS counts all NB walks of m steps
from w to a neighbor w of v, which, followed by another step from w to v, constitute a walk of
m + 1 steps from u to v. But, it can be backtracking. So we need to subtract those out, and that
it precisely the second term: fix any NB walk from u to v of m — 1 steps, say, u,...,v,v, where
v € N(v). Append this walk by w € N(v)\{v'} constitutes a NB walk from w to w in m steps.

?In the special case of d-regular graphs, (??) becomes NOHD = Nm) 4 (d— )N~V This means N is a
polynomial of A, in fact, the Chebyshev polynomial, which satisfies the same three-term recurrence. See ? for more.
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