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Recall model

G ∼ SBM(n, p, q)

σ = (σ1, . . . , σn) ∈ {±1}n

P[i ∼ j] =

{
p if σi = σj

q if σi 6= σj .

Goal: As described in Section ??, an estimator σ̂ = σ̂(G) achieves correlated recovery if the overlap
is strictly better than random guessing, that is,

|〈σ̂, σ〉| ≥ Ω(n) as n→∞⇔ min
±
‖σ̂ ± σ‖1 ≤ (

1

2
− Ω(1)) · n.

8.1 Impossibility

We start with an information theoretic characterization of correlated recovery:

Theorem 8.1 (Mutual information characterization). Correlated recovery is possible⇔ I(σ1, σ2;G) =
Ω(1) as n→∞.

Remark 8.1 (Mutual information and probability of error). Note that for all x1, x2 ∈ {±},

Law(G|σ1 = x1, σ2 = x2) = Law(G|σ1 = −x1, σ2 = −x2)

This means the product σ1σ2 is a sufficient statistic of the pair (σ1, σ2) for G and hence

I(σ1, σ2;G) = I(σ1σ2;G)

The condition I(σ1σ2;G) = Ω(1) means that G offers some nontrivial information so that one can
decide whether a (or any) pair of vertices have the same label better than chance. This can be
quantified as follows.

Aside: mutual information vs probability of error. Suppose we have two random variables X ∼
Rad(12) and Y . Then

min
X̂(·)

P(X 6= X̂(Y )) =
1

2
[1− TV(P+, P−)]. (8.1)

where

P+ , L(Y |X = +) =

P− , L(Y |X = −)

So no better than random guess ⇔ TV(P+, P−) = o(1). We claim this is equivalent to I(X;Y )→ 0.
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Indeed,

I(X;Y ) = EX
[
D(PY |X‖PY

]
)

=
1

2

[
D(P+‖P̄ ) +D(P−‖P̄ )

]
P̄ =

P+ + P−
2

Pinsker
≥ TV2(P+, P̄ ) + TV2(P−, P̄ )

=
1

2
TV2(P+, P−).

On the other hand, from the inequality D ≤ χ2 we get

I(X;Y ) ≤ 1

2

[
χ2(P+‖P̄ ) + χ2(P−‖P̄ )

]
=

1

2

[∫
(P+ − P̄ )2

P̄
+

∫
(P− − P̄ )2

2

]
=

∫
(P− − P+)2

2(P+ + P−)
≤ 1

2

∫
|P+ − P−| = TV(P+, P−).

.

Remark 8.2. Mutual information characterization in Theorem 8.1 holds under much more general
conditions, e.g., k-community SBM. See [WX18, Appendix A].

Proof of Theorem 8.1.
(“⇐”) Suppose that I(σ1, σ2;G) ≥ ε. Then by symmetry I(σi, σj ;G) ≥ ε for all i 6= j. Therefore,

by Remark 8.1 and (8.1), for all i 6= j, ∃T̂ij = T̂ij(G), such that

P{T̂ij = σiσj︸︷︷︸
Tij

} ≥ 1

2
+ δ.

for some δ = δ(ε). Then we can define an estimator of the labels σ̂ = (σ̂1, . . . , σ̂n) by

σ̂1 = +, σ̂i = T̂1i; i = 2, . . . , n.

Then the expected number of correctly classified nodes is

max
±

∑
i∈[n]

P [σi = ±σ̂i] =
∑
i∈[n]

P
[
T1i = T̂1i

]
≥ (1/2 + δ)n.

(“⇒”) Suppose I(σi, σj ;G) = o(1). Then ∀T̂ij , P[T̂ij = σiσj ] = 1
2 + o(1). This means given

σ̂ = (σ̂1, . . . , σ̂n), we have

2n2 − E|〈σ, σ̂〉|2 = E‖σσ> − σ̂σ̂T ‖2F
= 4 ·

∑
i 6=j

P(σiσj 6= σ̂iσ̂j)

= 2n2 − o(n2),

which means E|〈σ̂, σ〉|2 = o(n2) , or |〈σ, σ̂〉| = oP (n).
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Next we show that

τ =
(a− b)2

2(a+ b)
< 1 =⇒ I(σ1, σ2;G) = o(1) =⇒ Correlation recovery impossible.

First note the following variational representation of total variation:

TV(P+, P−) =
1

2
inf
Q

√∫
(P+ − P−)2

Q
. (8.2)

Proof. By C-S,
∫ (P+−P−)2

Q =
∫

(P+−P−√
Q

)2
∫

(
√
Q)2 ≥ (

∫
|P+ − P−|)2 = 4TV2, with equality if

Q = |P+ − P−|/
∫
|P+ − P−|.

To apply this variational representation, take Q = Law of G(n, dn). To show I(σ1σ2;G) = o(1), it

suffices to show
∫ (P+−P−)2

Q = o(1). This is a second-moment calculation similar to what we did in
Lecture ?? for detection. The difference is that here there is no null model. Write∫

(P+ − P−)2

Q
=

∫
P 2
+

Q
+

∫
P 2
−
Q
− 2

∫
P+P−
Q

.

Next we show that
∫
PzPz̃
Q = constant+ o(1), z, z̃ ∈ {±1}. Consider the case of iid labels. By the

same argument in Section ??, we have

∫
PzPz̃
Q

Fubini
= E

exp(
τ + o(1)

n

∑
i<j

σiσj σ̃iσ̃j )
∣∣∣σ1σ2 = z, σ̃1σ̃2 = z̃



= (1 + o(1))E

exp(
τ + o(1)

2

1

n
〈σ, σ̃〉2︸ ︷︷ ︸
N(0,1)2

)
∣∣∣σ1σ2 = z, σ̃1σ̃2 = z̃


→ E exp

(
τ + o(1)

2
N(0, 1)2

)
, C(τ).

Here the justification of the CLT steps is almost the same as before: 1√
n
〈σ, σ̃〉 = 1√

n

∑n
j=3 σj σ̃j +

1√
n

(σ1σ̃1 + σ2σ̃2), where the first term is asymptotically N(0, 1) and independent of σ1, σ2, σ̃1, σ̃2,

and the last term is negligible.

More generally,

• For exact bisection the same statement holds true, except one should be more careful with
the conditioning.

• For the spiked Wigner model (??), the same calculation shows that λ < 1 =⇒ correlated
recovery is impossible.

• In fact, for the spiked Wigner model, one can directly prove (by a sample splittin reduction)
that impossibility of detection =⇒ impossibility of correlated recovery (Homework).
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8.2 Correlated recovery via spectral methods

Next we explain how to achieve the sharp threshold of correlated recovery via suitable versions of
spectral methods. We only provide the main ideas and some proof sketch.

Spiked Wigner model: Let’s rewrite (??) as follows:

W =
µ

n
σσ> + Z.

where the entries of Z is N(0, 1n), so that its eigenvalues are between [−2, 2] with high probability.

Consider the following spectral method for estimation σ: take the top eigenvector û = u1(W ) of the
matrix W corresponding to the largest eigenvalue λ1, and report sign(u1) as the estimate σ̂. Let
u = 1√

n
σ. This method succeeds in correlated recovery if and only (why?) if |〈u, û〉| is bounded

away from 0.

The well-known BBP phase transition [BBAP05] states that

λ1(W )→

{
µ+ 1

µ if µ > 1

2 if µ ≤ 1,

and correspondingly, û is correlated with u if and only if λ1(W ) escapes the bulk of the spectrum,
namely,

|〈u, û〉| →

{
1− 1

µ2
if µ > 1

0 if µ ≤ 1,

SBM(n, p, q) model: Suppose that the adjacency matrix of the graph G is given by A. Mimicking
the above Gaussian result, the ”wishful thinking” on our part is to view

A = EA+A− EA

where

EA =
p q

q p
= p+q

2 ∗ 1 +p−q
2 ∗

+ -

- +

and V ar(Aij − EAij) = d+o(1)
n , with d = (a+ b)/2. The first eigenvector of EA is uninformative,

and the second is exactly the label. So we can consider taking the signs of the second eigenvector
of A. If we pretend the entries of the perturbation A− EA are iid N(0, dn), then making analogy

to the Gaussian result shows that the sharp thresholding is given by s = a−b
2 >

√
d, which is the

exactly the sharp threshold we want to show.

However, applying spectral method to A itself does not work, as sparse graphs are plagued by high
degree vertices. Indeed, for G(n, dn) with constant d, it is known [KS03]

λ1(A) = ‖A‖ =
√
dmax(1 + o(1)), dmax = Θ

(
log n

log logn

)
. (8.3)
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In fact, not only the top eigenvalue, λi(A) = λ1(1− o(1)) for an unbounded many of i [KS03, Sec. 4].

Suppose that di = dmax, ei is the i-th coordinate vector. Then ‖A‖ ≥ ‖Aei‖‖ei‖ =
√
dmax. As the matrix

has all non-negative entries, by Perron frobeneous theorem we can say that ‖A‖ = λ1(A), which
concludes the proof.

To see the effect of high-degree vertices, let’s look at power iteration: say di = dmax. Then

(A2k)ii =
∑

i2,...,i2k

Aii2Ai2i3 · · ·Ai2ki (8.4)

= number of closed walks from i to i of length 2k

≥ dkmax,

where the last inequality follows by restricting to those backtracking paths that goes from i to one
of its neighbors and immediately goes back. Thus

‖A‖2k ≥ ‖Aei‖22 = e>i A
2kei ≥ dkmax

Thus λ1(A) = ‖A‖ ≥
√
dmax, where the first inequality follows from Perron-Frobenius theorem

applied to the nonnegative matrix A. The other side can be shown by arguing that most of
the contribution in the moment calculation comes from those backtracking paths. Thus the top
eigenvalue λ1(A) is not bounded. In fact, correspondingly, the limiting spectral distribution of the
bulk has unbounded support.

The fact that dmax is unbounded even when the average degree d is bounded is because of the
following: for each v,

dv ∼ Binom(n,
d

n
) ≈ Poi(d)

Pretending they are independent, the maximum of n iid Poisson is given by the 1
n -quantile, namely,

e−ddk

k! ≈
1
n , that is, k ≈ logn

log logn .

In summary: Adjacency matrix of sparse graphs is plagued by high-degree vertices, and the top
eigenvector is localized on those vertices and not informative.

Solutions:

1. Regularize, e.g., remove high-degree vertices then apply spectral methods. However, it is
unclear whether this achieves the sharp thresholds of s2 ≥ d. In [CO10] a sufficient condition
of s2 & d log d is shown.

2. Turn to other matrices, e.g., the non-backtracking matrix, which we briefly explain next. The
motivation comes from the above moment calculation (8.4), wherein the pathological behavior
is due to backtracking in the neighborhood of the high-degree vertices, so we remove those.

8.3 Spectrum of non-backtracking matrices

Given a simple undirected graph G = (V,E). Denote the set of oriented edges (ordered pairs) by
~E = {(u, v) : {u, v} ∈ E}. The non-backtracking matrix B ∈ {0, 1} ~E× ~E is defined as follows: for
e = (e1, e2), f = (f1, f2) ∈ ~E,

Bef = 1{e2=f1}1{e1 6=f2}
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Properties of NB matrix: Let n = |V |, m = |E|.

1. B is a 2m× 2m matrix, and can be partitioned into four m×m blocks:

B=
B11 B12

B21 B22

B11 = BT
22

B12, B21 symmetric,

2. Row sum: ∀e = (u, v),
∑

e′∈ ~E Bee′ = dv − 1.

3. Singular values of B are {dv − 1 : v ∈ V } ∪ {1} and thus not informative. (Why? Consier
BB>).

4. Spectrum (eigenvalues) of B: det(I − λB) = (1− λ2)m−ndet(I − λA+ (D − I)λ2).

5. Ihara-Bass identity [Ter10, p. 89]:

det(I− λB) = (1− λ2)m−n det(I− λA+ λ2(D − I)), (8.5)

where D = diag(dv). This means B has 2(m − n) useless eigenvalues that are equal to ±1,
and the rest of the 2n eigenvalues are useful.

6. B is not symmetric, but satisfies the following symmetry: Given e = (e1, e2), let e−1 = (e2, e1)
denote its reversal. Then

(B>)ef = Be−1f−1 . (8.6)

In matrix notation, let P = (1
{
e = f−1

}
) denote the involution that maps a vector (xe : e ∈ ~E)

to (xe−1 : e ∈ ~E) such that P> = P and P 2 = I. Then

B> = PBP

(in other words, BP is a symmetric) and consequently Bk = PBkP .

For sparse random graphs, the spectrum of the NB matrix looks like the following for G(n, dn) and

SBM(n, an ,
b
n): [BLM18]

In addition, the following result gives a spectral method based on B that achieves the optimal
threshold:

Theorem 8.2 ([BLM18]). Let s = a−b
2 , d = a+b

2 . Let u2 = u2(B) be the second largest eigenvector
of B. Define

σ̂u = sign

( ∑
e:e1=u

(u2)e

)
.

Then σ̂ achieves correlated recovery if s2 > d.

Proving this result is outside the scope here. We explain some intuitions:
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Why is B not hindered by high-degree vertices? This applies to both Erdős-Rényi and SBM.
Here we consider the former. In the previous section, we see for G(n, dn), the outlier eigenvalues of
A exist due to high-degree vertices. This no longer occurs for B. To explain some intuition, we
apply the trace method to Bk(B>)k for some large k. Claim that for each oriented edge e,

(Bk(B>)k)ee (8.7)

= # NB walks starting with e in k steps then reversing the last step and returning to e in k steps

such as

Indeed, using the symmetry property,

(Bk(B>)k)ee =
∑

e2...e2k

Be1e2Be2e3 . . . Bekek+1
B>ek+1ek+2

. . . B>e2ke2k+1
e1 = e, e2k+1 = e

(8.6)
=

∑
Bee2Be2e3 . . . Bekek+1

B>
e−1
k+1e

−1
k+2

. . . B>
e−1
2k e
−1

To simplify the counting in (8.7), crucially, recall the locally tree-like structure of sparse graphs:
with high probability, for each vertex u, its k-hop neighborhood Nk(u) is a tree, provided that k is
not too big, e.g. k = o(log n). If Nk(v) is a tree, then for each summand in (8.7), the path must
reverse itself (otherwise there will be a cycle). Thus, on the event that locally tree-like structure
holds, we have

(Bk(B>)k)ee = kth generation descendents of u ≈ dk,

even if the degree of u is as large as logn
log logn ! To justify the last step,

• For G(n, dn), the local neighborhood behaves as (can be coupled to) a Galton Watson tree
with offspring distribution Poi(d).

• For SBM(n, an ,
b
n), the local neighborhood behaves as a two-type Galton Watson tree, where

the total offspring distribution is still Poi(d), and each + has Poi(a2 ) children of type + and

Poi( b2) children of type −, and vice versa. This can be encoded into the following matrix:

M =

[
a
2

b
2

b
2

a
2

]
. (8.8)

Basic results in branching process states that the total number of kth-gen children grows exponentially
as dk.

Finally,

2m∑
k=1

|λk(B)|2k = ‖Bk‖2F = Tr(Bk(Bk)T ) ≈ 2mdm

which implies that the bulk of the eigenvalues belong to the disk of radius
√
d.

7



Why is the eigenvector of B informative? This applies to SBM.

Let ξ ∈ R ~E denote the 2nd eigenvector of B. Let ξ∗ ∈ R ~E be defined by ξ∗e = σ(e2), where
e = (e1, e2) as usual. For each node u, we estimate its label σ(u) by σ̂u = sign(

∑
e:e1=u

ξe).

To gain some insight, let’s proceed with the following wishful thinking : Suppose we can apply power
method to study the behavior of the eigenvectors. Since ξ∗ is orthogonal to the all-one vector, the
1st eigenvector of B in the population case, let’s hope we can gain some insight about the 2nd
eigenvector ξ by studying Bkξ∗ for some large k.1 Then for each node u,∑

e:e1=u

(Bkξ∗)e =
∑
e:e1=u

∑
f

(Bk)efξ
∗
f

=
∑

v:σ(v)=+

∑
e:e1=u

∑
f :f2=v

(Bk)ef︸ ︷︷ ︸
# of kth-gen children of type + ,Z+

k

−
∑

v:σ(v)=−

∑
e:e1=u

∑
f :f2=v

(Bk)ef︸ ︷︷ ︸
# of kth-gen children of type − ,Z−k

where in the last step follows again from the tree structure of Nu(k).

The celebrated result of Kesten-Stigum [KS66] says that the behavior of this number is governed by
the matrix M in (8.8), whose eigenvalues are λ1 = d and λ2 = s. If λ22 > λ1, then (Z+

k − Z
−
k )/λk2

converges to some non-degenerate limit X, where X is correlated with the label of the root. This
means that

∑
e:e1=u

(Bkξ∗)e has non-trivial correlation with u, and correlated recovery can be
achieved by majority vote.

Nevertheless, the above plan is too simplistic as B is asymmetric so straightforward power method
does not work. In reality, to apply the power method properly, one needs to study the SVD of
B by considering Bk(Bk)>. But as opposed to the above calculation for Bk which only involves
the number of children at the kth generation, the same calculation with Bk(Bk)> will involve the
number of children of all generations up to k.2 For details, see [BLM18, Sec 8].
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