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Ranking from comparisons arises in various applications, including recommender systems, social
choice and sports tournament. We consider the following setup. Suppose that there are items
1, . . . , n associated with unknown ranks π∗(1), . . . , π∗(n), where π∗ : [n] → [n] is a permutation.
Observing a set of pairwise comparisons, each of the form i � j meaning that “item i beats item j”,
we aim to recover the ranking π∗.

10.1 Modeling pairwise comparisons

We first give an overview of common models for ranking from pairwise comparisons.

10.1.1 Models for probabilities of outcomes

Each pairwise comparison is a Bernoulli outcome. Let us denote the probability that the item at
rank k beats the item at rank ` by Mk,` where M ∈ Rn×n, so that

I{i � j} ∼ Ber(Mπ∗(i),π∗(j)).

In the sequel, we present several models on the matrix M of probabilities. It is vacuous to compare
an item to itself, so we assume without loss of generality that Mi,i = 1/2 for i ∈ [n]. Moreover, we
consider the case that there is one and only one winner in a pairwise comparison, so it always holds
that Mk,` +M`,k = 1.

Parametric models Parametric models assume that for i ∈ [n], item i is associated with a
strength parameter θi ∈ R, and

Mπ∗(i),π∗(j) = F (θi − θj)

where F : R→ (0, 1) is a known, increasing link function. Two classical examples are the logistic
function F (x) = 1

1+e−x and the Gaussian cumulative density function, which correspond to the
Bradley-Terry model and the Thurstone model respectively.

Noisy sorting The noisy sorting model [BM08] assumes that

Mk,` =

{
1/2 + λ if k > `,

1/2− λ if k < `.
(10.1)

This is the model we focus on later, as it is simple yet captures important concepts and tools.
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Strong stochastic transitivity Strong stochastic transitivity (SST) means that for any triplet
(k, `,m) ∈ [n]3 such that k < ` < m, we have

Mk,m ≥Mk,` ∨M`,m.

In matrix terminology, this is saying that M is bivariate isotonic (bi-isotonic) in addition to the
constraint M + M = 11>. More precisely, all the columns of M are nonincreasing while all the
rows of M are nondecreasing. Note that any parametric model, as well as the noisy sorting model,
satisfies SST.

10.1.2 Sampling models

We consider uniform sampling. Namely, for m ∈ [N ] where N is the sample size, we observe
independent outcomes

ym ∼ Ber(Mπ∗(im),π∗(jm)), (10.2)

where the random pairs (im, jm) are sampled uniformly randomly with replacement from all possible
pairs {(i, j)}i 6=j . Here ym = 1 means that im � jm and ym = 0 means that jm � im. We collect the
outcomes of comparisons in a matrix A ∈ Rn×n whose entry Ai,j is defined to be the number of
times item i beats item j.

Note that for parametric models, we have for m ∈ [N ],

E[ym] = F (θim − θjm) = F
(
x>m θ

)
,

where xm = eim − ejm is the design point. This is simply the setup of generalized linear regression.
Particularly, the Bradley-Terry model is essentially logistic regression with this special design.

10.2 Kendall’s tau and minimax rates for noisy sorting

In general, we would like to estimate both π∗ and M , but let us focus on estimating π∗ under the
noisy sorting model (11.1) for the rest of the notes. Full details of the discussion can be found in
the paper [MWR18].

Consider the Kendall tau distance, i.e., the number of inversions between permutations, defined as

dKT(π, σ) =
∑
i,j∈[n]

I
(
π(i) > π(j), σ(i) < σ(j)

)
.

Note that dKT(π, σ) ∈ [0,
(
n
2

)
] and it is equal to the minimum number of adjacent transpositions

required to change from π to σ (think of bubble sort). A closely related distance is the `1-distance,
also known as Spearman’s footrule, defined as

‖π − σ‖1 =
n∑
i=1

|π(i)− σ(i)|.

It is well known [DG77] that

dKT(π, σ) ≤ ‖π − σ‖1 ≤ 2dKT(π, σ). (10.3)
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Theorem 10.1. Consider the noisy sorting model (11.1) with λ ∈ (0, 12 − c] where c is a positive
constant. Suppose N independent comparisons are given according to (11.2). Then it holds that

min
π̃

max
π∗

Eπ∗ [dKT(π̃, π∗)] � n3

Nλ2
∧ n2.

10.2.1 Inversions and metric entropy

Before proving the theorem, we study the metric entropy of the set of permutations Sn with respect
to the Kendall tau distance dKT. Let B(π, r) = {σ ∈ Sn : dKT(π, σ) ≤ r}.

The inversion table b1, . . . , bn of a permutation π ∈ Sn is defined by

bi =
∑
j:i<j

I
(
π(i) > π(j)

)
.

Note that bi ∈ {0, 1, . . . , n− i} and dKT(π, id) =
∑n

i=1 bi. On can reconstruct a permutation using
its inversion table {bi}ni=1, so the set of inversion tables is bijective to Sn. (Try the permutation
(3 5 2 4 1) which has inversion table (4 2 0 1 0).)

Lemma 10.1. For 0 ≤ k ≤
(
n
2

)
, we have that

n log(k/n)− n ≤ log |B(id, k)| ≤ n log(1 + k/n) + n .

Proof. According to the discussion above, |B(id, k)| is equal to the number of inversion tables
b1, . . . , bn such that

∑n
i=1 bi ≤ k where bi ∈ {0, 1, . . . , n− i}. On the one hand, if bi ≤ bk/nc for all

i ∈ [n], then
∑n

i=1 bi ≤ k, so a lower bound is given by

|B(id, k)| ≥
n∏
i=1

(bk/nc+ 1) ∧ (n− i+ 1)

≥
n−bk/nc∏
i=1

(bk/nc+ 1)

n∏
i=n−bk/nc+1

(n− i+ 1)

≥ (k/n)n−k/nbk/nc! .

Using Stirling’s approximation, we see that

log |B(id, k)| ≥ n log(k/n)− (k/n) log(k/n) + bk/nc logbk/nc − bk/nc
≥ n log(k/n)− n .

On the other hand, if bi is only required to be a nonnegative integer for each i ∈ [n], then we can
use a standard “stars and bars” counting argument to get an upper bound

|B(id, k)| ≤
(
n+ k

n

)
≤ en(1 + k/n)n .

Taking the logarithm finishes the proof.

For ε > 0 and S ⊆ Sn, let N(S, ε) and D(S, ε) denote respectively the ε-covering number and the
ε-packing number of S with respect to dKT.
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Proposition 10.1. We have that for ε ∈ (0, r),

n log
( r

n+ ε

)
− 2n ≤ logN(B(π, r), ε) ≤ logD(B(π, r), ε) ≤ n log

(2n+ 2r

ε

)
+ 2n .

For n . ε < r ≤
(
n
2

)
, the ε-metric entropy of B(π, r) scales as n log r

ε . In other words, Sn equipped
with dKT is a doubling space1 with doubling dimension Θ(n).

Proof. The relation between the covering and the packing number is standard. We employ a volume
argument for the bounds. Let P be a 2ε-packing of B(π, r) so that the balls B(σ, ε) are disjoint for
σ ∈ P. By the triangle inequality, B(σ, ε) ⊆ B(π, r + ε) for each σ ∈ P. By the invariance of the
Kendall tau distance under composition, Lemma 11.1 yields

logD(B(π, r), 2ε) ≤ n log(1 + r/n) + n− n log(ε/n) + n

= n log
(n+ r

ε

)
+ 2n .

In addition, if N is an ε-net of B(π, r), then the set of balls {B(σ, ε)}σ∈N covers B(π, r). By
Lemma 11.1, we obtain

logN(B(π, r), ε) ≥ log |B(π, r)| − log |B(σ, ε)|
≥ n log(r/n)− n− n log(1 + ε/n)− n

= n log
( r

n+ ε

)
− 2n ,

as claimed.

10.2.2 Proof of the minimax upper bound

We only present the proof of the upper bound in Theorem 11.1 with λ = 1/4 for simplicity. The
estimator we use is a sieve maximum likelihood estimator (MLE), meaning that it is the MLE over
a net (called a sieve). More precisely, define ϕ = n

N

(
n
2

)
. Let P be a maximal ϕ-packing (and thus a

ϕ-net) of Sn with respect to dKT. Consider the sieve MLE

π̂ ∈ argmax
π∈P

∑
π(i)<π(j)

Ai,j . (10.4)

Basic setup Since P is a ϕ-net, there exists σ ∈ P such that D := dKT(σ, π∗) ≤ ϕ. By definition
of π̂,

∑
π̂(i)<π̂(j)Ai,j ≥

∑
σ(i)<σ(j)Ai,j . Canceling concordant pairs (i, j) under π̂ and σ, we see that∑
π̂(i)<π̂(j), σ(i)>σ(j)

Ai,j ≥
∑

π̂(i)>π̂(j), σ(i)<σ(j)

Ai,j .

Splitting the summands according to π∗ yields that∑
π̂(i)<π̂(j),
σ(i)>σ(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̂(i)<π̂(j),
σ(i)>σ(j),

π∗(i)>π∗(j)

Ai,j ≥
∑

π̂(i)>π̂(j),
σ(i)<σ(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̂(i)>π̂(j),
σ(i)<σ(j),

π∗(i)>π∗(j)

Ai,j .

1A metric space (X, d) is called a doubling space with doubling dimension log2 M , if M is the smallest number
such that any ball of radius r in (X, d) can be covered with M balls of radius r/2.
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Since Ai,j ≥ 0, we may drop the rightmost term and drop the condition π̂(i) < π̂(j) in the leftmost
term to obtain that ∑

σ(i)>σ(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̂(i)<π̂(j),
σ(i)>σ(j),

π∗(i)>π∗(j)

Ai,j ≥
∑

π̂(i)>π̂(j),
σ(i)<σ(j),

π∗(i)<π∗(j)

Ai,j . (10.5)

To set up the rest of the proof, we define, for π ∈ P,

Lπ = |{(i, j) ∈ [n]2 : π(i) < π(j), σ(i) > σ(j), π∗(i) > π∗(j)}|
= |{(i, j) ∈ [n]2 : π(i) > π(j), σ(i) < σ(j), π∗(i) < π∗(j)}| .

Moreover, define the random variables

Xπ =
∑

π(i)>π(j),
σ(i)<σ(j),

π∗(i)<π∗(j)

Ai,j , Yπ =
∑

π(i)<π(j),
σ(i)>σ(j),

π∗(i)>π∗(j)

Ai,j , and Z =
∑

σ(i)>σ(j),

π∗(i)<π∗(j)

Ai,j .

We show that the random process Xπ − Yπ −Z is positive with high probability if dKT(π, σ) is large.

Binomial tails For a single pairwise comparison sampled uniformly from the possible
(
n
2

)
pairs,

the probability that

1. the chosen pair (i, j) satisfies π(i) > π(j), σ(i) < σ(j) and π∗(i) < π∗(j), and

2. item i wins the comparison,

is equal to 3
4Lπ

(
n
2

)−1
. By definition, Xπ is the number of times the above event happens if N

independent pairwise comparisons take place, so Xπ ∼ Bin
(
N, 34Lπ

(
n
2

)−1)
. Similarly, we have

Yπ ∼ Bin
(
N, 14Lπ

(
n
2

)−1)
and Z ∼ Bin

(
N, 34D

(
n
2

)−1)
. The tails of a Binomial random variable can

be bounded by the following lemma.

Lemma 10.2. For 0 < r < p < s < 1 and X ∼ Bin(N, p), we have

P(X ≤ rN) ≤ exp
(
−N (p− r)2

2p(1− r)

)
and P(X ≥ sN) ≤ exp

(
−N (p− s)2

2s(1− p)

)
.

Therefore, we obtain

1. P
(
Xπ ≤ 5

8LπN
(
n
2

)−1) ≤ exp
(
− LπN

(
n
2

)−1
/128

)
,

2. P
(
Yπ ≥ 3

8LπN
(
n
2

)−1) ≤ exp
(
− LπN

(
n
2

)−1
/128

)
, and

3. P
(
Z ≥ 2ϕN

(
n
2

)−1) ≤ exp
(
− ϕN

(
n
2

)−1
/4
)

= exp(−n/4) .

Then we have that

P
(
Xπ − Yπ ≤ 1

4LπN
(
n
2

)−1) ≤ 2 exp
(
− LπN

(
n
2

)−1
/128

)
. (10.6)
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Peeling and union bounds For an integer r ∈ [Cϕ,
(
n
2

)
] where C is a sufficiently large constant

to be chosen, consider the slice Sr = {π ∈ P : Lπ = r}. Note that if π ∈ Sr, then

dKT(π, π∗) = |{(i, j) : π̂(i) < π̂(j), π∗(i) > π∗(j)}|
≤ |{(i, j) : π̂(i) < π̂(j), σ(i) > σ(j), π∗(i) > π∗(j)}|

+ |{(i, j) : σ(i) < σ(j), π∗(i) > π∗(j)}|
= Lπ + dKT(σ, π∗) ≤ r + ϕ , (10.7)

showing that Sr ⊆ B(π∗, r + ϕ). Therefore, Proposition 11.1 gives

log |Sr| ≤ n log
2n+ 2r + 2ϕ

ϕ
+ 2n ≤ n log

45r

ϕ
.

By (11.6) and a union bound over Sr, we have minπ∈Sr(Xπ − Yπ) > 1
4rN

(
n
2

)−1
with probability

1− exp
(
n log

45r

ϕ
+ log 2− rN

128
(
n
2

)) ≥ 1− exp(−2n) ,

where the inequality holds by the definition of ϕ and the range of r. Then a union bound over
integers r ∈ [Cϕ,

(
n
2

)
] yields that

Xπ − Yπ >
C

4
ϕN

(
n

2

)−1
for all π ∈ P such that Lπ ≥ Cϕ with probability at least 1− e−n. This is larger than the above
high probability upper bound on Z, so we conclude that with probability at least 1− e−n/8,

Xπ − Yπ − Z > 0

for all π ∈ P with Lπ ≥ Cϕ. However, (11.5) says that Xπ̂ − Yπ̂ −Z ≤ 0, so Lπ̂ ≤ Cϕ on the above
event. By (11.7), dKT(π̂, π∗) ≤ Lπ̂ + ϕ on the same event, which completes the proof.

10.3 An efficient algorithm for noisy sorting

Let us move on to present an efficient algorithm. We continue to assume λ = 1/4. To recover the
underlying order of items, it is equivalent to estimate the row sums

∑n
j=1Mπ∗(i),π∗(j) which we call

scores of the items. Initially, for each i ∈ [n], we estimate the score of item i by the number of wins
item i has. If item i has a much higher score than item j in the first stage, then we are confident
that item i is stronger than item j. Hence in the second stage, we know Mπ∗(i),π∗(j) = 3/4 with
high probability. For those pairs that we are not certain about, Mπ∗(i),π∗(j) is still estimated by its
empirical version. The variance of each score is thus greatly reduced in the second stage, thereby
yielding a more accurate order of the items. Then we iterate this process to obtain finer and finer
estimates of the scores and the underlying order.

To present the T -stage sorting algorithm formally, we split the sample into T subsamples each

containing N/T pairwise comparisons. For t ∈ [T ], we define a matrix A(t) ∈ Rn×n by setting A
(t)
i,j

to be the number of times item i beats item j in the t-th sample. The algorithm proceeds as follows:
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1. For i ∈ [n], define I(0)(i) = [n], I
(0)
− (i) = ∅ and I

(0)
+ (i) = ∅. For 0 ≤ t ≤ T , we use I(t)(i) to

denote the set of items j whose ranking relative to i has not been determined by the algorithm
at stage t.

2. At stage t, compute the score S
(t)
i of item i:

S
(t)
i =

T
(
n
2

)
N

∑
j∈I(t−1)(i)

A
(t)
i,j +

3

4

∣∣I(t−1)− (i)
∣∣+

1

4

∣∣I(t−1)+ (i)
∣∣ .

3. Set the threshold

τ
(t)
i � n

√
|I(t−1)(i)|TN−1 log(nT ) ,

and define the sets

I
(t)
+ (i) = {j ∈ [n] : S

(t)
j − S

(t)
i < −τ (t)i },

I
(t)
− (i) = {j ∈ [n] : S

(t)
j − S

(t)
i > τ

(t)
i }, and

I(t)(i) = [n] \
(
I
(t)
− (i) ∪ I(t)+ (i)

)
.

4. Repeat step 2 and 3 for t = 1, . . . , T . Output a permutation π̂MS by sorting the scores S
(T )
i in

nonincreasing order, i.e., S
(T )
i ≥ S(T )

j if π̂MS(i) < π̂MS(j).

We take T = blog lognc so that the overall time complexity of the algorithm is only O(n2 log logn).

Theorem 10.2. With probability at least 1−n−7, the algorithm with T = blog log nc stages outputs
an estimator π̂MS that satisfies

‖π̂MS − π∗‖∞ .
n2

N
(log n) log log n

and

dKT(π̂MS, π∗) .
n3

N
(log n) log log n .

The second statement follows from the first one together with (11.3).

10.3.1 Proof (sketch) of Theorem 11.2

Assume that π∗ = id without loss of generality. We define a score

s∗i =
∑

j∈[n]\{i}

Mi,j =
i

2
+
n

4
− 3

4

for each i ∈ [n], which is simply the i-th row sum of M minus 1/2.

Lemma 10.3. Fix t ∈ [T ], I ⊆ [n] and i ∈ I. Let us define

S =
T
(
n
2

)
N

∑
j∈I

A
(t)
i,j +

3

4

∣∣{j ∈ [n] \ I : j < i}
∣∣+

1

4

∣∣{j ∈ [n] \ I : j > i}
∣∣ .

If |I| is not too small, then it holds with probability at least 1− (nT )−9 that

|S − s∗i | . n
√
|I|TN−1 log(nT ) .
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Proof. The probability that a uniform pair consists of item i and an item in I \ {i}, and that item i

wins the comparison, is equal to q :=
(∑

j∈I\{i}Mi,j

)
/
(
n
2

)
. Thus the random variable X :=

∑
j∈I A

(t)
i,j

has distribution Bin(N/T, q). In particular, we have E[X] = Nq/T = N
T(n2)

∑
j∈I\{i}Mi,j , so S is an

unbiased estimate of s∗i . Moreover, we have the tail bound

P
(∣∣X − E[X]

∣∣ &√qNT−1 log(nT )
)
≤ (nT )−9 ,

from which the conclusion follows.

We apply Lemma 11.3 inductively to each stage of the algorithm. By a union bound over all i ∈ [n]
and t ∈ [T ], all the events studied below hold with high probability. For t ∈ [T ], define

E(t−1) :=
{
j < i for all j ∈ I(t−1)− (i) and j > i, for all j ∈ I(t−1)+ (i)

}
.

On the event E(t−1), the score S
(t)
i is exactly the quantity S in Lemma 11.3 with I = I(t−1)(i), so

|S(t)
i − s

∗
i | . n

√
|I(t−1)(i)|TN−1 log(nT ) = τ

(t)
i /2. (10.8)

For any j ∈ I(t)+ (i), by definition S
(t)
j − S

(t)
i < −τ (t)i , so we have s∗j < s∗i and thus j > i. Similarly,

j < i for any j ∈ I(t)− (i). Hence E(t) occurs with high probability. Moreover, if |s∗j − s∗i | > 2τ
(t)
i , then

|S(t)
j − S

(t)
i | > τ

(t)
i , so j /∈ I(t)(i). Hence if j ∈ I(t)(i), then |j − i| . τ

(t)
i . Consequently,

|I(t)(i)| . τ
(t)
i . n

√
|I(t−1)(i)|TN−1 log(nT ) . (10.9)

Note that if we have α(0) = n and the iterative relation α(t) ≤ β
√
α(t−1) where α(t) > 0 and β > 0,

then it is easily seen that α(t) ≤ β2n2−t . Consequently, we obtain that

|I(T−1)(i)| . n2T

N
log(nT )n2

−T+1
.
n2

N
(log n)(log log n)

for T = blog lognc. Taking T to be larger does not make |I(T−1)(i)| smaller, because Lemma 11.3
requires a lower bound on |I(T−1)(i)|. The details are left out. It follows from (11.8) that

|S(T )
i − s∗i | .

n2

N
(log n) log log n =: δ .

As the permutation π̂MS is defined by sorting the scores S
(T )
i in nonincreasing order, we see that

π̂MS(i) < π̂MS(j) for all pairs (i, j) with s∗i − s∗j > 2δ, i.e., j − i > δ.

Finally, suppose that π̂MS(i) − i > δ for some i ∈ [n]. Then there exists j > i + δ such that
π̂MS(j) < π̂MS(i), contradicting the guarantee we have just proved. A similar argument leads to a
contradiction if π̂MS(i)− i < −δ. Therefore, we obtain that |π̂MS(i)− i| ≤ δ, completing the proof.
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