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Throughout the note let Xn ≡ (X1, . . . , Xn). Let PXn and QXn be n-variant joint distributions
factorized as

PXn = PX1PX2|X1
· · ·PXn|Xn−1 (1)

QXn = QX1QX2|X1
· · ·QXn|Xn−1 . (2)

Suppose we have some “distance” (e.g. f -divergences or Wasserstein distances) that computes the
dissimilarity score between two distributions. A chain rule (also known as tensorization) aims to
compute or bound the dissimilarity score between the two joint distributions by the scores between
each conditionals. The simplest instance is the KL divergence:

D(PXn∥QXn) =

n∑
t=1

EP [D(PXt|Xt−1∥QXt|Xt−1)] (3)

which follows from the telescoping sum log PXn

QXn
=
∑n

t=1 log
PXt|Xt−1

QXt|Xt−1
. Here EP is with respect to

the P -law, i.e., Xt−1 ∼ PXt−1 for each t.
How would we extend this to other f -divergences? Let us start with a simple chain rule for

Hellinger distance (not squared):

H(PXn , QXn) ≤
n∑

t=1

EP [H(PXt|Xt−1 , QXt|Xt−1)] (4)

To see this, note that H is a metric. Interpolating PXn and QXn , we can start with (1) and
successively swap out P ’s by Q’s. Define P (t) ≜ PX1PX2|X1

· · ·PXt|Xt−1QXt+1|Xt · · ·QXn|Xn−1 , with

P (0) = QXn and P (n) = PXn . Then (4) is precisely H(P (0), P (n)) ≤
∑n−1

t=0 H(P (t), P (t+1)). Since
the proof only applies triangle inequality, any distance would work. In particular, we have

TV(PXn , QXn) ≤
n∑

t=1

EP [TV(PXt|Xt−1 , QXt|Xt−1)] (5)

Compared with (4), the following result1 due to TS Jayram [Jay09] is considerably deeper and
stronger. It says that the desired chain rule holds also for the squared Hellinger within a constant
factor.

1We are grateful to Yanjun Han for telling us this result.
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Theorem 1 (Jayram).

H2(PXn , QXn) ≤ 4 ·
n∑

t=1

EP [H
2(PXt|Xt−1 , QXt|Xt−1)] (6)

To compare (4) and (6), suppose that each pair of conditionals differ by a Hellinger distance of
ϵ. Then (4) says the Hellinger distance between the full joint is O(nϵ) while (6) shows it is actually
O(

√
nϵ).

1 Proof of Theorem 1

We will prove Theorem 1 through the use of three lemmas.
First, in order to have a “smarter” interpolation between PXn and QXn , let us define the

following intermediate distribution: For A ⊂ [n], define PA by substituting the t-th conditional
PXt|Xt−1 in the factorization (1) of PXn by QXt|Xt−1 for all t ∈ A. Formally,

PA ≜
n∏

t=1

(PXt|Xt−11{t/∈A} +QXt|Xt−11{t∈A})

So P∅ = PXn and P [n] = QXn . Then

PA = P∅
n∏

t=1

(
QXt|Xt−1

PXt|Xt−1

)1{t∈A}

The following lemma is known as the “cut-and-paste” lemma:

Lemma 1. Let A,B,C,D ⊂ [n]. Denote their indicator vectors by a, b, c, d ∈ {0, 1}n. If a + b =
c+ d, then H2(PA, PB) = H2(PC , PD).

Note: later in our application we only need the following special case. Let A,B be disjoint.
Then H2(PA, PB) = H2(PA∪B, P∅).

Proof. Let rXt|Xt−1 ≜
QXt|Xt−1

PXt|Xt−1
, we have

1− 1

2
H2(PA, PB) =

∫ √
PAPB

= EP∅

√√√√ n∏
t=1

rat+bt
Xt|Xt−1


= EP∅

√√√√ n∏
t=1

rct+dt
Xt|Xt−1


= 1− 1

2
H2(PC , PD).

The second lemma is an “ℓ2” fact:
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Lemma 2. Let P 0, P 1, . . . , Pm be arbitrary probability distributions. Then2

1

m

∑
1≤s<t≤m

H2(P t, P s) ≤
m∑
t=1

H2(P t, P 0) (7)

Proof.

2 · LHS =
1

m

m∑
s,t=1

H2(P s, P t)

=
1

m

m∑
s,t=1

∫
(
√
P s −

√
P t)2

=
1

m

m∑
s,t=1

∫
(
√
P s −

√
P 0 +

√
P 0 −

√
P t)2

=
1

m

m∑
s,t=1

∫
(
√
P s −

√
P 0)2 + (

√
P t −

√
P 0)2 − 2(

√
P s −

√
P 0)(

√
P t −

√
P 0)

= 2 · RHS− 2

m

∫ ( m∑
t=1

(
√
P s −

√
P 0)

)2

.

The third lemma is a well-known fact in graph factorization.

Lemma 3. Denote by Kn the complete graph with n vertices. For even n, Kn can be decomposed
into n− 1 edge-disjoint perfect matchings.

As a sanity check, the number of edges
(
n
2

)
= (n−1)· n2 match up. For example, the factorization

for n = 4 is shown below:

1

2 3

4

For general n there are many constructions. For a geometric one, see https://en.wikipedia.

org/wiki/Graph_factorization#2-factorization.
We are now in a position to prove Theorem 1.

Proof of Theorem 1. Without loss of generality we can assume that n = 2K by padding PXn and
QXn with additional random variables which are 0.

2It is crucial to have no extra constant factors on the RHS. For example, if we apply (a+ b)2 ≤ 2a2 + 2b2 in the
proof, we get a factor of 2 which would ruin the induction later.
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We aim to show the following statement: For any 0 ≤ k ≤ K, any partition A1, . . . , A2k of [n]
(each subset of size 2K−k),

2k∑
t=1

H2(PAt , P∅) ≥ ck ·H2(P [n], P∅), ck ≜
k∏

i=1

(1− 2−i) (8)

and c0 ≜ 1. Note that ck ≥ c∞ ≈ 0.289. Applying this for k = K gives us the desired theorem.
We prove (8) by induction on k.
Base Case k = 0: This is the coarsest partition and (8) trivially holds with equality.
Induction, from k − 1 to k: Fix any partition A1, . . . , A2k of [n] where |At| = 2K−k for all

t ∈ [2k]. Assume that (8) holds for k−1. Applying Lemma 3 with 2k vertices yields an edge-disjoint
partition of K2k as {Ea : a = 1, . . . , 2k − 1}, where each Ea is a perfect matching between 2k−1

pairs of vertices. Then

2k∑
t=1

H2(PAt , P∅)
Lemma 2

≥ 1

2k

∑
1≤s<t≤2k

H2(PAs , PAt) (9)

Lemma 1
=

1

2k

∑
1≤s<t≤2k

H2(PAs∪At , P∅) (10)

Lemma 3
=

1

2k

2k−1∑
a=1

∑
{s,t}∈Ea

H2(PAs∪At , P∅). (11)

Note that for each a, because Ea is a perfect matching, {As∪At : {s, t} ∈ Ea} is a (coarser) partition
of [n] consisting of 2k−1 subsets each of cardinality 2K−k+1. Applying the induction hypothesis, we
conclude ∑

{s,t}∈Ea

H2(PAs∪At , P∅) ≥ ck−1H
2(P [n], P∅).

Combining the above two displays yields

2k∑
t=1

H2(PAt , P∅) ≥ (1− 2−k)ck−1︸ ︷︷ ︸
ck

H2(P [n], P∅), (12)

completing the proof.
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