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Lecture 12: Grothendieck Inequality and its Application in SBM

Lecturer: Yihong Wu Scribe: Jiyi Liu, Nov 28, 2018

Previously in Lecture ??, we discussed the exact recovery of SBM. In this lecture, we turn to the
almost exact recovery. Let σ be the community labels of nodes. Recall that the loss to evaluate
a community estimate σ̂ is l(σ, σ̂) = 1

n min± dH(σ, σ̂), where dH(x, y) is the Hamming distance∑
i I{xi 6= yi}. We call σ̂ an almost exact recovery if l(σ, σ̂) = o(1), and an Exact recovery if

l(σ, σ̂) = 0 w.h.p. We have seen that the requirement is H2(P,Q) ≥ (2+) logn
n for ∀ > 0 for exact

recovery. Here we are going to show the necessary and sufficient condition for almost exact recovery
is H2(P,Q)� 1

n , which can be achieved by SDP relaxation.

We first introduce the key technical tool: Grothendieck Inequality (Theorem ??). Then we discuss
its application to SBM following Guédon-Vershynin [? ].

12.1 ‖ · ‖∞→1 norm

Consider A ∈ Rn×m. We look at the following optimization

max
xi,yj=±

∑
1≤i≤n,1≤j≤m

aijxiyj = max
x∈{±}n,y∈{±}m

〈A, xy>〉. (12.1)

Remark 12.1. The objective above (12.1) is a norm of A, denoted as ‖A‖∞→1 = max‖x‖∞≤1 ‖Ax‖1.
This is easily seen by writing ‖ · ‖1 in the dual form.

Remark 12.2. ‖A‖∞→1 is closely related to the cut norm. The cut norm ‖A‖cut is defined as
(cf. the min cut in Lecture ??)

‖A‖cut = max
I⊂[n],J⊂[m]

∣∣∣∣∣∣
∑

i∈I,j∈J
aij

∣∣∣∣∣∣ .
The relation of the two norms is

‖A‖cut ≤ ‖A‖∞→1 ≤ 4‖A‖cut.

The left side inequality can be seen by

‖A‖cut = max
I⊂[n],J⊂[m]

∣∣∣∣∣∣
∑

i∈I,j∈J
aij

∣∣∣∣∣∣ ≤ max
I⊂[n],J⊂[m]

∑
i∈I

∣∣∣∣∣∣
∑
j∈J

aij

∣∣∣∣∣∣ ≤ max
J
‖AxJ‖1 ≤ ‖A‖∞→1.

xJ is the indicator vector of J . The right side inequality can be shown by writing x = I{I} −
I{Ic}, y = I{J} − I{Jc} in (12.1).

We have the SDP relaxation of ‖A‖∞→1: for r ≥ n+m (otherwise it is nonconvex),

SDP(A) = max
ui,vj∈Rr,‖ui‖=‖vj‖=1

n∑
i=1

m∑
j=1

aij〈ui, vj〉. (12.2)
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Remark 12.3. When r = 1, SDP(A) corresponds to ‖A‖∞→1. Thus it is indeed a “relaxation” of
the norm: ‖A‖∞→1 ≤ SDP(A).

Remark 12.4 (Dimension-free). SDP(A) is dimension-free in the sense that the value does not
depend on r as long as r ≥ n+m. In particular, if it helps construction, we are free to consider
the infinite-dimensional setting, e.g., the decision variables ui, vj take values in the Hilbert space of
random variables – and we will do so next.

Remark 12.5 (Standard Form). SDP(A) can be written into a standard SDP form

SDP(A) = max
X�0,Xii=1

〈W,X〉

where W =

(
0 A
A> 0

)
. The correspondence is by writing

X =

(
U>

V >

)(
U V

)
=

(
UTU UTV
V TU V TV

)
.

We can see the role of r in SDP(A) is rank(X) ≤ r. But X is n + m by n + m, so as long as
r ≥ n+m, this constrain disappears.

12.2 Grothendieck Inequality

Theorem 12.1 (Grothendieck Inequality).

‖A‖∞→1 ≤ SDP(A) ≤ k‖A‖∞→1.

Here the absolute constant k can be chosen as k = 1
4
π
−1 ≈ 3.66 (with the world record ≈ 1.78).

Proof: following Rietz [? ]. The left side is obvious and stated in Remark 12.3. We focus on the
right side. The main idea is randomized rounding. Let ui, vj ∈ Sd−1 achieve the maximum in
SDP(A) (??), d = n+m. We hope such ui, vj can match (not too far away from in objective) the
xi, yj in (12.1). If we take some random xi, yj , then we can have the lower bound

‖A‖∞→1 ≥
∑

aijxiyj =
∑

aijE(xiyj).

But aij can be positive or negative, so we cannot go further directly.

Consider xi = sign(〈g, ui〉), yj = sgn(〈g, vj〉), g ∼ N(0, Id).

Fact 12.1. Note g
‖g‖ ∼ unif (Sd−1), so

xiyj =
2

π
arcsin〈ui, vj〉.

Denote by gui = 〈g, ui〉, gvj = 〈g, vj〉. We consider the generic settign xi = f(gui), yj = f(gvj ) for
some f : R→ [−1, 1]. We have the following facts
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Fact 12.2. 1. gugv = 〈u, v〉.

2. guf(gv) = 〈u, v〉Zf(Z) , 〈u, v〉K, Z ∼ N(0, 1).

3. (gu − f(gu))2 = 1− 2K + L, L , f2(Z).

The facts hold noticing each gu ∼ N(0, 1). Then

‖A‖∞→1 ≥
∑

aijxiyj

=
∑

aijf(gui)f(gvj )

=
∑

aij(gui − f(gui))(gvj − f(gvj ))−
∑

aijguigvj

+
∑

aij
(
gvjf(gui) + guif(gvj )

)
(def of ui, vj) =

∑
aij(gui − f(gui))(gvj − f(gvj ))︸ ︷︷ ︸

?

+(2K − 1)SDP(A).

The magical next step is observing (?) is a feasible representation (after normalizing) in (??). Thus

|(?)| ≤ (1− 2K + L)SDP(A).

⇒ ‖A‖∞→1 ≥ (4K − L− 2)SDP(A).

Let f = sgn. Then L = 1,K = |Z| =
√

2
π . 4K − L− 2 = 4

√
2
π − 3 ≈ 0.19 < 0.2. So we proved that

we can choose k = 5 in the theorem.

Moreover, there is a natural way to improve the constant. If we replace f by αf in the derivation
above, then

α2‖A‖∞→1 ≥
∑

aijαf(gui) · αf(gvj )

=
∑

aij(gui − αf(gui))(gvj − αf(gvj ))−
∑

aijguigvj

+
∑

aij
(
αgvjf(gui) + αguif(gvj )

)
=(?)(α) + (2αK − 1)SDP(A).

And
|(?)(α)| ≤ (1− 2αK + α2L)SDP(A).

Then the statement would be

‖A‖∞→1 ≥
(

4K

α
− 2

α2
− L

)
SDP(A).

The optimal α is 1
K , and the bound is

‖A‖∞→1 ≥
(
2K2 − L

)
SDP(A)

In the case f = sgn, 2K2 − L = 4
π − 3, as suggested in the theorem.

Clearly, the best strategy is to let

f = arg max
|f |≤1,Zf(Z)>0

2K2 − L.

The solution is given by the bounded linear function, f(x) = max(0,min(x, 1)).
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Remark 12.6 (PSD A). When A is psd, the optimal bound is

‖A‖∞→1 ≥
2

π
SDP(A).

In this case, we can lower bound (?) by 0 instead, since by design ui = vi in this case. Then

‖A‖∞→1

SDP(A)
≥ sup

α

2αK − 1

α2
= K2 =

2

π
.

To show the sharpness, we construct examples that (asymptotically) achieve the bound. Let

li
i.i.d∼ unif(Sd−1), Aij = 1

n2 〈li, lj〉. Choose ui = vi = li in (??), we have

SDP(A) ≥ 1

n2

∑
i,j

〈li, lj〉2
LLN
≈ 〈l, l′〉2 =

1

d
(1 + o(1)).

But

‖A‖∞→1

w.h.p
≤ 1

d
(
2

π
+ o(1)).

This is because

‖A‖∞→1 = max
x∈{±}n

〈A, xx>〉 = max
x∈{±}n

1

n2

∑
xixj〈li, lj〉 = max

x∈{±}n
‖ 1

n

∑
xili‖2l2 = ‖l‖2→1.

Remark 12.7 (Connection to max-cut). Given a weighted graph with weight matrix W , similar to
min-cut in (??), define:

maxcut(W ) , max
I⊂[n]

∑
i∈I,j∈Ic

Wij .

Then

2maxcut(W ) = max
σ∈{±}n

∑
Wij(1− σiσj)

= max
σ∈{±}n

〈W,J − σσ>〉

≤ max
X�0,Xii=1

〈W,J −X〉 , GW (W ).

The same as the proof of Theorem ??, note here Wij ≥ 0,

2maxcut(W ) ≥
∑

Wij(1−
2

π
arccos〈ui, vj〉)

≥ 0.878
∑

Wij(1− 〈ui, vj〉)

= 0.878GW (W ).

12.3 Application to SBM

Consider SBM(n, p, q), p = a
n , q = b

n , and bisection 〈σ,1〉 = 0. Define d = a+b
2 , s = a− b. Recall in

the bisection case (see Remark 10.2), the MLE has the following SDP relaxation

X̂ = arg max 〈A,X〉.
X � 0

Xii = 1

〈X, J〉 = 0
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We claim that the necessary and sufficient condition is

(a− b)2

a+ b
→∞.

Here (a−b)2
a+b can be interpreted as the signal-to-noise ratio (snr). In the more general P/Q model,

the condition is H2(P,Q)� 1
n , which recovers the above when P = Bern(p) and Q = Bern(q).

Theorem 12.2 ([? ]). Let v̂ = the top eigenvector of X̂, and σ̂ = sgn(v̂). Then

l(σ̂, σ)
(also w.h.p)

.
1√
snr

.

Note: The above misclassification rate is later sharpened to exponential (optimal) by [? ]:

l(σ̂, σ) ≤ exp(−Ω(snr)).

Proof. Define the population solution

X∗ = arg max 〈A,X〉.
X � 0

Xii = 1

〈X, J〉 = 0

We can calculate

A =
p+ q

2
J +

p− q
2

σσ> − pI

and justify σσ> = X∗.

〈A, X̂〉 = 〈A, X̂〉 − 〈A−A, X̂〉
≥ 〈A,X∗〉 − 〈A−A, X̂〉
= 〈A,X∗〉+ 〈A−A,X∗〉 − 〈A−A, X̂〉︸ ︷︷ ︸

,−δ

.

If we can somehow say δ ≤ 0, in other words 〈A−A,X∗〉 − 〈A−A, X̂〉 ≥ 0, then we can conclude
〈A, X̂〉 ≥ 〈A,X∗〉, and thus X̂ = X∗. Though this is not possible in general, we can show δ is not
too big to get the conclusion. Let v̂ = v1(X̂), v = v1(X

∗) = σ√
n

, then by sinΘ law,

min ‖v̂ ± v‖2 .
‖X̂ −X∗‖op

λ1(X∗)− λ2(X̂)
≤ ‖X̂ −X

∗‖F
n− 0

=
‖X̂ −X∗‖F

n
.

Also note that for every σi 6= σ̂i, ‖v̂ ± v‖22 differs at least 1
n at this i. Thus

l(σ̂, σ) ≤ 1

n
· nmin ‖v̂ ± v‖22 .

‖X̂ −X∗‖2F
n2

.
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Suppose n
√
d

w.h.p

& δ ≥ 〈A,X∗〉 − 〈A, X̂〉 = p−q
2 (n2 − 〈σσ>, X̂〉). Then

‖X̂ −X∗‖2F = ‖X̂‖2F + ‖X∗‖2F − 2〈X̂,X∗〉
= ‖X̂‖2F + n2 − 2〈X̂, σσ>〉
≤ Tr(X̂)2 + n2 − 2〈X̂, σσ>〉

= 2(n2 − 〈σσ>, X̂〉) . δ

p− q
=

nδ

a− b
≤ n2√

snr
.

This completes the proof. So it remains only to show δ
w.h.p

. n
√
d. Denote W = A−A. We want to

show
1

2
|δ| ≤ SDP(W ) = max

X�0,Xii=1
〈W,X〉

w.h.p

. n
√
d.

By Grothendieck Inequality,

SDP(W ) = max
‖ui‖=1

∑
i,j

Wij〈ui, uj〉

≤ max
‖ui‖=‖vj‖=1

∑
i,j

Wij〈ui, vj〉

G.I.

. ‖W‖∞→1

= max
x,y∈{±}n

〈W,xy>〉.

By Hoeffding’s inequality Lemma ??,

P(|〈W,xy>〉| ≥ t) ≤ exp(−c · t
2

n2
).

To apply union bound on x, y, which in total 4n, we need to choose t ∼ n3/2. We apply Bernstein’s
inequality instead,

P(|〈W,xy>〉| ≥ t) ≤ exp(−c · t2

t+ nd
),

then we can choose t ∼ n
√
d.
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