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Previously in Lecture 77, we discussed the exact recovery of SBM. In this lecture, we turn to the
almost exact recovery. Let o be the community labels of nodes. Recall that the loss to evaluate
a community estimate & is [(0,6) = Lminy dy(o,6), where dy(z,y) is the Hamming distance
Yo I{zi # yi}. We call 6 an almost exact recovery if I(c,6) = o(1), and an Exact recovery if
I(0,6) = 0 w.h.p. We have seen that the requirement is H?(P, Q) > @Hlogn g1 v > 0 for exact

n
recovery. Here we are going to show the necessary and sufficient condition for almost exact recovery

is H2(P,Q) > %, which can be achieved by SDP relaxation.

We first introduce the key technical tool: Grothendieck Inequality (Theorem ?7?). Then we discuss
its application to SBM following Guédon-Vershynin [? ].

12.1 || - ||co—1 norm

Consider A € R™*™. We look at the following optimization

.
xln;?i(i Z ATy = (Azy ' ). (12.1)

max
:l: n :l: m
I<i<ni<j<m ve{+}ye{£}

Remark 12.1. The objective above (12.1) is a norm of A, denoted as [|A[|co—1 = maxq <1 Az
This is easily seen by writing || - || in the dual form.

Remark 12.2. ||A]|co—1 is closely related to the cut norm. The cut norm ||Al/cys is defined as
(cf. the min cut in Lecture ?7?)

|Allecut = max D agl

IC[n],JC[m] T e

The relation of the two norms is
||A”6ut < HA||OO—>1 < 4HAcht‘

The left side inequality can be seen by

|Aljewt = max Y a| < max 1Y ay| <max Az < (| Al
IC[n],JC[m] T e ICIn],JClm] $=7 i J

xy is the indicator vector of J. The right side inequality can be shown by writing x = I{I} —
H{I},y = I{J} — I{J°} in (12.1).

We have the SDP relaxation of ||Al|co—1: for » > n 4+ m (otherwise it is nonconvex),

SDP(A) = max DN aiilui,vg). (12.2)

s, €R sl =l =1 £ £



Remark 12.3. When r = 1, SDP(A) corresponds to ||A|lcc—1. Thus it is indeed a “relaxation” of
the norm: ||Aljcc—1 < SDP(A).

Remark 12.4 (Dimension-free). SDP(A) is dimension-free in the sense that the value does not
depend on r as long as r > n 4+ m. In particular, if it helps construction, we are free to consider
the infinite-dimensional setting, e.g., the decision variables u;, v; take values in the Hilbert space of
random variables — and we will do so next.

Remark 12.5 (Standard Form). SDP(A) can be written into a standard SDP form

SDP(A) = max (W, X)
X50,X ;=1

0 A

where W = <AT 0

). The correspondence is by writing

Ut vty uTv
X = <VT> v V)= <VTU VTV)'

We can see the role of r in SDP(A) is rank(X) < r. But X is n +m by n + m, so as long as
r > n + m, this constrain disappears.

12.2 Grothendieck Inequality

Theorem 12.1 (Grothendieck Inequality).

[Alloc—1 < SDP(A) < k[[Al|oc—1-

Here the absolute constant k can be chosen as k = il_l ~ 3.66 (with the world record ~ 1.78).

Proof: following Rietz [T . The left side is obvious and stated in Remark 12.3. We focus on the
right side. The main idea is randomized rounding. Let u;,v; € S%1 achieve the maximum in
SDP(A) (7?), d =n + m. We hope such u;,v; can match (not too far away from in objective) the
xi,yj in (12.1). If we take some random z;,y;, then we can have the lower bound

Alloos1 > aijmiy; = Y aE(ziy;).

But a;; can be positive or negative, so we cannot go further directly.

Consider x; = sign((g, u;)), y; = sgn((g,v;)), g ~ N(0,14).
Fact 12.1. Note ﬁ ~ unif (ST71), so

2 :
Tiyj = arcsin(u;, v;).

Denote by g., = (g, ui), go; = (9,v;). We consider the generic settign z; = f(gu,),y; = f(gv,) for
some f: R — [—1,1]. We have the following facts



Fact 12.2. 1. gugo = (u,v).
2. guf(gv) = (w,0)Z2f(Z) = (w,v)K, Z ~ N(0,1).
3. (gu— f(gu))* =1-2K + L, L = f*(2).
The facts hold noticing each g, ~ N(0,1). Then
Aot =) aijry;
=" ai; f(gu,) f(g0;)
= aij(gu; — F(9u)) 9oy = F(90;)) = D @ijGu, v,
+ ) aij (90, £ (9u) + guif(90,))
(def of ui,v;) = aij(gu; — f(9u)) (9o, — f(g0,)) +(2K — 1)SDP(A).

~~
*

The magical next step is observing (%) is a feasible representation (after normalizing) in (??7). Thus
|(%)] < (1 —-2K + L)SDP(A).
= [|A|lcom1 > (4K — L — 2)SDP(A).

Let f =sgn. Then L=1,K = |Z| = \/% AK — L -2 = 4\/2—3 ~ 0.19 < 0.2. So we proved that
we can choose k£ = 5 in the theorem.

Moreover, there is a natural way to improve the constant. If we replace f by af in the derivation
above, then

o?||Alloo1 > Z aijaf(gu;) - af(gv;)
= aij(gu; — f(9u))(9o; — f (90;)) = D AijGu, 90,
+ > aij (age, f(gu) + agu, f (gvj))
=(x)(a) + (2aK — 1)SDP(A).
And
|(%)(a)| < (1 —2aK + o*L)SDP(A).
Then the statement would be

41K 2
[Py pe— ( = 5- L) SDP(A).

The optimal « is %, and the bound is

|Alloos1 > (252 — L) SDP(4)
In the case f = sgn, 2K? — L = % — 3, as suggested in the theorem.
Clearly, the best strategy is to let

f=arg max 2K% — L.
IF1<1,2f(2)>0

The solution is given by the bounded linear function, f(z) = max(0, min(z,1)). O

3



Remark 12.6 (PSD A). When A is psd, the optimal bound is
2
[Alloss > 2SDP(A).

In this case, we can lower bound (%) by 0 instead, since by design u; = v; in this case. Then
—_ > ——— =K"= —.
SDP(A) — T2 s
To show the sharpness, we construct examples that (asymptotically) achieve the bound. Let
L A anif(S4Y), Aij = (1, 1;). Choose u; = v; = I; in (?7), we have

SDP(A) > % s R (L 1? = L1+ o1).

But
w.h.p
[Allos1 <

SEp®

(= +o(1)).

Ul =

This is because

[Alfoo—1 = Hﬁ%ﬂ(z‘l zr') = xé’%i}fn $Z$@mj (lislj) = gﬁ}}%n ||*Z$zl I, = llell2—1-

Remark 12.7 (Connection to max-cut). Given a weighted graph with weight matrix W, similar to
min-cut in (?7), define:

maxcut (W) £ max Wi;.
el serere
Then
2 t(W) = Wii(1 — o0
maxcut (W) agﬁ)in (1 —0oi05)
= max (W,J —oc')
oce{x}"
< max (W,J-X)2GW(W).
X-0,X;=1

The same as the proof of Theorem ?7, note here W;; > 0,
2
2maxcut(W) > Z Wi (1 — - arccos(u;, v;))

> 0.878 Y Wij(1 — (uj, v;))
= 0.878GW (W).

12.3 Application to SBM

Consider SBM (n,p,q), p = =,q = -, and bisection (0, 1) = 0. Define d = a;rb, s =a —b. Recall in

the bisection case (see Remark 10. 2) the MLE has the following SDP relaxation
X = argmax (4, X).
X >0
Xi=1
(X, J) =



We claim that the necessary and sufficient condition is

)2
(a —b) o
a+b
Here (aa;bf can be interpreted as the signal-to-noise ratio (snr). In the more general P/ model,

the condition is H?(P,Q) > i, which recovers the above when P = Bern(p) and @ = Bern(q).

Theorem 12.2 ([? ]). Let © = the top eigenvector of X, and & = sgn(?). Then

(also w.h.p) 1
1(6,0) <

~

snr

Note: The above misclassification rate is later sharpened to exponential (optimal) by [? ]:

l(6,0) < exp(—(snr)).

Proof. Define the population solution

X* = argmax (A, X).

X>=0
Xii=1
(X,J)=0
We can calculate n
A= quJJr 2qO‘T—pI

and justify oo = X*.
<A7X>:<AaX>_<A_A7X>
> (A4, X*) - (A—A,X)
= (A4, X+ (A—AX*)—(A—AX).

—0

If we can somehow say § < 0, in other words (A — A, X*) — (A — A, X) > 0, then we can conclude
(A, X) > (A, X*), and thus X = X*. Though this is not possible in general, we can show ¢ is not
too big to get the conclusion. Let 0 = v1(X),v = v1(X*) = then by sin® law,

fa
mlnHv:I:vH HX X*”OP HX X*HF HX X*HF
TAM(X) = A (X ) n—0 n

Also note that for every o; # &;, |6 + |3 differs at least L at this i. Thus

1 X — X*|2
— nmin |9 £ 0|3 < w
n n

1(6,0) <



w.h.p R R
Suppose nVd 2§ > (A, X*) — (A, X) = 254(n® — (00", X)). Then

IX = X*(|F = [IX]F + X717 - 2(X, X*)
= | X[ +n* —2(X,007)
<Tr(X)?4+n?—2(X,00")
1) nd < n?

(n <0-0— ? >)Np_q a_b— snr

w.h.p
This completes the proof. So it remains only to show § < nv/d. Denote W = A — A. We want to

show
w.h.p

1
Z15| <SDP(W)= max (W, X) < nVd
2 X>0,X;;=1

By Grothendieck Inequality,

[luil|=1 o

> ax W<u LU >
||ui—v]-||—1izj: ig\Ui, Uj

G.I.

S Wleos

= max (W,zy').
$,y€{:|:}"< y >

By Hoeffding’s inequality Lemma ?7,
T 2
B((Way )] = ) < expl—c- L),

3/2

To apply union bound on z,y, which in total 4", we need to choose t ~ n>/“. We apply Bernstein’s

inequality instead,
2
Trnd

then we can choose t ~ nv4d. O

P((W,zy")| > t) < exp(—c
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