S&DS 684: Statistical Inference on Graphs

Fall 2018

Lecture 10: Ranking from Pairwise Comparisons

Lecturer: Yihong Wu Scribe: Cheng Mao, Nov 14, 2018

Ranking from comparisons arises in various applications, including recommender systems, social choice and sports tournament. We consider the following setup. Suppose that there are items $1, \ldots, n$ associated with unknown ranks $\pi^*(1), \ldots, \pi^*(n)$, where $\pi^* : [n] \to [n]$ is a permutation. Observing a set of pairwise comparisons, each of the form $i \succ j$ meaning that "item i beats item j", we aim to recover the ranking π^* .

10.1 Modeling pairwise comparisons

We first give an overview of common models for ranking from pairwise comparisons.

10.1.1 Models for probabilities of outcomes

Each pairwise comparison is a Bernoulli outcome. Let us denote the probability that the item at rank k beats the item at rank ℓ by $M_{k,\ell}$ where $M \in \mathbb{R}^{n \times n}$, so that

$$\mathbb{I}\{i \succ j\} \sim \mathsf{Ber}(M_{\pi^*(i),\pi^*(j)}).$$

In the sequel, we present several models on the matrix M of probabilities. It is vacuous to compare an item to itself, so we assume without loss of generality that $M_{i,i} = 1/2$ for $i \in [n]$. Moreover, we consider the case that there is one and only one winner in a pairwise comparison, so it always holds that $M_{k,\ell} + M_{\ell,k} = 1$.

Parametric models Parametric models assume that for $i \in [n]$, item i is associated with a strength parameter $\theta_i \in \mathbb{R}$, and

$$M_{\pi^*(i),\pi^*(j)} = F(\theta_i - \theta_j)$$

where $F: \mathbb{R} \to (0,1)$ is a known, increasing link function. Two classical examples are the logistic function $F(x) = \frac{1}{1+e^{-x}}$ and the Gaussian cumulative density function, which correspond to the Bradley-Terry model and the Thurstone model respectively.

Noisy sorting The noisy sorting model [BM08] assumes that

$$M_{k,\ell} = \begin{cases} 1/2 + \lambda & \text{if } k > \ell, \\ 1/2 - \lambda & \text{if } k < \ell. \end{cases}$$

$$\tag{10.1}$$

This is the model we focus on later, as it is simple yet captures important concepts and tools.

Strong stochastic transitivity Strong stochastic transitivity (SST) means that for any triplet $(k, \ell, m) \in [n]^3$ such that $k < \ell < m$, we have

$$M_{k,m} \geq M_{k,\ell} \vee M_{\ell,m}$$
.

In matrix terminology, this is saying that M is bivariate isotonic (bi-isotonic) in addition to the constraint $M + M = \mathbf{1}\mathbf{1}^{\top}$. More precisely, all the columns of M are nonincreasing while all the rows of M are nondecreasing. Note that any parametric model, as well as the noisy sorting model, satisfies SST.

10.1.2 Sampling models

We consider uniform sampling. Namely, for $m \in [N]$ where N is the sample size, we observe independent outcomes

$$y_m \sim \text{Ber}(M_{\pi^*(i_m),\pi^*(j_m)}),$$
 (10.2)

where the random pairs (i_m, j_m) are sampled uniformly randomly with replacement from all possible pairs $\{(i,j)\}_{i\neq j}$. Here $y_m=1$ means that $i_m \succ j_m$ and $y_m=0$ means that $j_m \succ i_m$. We collect the outcomes of comparisons in a matrix $A \in \mathbb{R}^{n \times n}$ whose entry $A_{i,j}$ is defined to be the number of times item i beats item j.

Note that for parametric models, we have for $m \in [N]$,

$$\mathbb{E}[y_m] = F(\theta_{i_m} - \theta_{i_m}) = F(x_m^\top \theta),$$

where $x_m = e_{i_m} - e_{j_m}$ is the design point. This is simply the setup of generalized linear regression. Particularly, the Bradley-Terry model is essentially logistic regression with this special design.

10.2 Kendall's tau and minimax rates for noisy sorting

In general, we would like to estimate both π^* and M, but let us focus on estimating π^* under the noisy sorting model (11.1) for the rest of the notes. Full details of the discussion can be found in the paper [MWR18].

Consider the Kendall tau distance, i.e., the number of inversions between permutations, defined as

$$d_{\mathsf{KT}}(\pi,\sigma) = \sum_{i,j \in [n]} \mathbb{I} \big(\pi(i) > \pi(j), \, \sigma(i) < \sigma(j) \big).$$

Note that $d_{\mathsf{KT}}(\pi,\sigma) \in [0,\binom{n}{2}]$ and it is equal to the minimum number of adjacent transpositions required to change from π to σ (think of bubble sort). A closely related distance is the ℓ_1 -distance, also known as Spearman's footrule, defined as

$$\|\pi - \sigma\|_1 = \sum_{i=1}^n |\pi(i) - \sigma(i)|.$$

It is well known [DG77] that

$$d_{\mathsf{KT}}(\pi,\sigma) \le \|\pi - \sigma\|_1 \le 2d_{\mathsf{KT}}(\pi,\sigma). \tag{10.3}$$

Theorem 10.1. Consider the noisy sorting model (11.1) with $\lambda \in (0, \frac{1}{2} - c]$ where c is a positive constant. Suppose N independent comparisons are given according to (11.2). Then it holds that

$$\min_{\tilde{\pi}} \max_{\pi^*} \mathbb{E}_{\pi^*}[d_{\mathsf{KT}}(\tilde{\pi}, \pi^*)] \asymp \frac{n^3}{N\lambda^2} \wedge n^2.$$

10.2.1 Inversions and metric entropy

Before proving the theorem, we study the metric entropy of the set of permutations \mathfrak{S}_n with respect to the Kendall tau distance d_{KT} . Let $\mathcal{B}(\pi,r) = \{\sigma \in \mathfrak{S}_n : d_{\mathsf{KT}}(\pi,\sigma) \leq r\}$.

The inversion table b_1, \ldots, b_n of a permutation $\pi \in \mathfrak{S}_n$ is defined by

$$b_i = \sum_{j:i < j} \mathbb{I}(\pi(i) > \pi(j)).$$

Note that $b_i \in \{0, 1, ..., n-i\}$ and $d_{\mathsf{KT}}(\pi, \mathsf{id}) = \sum_{i=1}^n b_i$. On can reconstruct a permutation using its inversion table $\{b_i\}_{i=1}^n$, so the set of inversion tables is bijective to \mathfrak{S}_n . (Try the permutation (35241) which has inversion table (42010).)

Lemma 10.1. For $0 \le k \le \binom{n}{2}$, we have that

$$n \log(k/n) - n \le \log |\mathcal{B}(\mathsf{id}, k)| \le n \log(1 + k/n) + n$$
.

Proof. According to the discussion above, $|\mathcal{B}(\mathsf{id},k)|$ is equal to the number of inversion tables b_1,\ldots,b_n such that $\sum_{i=1}^n b_i \leq k$ where $b_i \in \{0,1,\ldots,n-i\}$. On the one hand, if $b_i \leq \lfloor k/n \rfloor$ for all $i \in [n]$, then $\sum_{i=1}^n b_i \leq k$, so a lower bound is given by

$$\begin{split} |\mathcal{B}(\mathsf{id},k)| &\geq \prod_{i=1}^n (\lfloor k/n \rfloor + 1) \wedge (n-i+1) \\ &\geq \prod_{i=1}^{n-\lfloor k/n \rfloor} (\lfloor k/n \rfloor + 1) \prod_{i=n-\lfloor k/n \rfloor + 1}^n (n-i+1) \\ &\geq (k/n)^{n-k/n} \lfloor k/n \rfloor! \, . \end{split}$$

Using Stirling's approximation, we see that

$$\log |\mathcal{B}(\mathsf{id}, k)| \ge n \log(k/n) - (k/n) \log(k/n) + \lfloor k/n \rfloor \log \lfloor k/n \rfloor - \lfloor k/n \rfloor$$

$$\ge n \log(k/n) - n.$$

On the other hand, if b_i is only required to be a nonnegative integer for each $i \in [n]$, then we can use a standard "stars and bars" counting argument to get an upper bound

$$|\mathcal{B}(\mathsf{id},k)| \le \binom{n+k}{n} \le e^n (1+k/n)^n$$
.

Taking the logarithm finishes the proof.

For $\varepsilon > 0$ and $S \subseteq \mathfrak{S}_n$, let $N(S, \varepsilon)$ and $D(S, \varepsilon)$ denote respectively the ε -covering number and the ε -packing number of S with respect to d_{KT} .

Proposition 10.1. We have that for $\varepsilon \in (0, r)$,

$$n\log\left(\frac{r}{n+\varepsilon}\right)-2n\leq \log N(\mathcal{B}(\pi,r),\varepsilon)\leq \log D(\mathcal{B}(\pi,r),\varepsilon)\leq n\log\left(\frac{2n+2r}{\varepsilon}\right)+2n$$
.

For $n \lesssim \varepsilon < r \leq \binom{n}{2}$, the ε -metric entropy of $\mathcal{B}(\pi, r)$ scales as $n \log \frac{r}{\varepsilon}$. In other words, \mathfrak{S}_n equipped with d_{KT} is a doubling space¹ with doubling dimension $\Theta(n)$.

Proof. The relation between the covering and the packing number is standard. We employ a volume argument for the bounds. Let \mathcal{P} be a 2ε -packing of $\mathcal{B}(\pi,r)$ so that the balls $\mathcal{B}(\sigma,\varepsilon)$ are disjoint for $\sigma \in \mathcal{P}$. By the triangle inequality, $\mathcal{B}(\sigma,\varepsilon) \subseteq \mathcal{B}(\pi,r+\varepsilon)$ for each $\sigma \in \mathcal{P}$. By the invariance of the Kendall tau distance under composition, Lemma 11.1 yields

$$\log D(\mathcal{B}(\pi, r), 2\varepsilon) \le n \log(1 + r/n) + n - n \log(\varepsilon/n) + n$$
$$= n \log\left(\frac{n+r}{\varepsilon}\right) + 2n.$$

In addition, if \mathcal{N} is an ε -net of $\mathcal{B}(\pi,r)$, then the set of balls $\{\mathcal{B}(\sigma,\varepsilon)\}_{\sigma\in\mathcal{N}}$ covers $\mathcal{B}(\pi,r)$. By Lemma 11.1, we obtain

$$\log N(\mathcal{B}(\pi, r), \varepsilon) \ge \log |\mathcal{B}(\pi, r)| - \log |\mathcal{B}(\sigma, \varepsilon)|$$

$$\ge n \log(r/n) - n - n \log(1 + \varepsilon/n) - n$$

$$= n \log \left(\frac{r}{n + \varepsilon}\right) - 2n,$$

as claimed. \Box

10.2.2 Proof of the minimax upper bound

We only present the proof of the upper bound in Theorem 11.1 with $\lambda = 1/4$ for simplicity. The estimator we use is a sieve maximum likelihood estimator (MLE), meaning that it is the MLE over a net (called a sieve). More precisely, define $\varphi = \frac{n}{N} \binom{n}{2}$. Let \mathcal{P} be a maximal φ -packing (and thus a φ -net) of \mathfrak{S}_n with respect to d_{KT} . Consider the sieve MLE

$$\hat{\pi} \in \operatorname*{argmax}_{\pi \in \mathcal{P}} \sum_{\pi(i) < \pi(j)} A_{i,j}. \tag{10.4}$$

Basic setup Since \mathcal{P} is a φ -net, there exists $\sigma \in \mathcal{P}$ such that $D := d_{\mathsf{KT}}(\sigma, \pi^*) \leq \varphi$. By definition of $\hat{\pi}$, $\sum_{\hat{\pi}(i) < \hat{\pi}(j)} A_{i,j} \geq \sum_{\sigma(i) < \sigma(j)} A_{i,j}$. Canceling concordant pairs (i,j) under $\hat{\pi}$ and σ , we see that

$$\sum_{\hat{\pi}(i) < \hat{\pi}(j),\, \sigma(i) > \sigma(j)} A_{i,j} \geq \sum_{\hat{\pi}(i) > \hat{\pi}(j),\, \sigma(i) < \sigma(j)} A_{i,j} \,.$$

Splitting the summands according to π^* yields that

$$\sum_{\substack{\hat{\pi}(i) < \hat{\pi}(j), \\ \sigma(i) > \sigma(j), \\ \pi^*(i) < \pi^*(j)}} A_{i,j} + \sum_{\substack{\hat{\pi}(i) < \hat{\pi}(j), \\ \sigma(i) > \sigma(j), \\ \pi^*(i) < \pi^*(j)}} A_{i,j} \geq \sum_{\substack{\hat{\pi}(i) > \hat{\pi}(j), \\ \sigma(i) < \sigma(j), \\ \pi^*(i) < \pi^*(j)}} A_{i,j} + \sum_{\substack{\hat{\pi}(i) > \hat{\pi}(j), \\ \sigma(i) < \sigma(j), \\ \pi^*(i) < \pi^*(j)}} A_{i,j} \cdot A_{i,j}$$

¹A metric space (X, d) is called a doubling space with doubling dimension $\log_2 M$, if M is the smallest number such that any ball of radius r in (X, d) can be covered with M balls of radius r/2.

Since $A_{i,j} \geq 0$, we may drop the rightmost term and drop the condition $\hat{\pi}(i) < \hat{\pi}(j)$ in the leftmost term to obtain that

$$\sum_{\substack{\sigma(i) > \sigma(j), \\ \pi^*(i) < \pi^*(j)}} A_{i,j} + \sum_{\substack{\hat{\pi}(i) < \hat{\pi}(j), \\ \sigma(i) > \sigma(j), \\ \pi^*(i) > \pi^*(j)}} A_{i,j} \ge \sum_{\substack{\hat{\pi}(i) > \hat{\pi}(j), \\ \sigma(i) < \sigma(j), \\ \pi^*(i) < \pi^*(j)}} A_{i,j}.$$

$$(10.5)$$

To set up the rest of the proof, we define, for $\pi \in \mathcal{P}$,

$$L_{\pi} = |\{(i,j) \in [n]^2 : \pi(i) < \pi(j), \sigma(i) > \sigma(j), \pi^*(i) > \pi^*(j)\}|$$

= $|\{(i,j) \in [n]^2 : \pi(i) > \pi(j), \sigma(i) < \sigma(j), \pi^*(i) < \pi^*(j)\}|$

Moreover, define the random variables

$$X_{\pi} = \sum_{\substack{\pi(i) > \pi(j), \\ \sigma(i) < \sigma(j), \\ \pi^*(i) < \pi^*(j)}} A_{i,j}, \quad Y_{\pi} = \sum_{\substack{\pi(i) < \pi(j), \\ \sigma(i) > \sigma(j), \\ \pi^*(i) > \sigma^*(j)}} A_{i,j}, \quad \text{and} \quad Z = \sum_{\substack{\sigma(i) > \sigma(j), \\ \pi^*(i) < \pi^*(j)}} A_{i,j}.$$

We show that the random process $X_{\pi} - Y_{\pi} - Z$ is positive with high probability if $d_{\mathsf{KT}}(\pi, \sigma)$ is large.

Binomial tails For a single pairwise comparison sampled uniformly from the possible $\binom{n}{2}$ pairs, the probability that

- 1. the chosen pair (i, j) satisfies $\pi(i) > \pi(j)$, $\sigma(i) < \sigma(j)$ and $\pi^*(i) < \pi^*(j)$, and
- 2. item i wins the comparison,

is equal to $\frac{3}{4}L_{\pi}\binom{n}{2}^{-1}$. By definition, X_{π} is the number of times the above event happens if N independent pairwise comparisons take place, so $X_{\pi} \sim \text{Bin}(N, \frac{3}{4}L_{\pi}\binom{n}{2}^{-1})$. Similarly, we have $Y_{\pi} \sim \text{Bin}(N, \frac{1}{4}L_{\pi}\binom{n}{2}^{-1})$ and $Z \sim \text{Bin}(N, \frac{3}{4}D\binom{n}{2}^{-1})$. The tails of a Binomial random variable can be bounded by the following lemma.

Lemma 10.2. For $0 < r < p < s < 1 \ and \ X \sim \text{Bin}(N, p)$, we have

$$\mathbb{P}(X \le rN) \le \exp\Big(-N\frac{(p-r)^2}{2p(1-r)}\Big) \quad and \quad \mathbb{P}(X \ge sN) \le \exp\Big(-N\frac{(p-s)^2}{2s(1-p)}\Big).$$

Therefore, we obtain

1.
$$\mathbb{P}(X_{\pi} \leq \frac{5}{8}L_{\pi}N\binom{n}{2}^{-1}) \leq \exp(-L_{\pi}N\binom{n}{2}^{-1}/128)$$
,

2.
$$\mathbb{P}(Y_{\pi} \geq \frac{3}{8}L_{\pi}N\binom{n}{2}^{-1}) \leq \exp(-L_{\pi}N\binom{n}{2}^{-1}/128)$$
, and

3.
$$\mathbb{P}(Z \ge 2\varphi N\binom{n}{2}^{-1}) \le \exp(-\varphi N\binom{n}{2}^{-1}/4) = \exp(-n/4)$$
.

Then we have that

$$\mathbb{P}(X_{\pi} - Y_{\pi} \le \frac{1}{4}L_{\pi}N\binom{n}{2}^{-1}) \le 2\exp(-L_{\pi}N\binom{n}{2}^{-1}/128).$$
 (10.6)

Peeling and union bounds For an integer $r \in [C\varphi, \binom{n}{2}]$ where C is a sufficiently large constant to be chosen, consider the slice $S_r = \{\pi \in \mathcal{P} : L_{\pi} = r\}$. Note that if $\pi \in S_r$, then

$$d_{\mathsf{KT}}(\pi, \pi^*) = |\{(i, j) : \hat{\pi}(i) < \hat{\pi}(j), \pi^*(i) > \pi^*(j)\}|$$

$$\leq |\{(i, j) : \hat{\pi}(i) < \hat{\pi}(j), \sigma(i) > \sigma(j), \pi^*(i) > \pi^*(j)\}|$$

$$+ |\{(i, j) : \sigma(i) < \sigma(j), \pi^*(i) > \pi^*(j)\}|$$

$$= L_{\pi} + d_{\mathsf{KT}}(\sigma, \pi^*) \leq r + \varphi,$$
(10.7)

showing that $S_r \subseteq \mathcal{B}(\pi^*, r + \varphi)$. Therefore, Proposition 11.1 gives

$$\log |\mathcal{S}_r| \le n \log \frac{2n + 2r + 2\varphi}{\varphi} + 2n \le n \log \frac{45r}{\varphi}.$$

By (11.6) and a union bound over S_r , we have $\min_{\pi \in S_r} (X_{\pi} - Y_{\pi}) > \frac{1}{4} r N \binom{n}{2}^{-1}$ with probability

$$1 - \exp\left(n\log\frac{45r}{\varphi} + \log 2 - \frac{rN}{128\binom{n}{2}}\right) \ge 1 - \exp(-2n),$$

where the inequality holds by the definition of φ and the range of r. Then a union bound over integers $r \in [C\varphi, \binom{n}{2}]$ yields that

$$X_{\pi} - Y_{\pi} > \frac{C}{4} \varphi N \binom{n}{2}^{-1}$$

for all $\pi \in \mathcal{P}$ such that $L_{\pi} \geq C\varphi$ with probability at least $1 - e^{-n}$. This is larger than the above high probability upper bound on Z, so we conclude that with probability at least $1 - e^{-n/8}$,

$$X_{\pi} - Y_{\pi} - Z > 0$$

for all $\pi \in \mathcal{P}$ with $L_{\pi} \geq C\varphi$. However, (11.5) says that $X_{\hat{\pi}} - Y_{\hat{\pi}} - Z \leq 0$, so $L_{\hat{\pi}} \leq C\varphi$ on the above event. By (11.7), $d_{\mathsf{KT}}(\hat{\pi}, \pi^*) \leq L_{\hat{\pi}} + \varphi$ on the same event, which completes the proof.

10.3 An efficient algorithm for noisy sorting

Let us move on to present an efficient algorithm. We continue to assume $\lambda=1/4$. To recover the underlying order of items, it is equivalent to estimate the row sums $\sum_{j=1}^n M_{\pi^*(i),\pi^*(j)}$ which we call scores of the items. Initially, for each $i \in [n]$, we estimate the score of item i by the number of wins item i has. If item i has a much higher score than item j in the first stage, then we are confident that item i is stronger than item i. Hence in the second stage, we know $M_{\pi^*(i),\pi^*(j)}=3/4$ with high probability. For those pairs that we are not certain about, $M_{\pi^*(i),\pi^*(j)}$ is still estimated by its empirical version. The variance of each score is thus greatly reduced in the second stage, thereby yielding a more accurate order of the items. Then we iterate this process to obtain finer and finer estimates of the scores and the underlying order.

To present the T-stage sorting algorithm formally, we split the sample into T subsamples each containing N/T pairwise comparisons. For $t \in [T]$, we define a matrix $A^{(t)} \in \mathbb{R}^{n \times n}$ by setting $A_{i,j}^{(t)}$ to be the number of times item i beats item j in the t-th sample. The algorithm proceeds as follows:

- 1. For $i \in [n]$, define $I^{(0)}(i) = [n]$, $I_{-}^{(0)}(i) = \emptyset$ and $I_{+}^{(0)}(i) = \emptyset$. For $0 \le t \le T$, we use $I^{(t)}(i)$ to denote the set of items j whose ranking relative to i has not been determined by the algorithm at stage t.
- 2. At stage t, compute the score $S_i^{(t)}$ of item i:

$$S_i^{(t)} = \frac{T\binom{n}{2}}{N} \sum_{j \in I^{(t-1)}(i)} A_{i,j}^{(t)} + \frac{3}{4} |I_-^{(t-1)}(i)| + \frac{1}{4} |I_+^{(t-1)}(i)|.$$

3. Set the threshold

$$\tau_i^{(t)} \asymp n\sqrt{|I^{(t-1)}(i)|TN^{-1}\log(nT)}\,,$$

and define the sets

$$I_{+}^{(t)}(i) = \{ j \in [n] : S_{j}^{(t)} - S_{i}^{(t)} < -\tau_{i}^{(t)} \},$$

$$I_{-}^{(t)}(i) = \{ j \in [n] : S_{j}^{(t)} - S_{i}^{(t)} > \tau_{i}^{(t)} \}, \text{ and }$$

$$I_{-}^{(t)}(i) = [n] \setminus \left(I_{-}^{(t)}(i) \cup I_{+}^{(t)}(i) \right).$$

4. Repeat step 2 and 3 for t = 1, ..., T. Output a permutation $\hat{\pi}^{MS}$ by sorting the scores $S_i^{(T)}$ in nonincreasing order, i.e., $S_i^{(T)} \geq S_j^{(T)}$ if $\hat{\pi}^{MS}(i) < \hat{\pi}^{MS}(j)$.

We take $T = \lfloor \log \log n \rfloor$ so that the overall time complexity of the algorithm is only $O(n^2 \log \log n)$.

Theorem 10.2. With probability at least $1 - n^{-7}$, the algorithm with $T = \lfloor \log \log n \rfloor$ stages outputs an estimator $\hat{\pi}^{MS}$ that satisfies

$$\|\hat{\pi}^{\mathsf{MS}} - \pi^*\|_{\infty} \lesssim \frac{n^2}{N} (\log n) \log \log n$$

and

$$d_{\mathsf{KT}}(\hat{\pi}^{\mathsf{MS}}, \pi^*) \lesssim \frac{n^3}{N} (\log n) \log \log n \,.$$

The second statement follows from the first one together with (11.3).

10.3.1 Proof (sketch) of Theorem 11.2

Assume that $\pi^* = id$ without loss of generality. We define a score

$$s_i^* = \sum_{j \in [n] \setminus \{i\}} M_{i,j} = \frac{i}{2} + \frac{n}{4} - \frac{3}{4}$$

for each $i \in [n]$, which is simply the *i*-th row sum of M minus 1/2.

Lemma 10.3. Fix $t \in [T]$, $I \subseteq [n]$ and $i \in I$. Let us define

$$S = \frac{T\binom{n}{2}}{N} \sum_{i \in I} A_{i,j}^{(t)} + \frac{3}{4} \left| \left\{ j \in [n] \setminus I : j < i \right\} \right| + \frac{1}{4} \left| \left\{ j \in [n] \setminus I : j > i \right\} \right|.$$

If |I| is not too small, then it holds with probability at least $1 - (nT)^{-9}$ that

$$|S - s_i^*| \lesssim n\sqrt{|I|TN^{-1}\log(nT)}$$
.

Proof. The probability that a uniform pair consists of item i and an item in $I \setminus \{i\}$, and that item i wins the comparison, is equal to $q := \left(\sum_{j \in I \setminus \{i\}} M_{i,j}\right)/\binom{n}{2}$. Thus the random variable $X := \sum_{j \in I} A_{i,j}^{(t)}$ has distribution Bin(N/T,q). In particular, we have $\mathbb{E}[X] = Nq/T = \frac{N}{T\binom{n}{2}} \sum_{j \in I \setminus \{i\}} M_{i,j}$, so S is an unbiased estimate of s_i^* . Moreover, we have the tail bound

$$\mathbb{P}\Big(\big|X - \mathbb{E}[X]\big| \gtrsim \sqrt{qNT^{-1}\log(nT)}\Big) \le (nT)^{-9},$$

from which the conclusion follows.

We apply Lemma 11.3 inductively to each stage of the algorithm. By a union bound over all $i \in [n]$ and $t \in [T]$, all the events studied below hold with high probability. For $t \in [T]$, define

$$\mathcal{E}^{(t-1)} := \{ j < i \text{ for all } j \in I_{-}^{(t-1)}(i) \text{ and } j > i, \text{ for all } j \in I_{+}^{(t-1)}(i) \}.$$

On the event $\mathcal{E}^{(t-1)}$, the score $S_i^{(t)}$ is exactly the quantity S in Lemma 11.3 with $I = I^{(t-1)}(i)$, so

$$|S_i^{(t)} - s_i^*| \lesssim n\sqrt{|I^{(t-1)}(i)|TN^{-1}\log(nT)} = \tau_i^{(t)}/2.$$
 (10.8)

For any $j \in I_+^{(t)}(i)$, by definition $S_j^{(t)} - S_i^{(t)} < -\tau_i^{(t)}$, so we have $s_j^* < s_i^*$ and thus j > i. Similarly, j < i for any $j \in I_-^{(t)}(i)$. Hence $\mathcal{E}^{(t)}$ occurs with high probability. Moreover, if $|s_j^* - s_i^*| > 2\tau_i^{(t)}$, then $|S_j^{(t)} - S_i^{(t)}| > \tau_i^{(t)}$, so $j \notin I^{(t)}(i)$. Hence if $j \in I^{(t)}(i)$, then $|j - i| \lesssim \tau_i^{(t)}$. Consequently,

$$|I^{(t)}(i)| \lesssim \tau_i^{(t)} \lesssim n\sqrt{|I^{(t-1)}(i)|TN^{-1}\log(nT)}$$
 (10.9)

Note that if we have $\alpha^{(0)} = n$ and the iterative relation $\alpha^{(t)} \leq \beta \sqrt{\alpha^{(t-1)}}$ where $\alpha^{(t)} > 0$ and $\beta > 0$, then it is easily seen that $\alpha^{(t)} \leq \beta^2 n^{2^{-t}}$. Consequently, we obtain that

$$|I^{(T-1)}(i)| \lesssim \frac{n^2T}{N}\log(nT)n^{2^{-T+1}} \lesssim \frac{n^2}{N}(\log n)(\log\log n)$$

for $T = \lfloor \log \log n \rfloor$. Taking T to be larger does not make $|I^{(T-1)}(i)|$ smaller, because Lemma 11.3 requires a lower bound on $|I^{(T-1)}(i)|$. The details are left out. It follows from (11.8) that

$$|S_i^{(T)} - s_i^*| \lesssim \frac{n^2}{N} (\log n) \log \log n =: \delta.$$

As the permutation $\hat{\pi}^{\text{MS}}$ is defined by sorting the scores $S_i^{(T)}$ in nonincreasing order, we see that $\hat{\pi}^{\text{MS}}(i) < \hat{\pi}^{\text{MS}}(j)$ for all pairs (i,j) with $s_i^* - s_j^* > 2\delta$, i.e., $j-i>\delta$.

Finally, suppose that $\hat{\pi}^{MS}(i) - i > \delta$ for some $i \in [n]$. Then there exists $j > i + \delta$ such that $\hat{\pi}^{MS}(j) < \hat{\pi}^{MS}(i)$, contradicting the guarantee we have just proved. A similar argument leads to a contradiction if $\hat{\pi}^{MS}(i) - i < -\delta$. Therefore, we obtain that $|\hat{\pi}^{MS}(i) - i| \leq \delta$, completing the proof.

References

- [BM08] Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In *Proceedings* of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 268–276. ACM, New York, 2008.
- [DG77] Persi Diaconis and Ronald L. Graham. Spearman's footrule as a measure of disarray. Journal of the Royal Statistical Society. Series B (Methodological), pages 262–268, 1977.
- [MWR18] Cheng Mao, Jonathan Weed, and Philippe Rigollet. Minimax rates and efficient algorithms for noisy sorting. Proceedings of the 28th International Conference on Algorithmic Learning Theory, 2018.