Chain rule for squared Hellinger distance (following TS Jayram)

Scribe: Max Lovig

Lecturer: Yihong Wu

Feb 13, 2024

Throughout the note let $X^n \equiv (X_1, \ldots, X_n)$. Let P_{X^n} and Q_{X^n} be *n*-variant joint distributions factorized as

$$P_{X^n} = P_{X_1} P_{X_2 | X_1} \cdots P_{X_n | X^{n-1}} \tag{1}$$

$$Q_{X^n} = Q_{X_1} Q_{X_2|X_1} \cdots Q_{X_n|X^{n-1}}.$$
(2)

Suppose we have some "distance" (e.g. *f*-divergences or Wasserstein distances) that computes the dissimilarity score between two distributions. A *chain rule* (also known as tensorization) aims to compute or bound the dissimilarity score between the two joint distributions by the scores between each conditionals. The simplest instance is the KL divergence:

$$D(P_{X^n} \| Q_{X^n}) = \sum_{t=1}^n \mathbb{E}_P[D(P_{X_t | X^{t-1}} \| Q_{X_t | X^{t-1}})]$$
(3)

which follows from the telescoping sum $\log \frac{P_{Xn}}{Q_{Xn}} = \sum_{t=1}^{n} \log \frac{P_{Xt|X^{t-1}}}{Q_{Xt|X^{t-1}}}$. Here \mathbb{E}_P is with respect to the *P*-law, i.e., $X^{t-1} \sim P_{X^{t-1}}$ for each *t*.

How would we extend this to other f-divergences? Let us start with a simple chain rule for Hellinger distance (*not* squared):

$$H(P_{X^n}, Q_{X^n}) \le \sum_{t=1}^n \mathbb{E}_P[H(P_{X_t|X^{t-1}}, Q_{X_t|X^{t-1}})]$$
(4)

To see this, note that H is a metric. Interpolating P_{X^n} and Q_{X^n} , we can start with (1) and successively swap out P's by Q's. Define $P^{(t)} \triangleq P_{X_1}P_{X_2|X_1} \cdots P_{X_t|X^{t-1}}Q_{X_{t+1}|X^t} \cdots Q_{X_n|X^{n-1}}$, with $P^{(0)} = Q_{X^n}$ and $P^{(n)} = P_{X^n}$. Then (4) is precisely $H(P^{(0)}, P^{(n)}) \leq \sum_{t=0}^{n-1} H(P^{(t)}, P^{(t+1)})$. Since the proof only applies triangle inequality, any distance would work. In particular, we have

$$\operatorname{TV}(P_{X^n}, Q_{X^n}) \le \sum_{t=1}^n \mathbb{E}_P[\operatorname{TV}(P_{X_t|X^{t-1}}, Q_{X_t|X^{t-1}})]$$
 (5)

Compared with (4), the following result¹ due to TS Jayram [Jay09] is considerably deeper and stronger. It says that the desired chain rule holds also for the squared Hellinger within a constant factor.

¹We are grateful to Yanjun Han for telling us this result.

Theorem 1 (Jayram).

$$H^{2}(P_{X^{n}}, Q_{X^{n}}) \leq 4 \cdot \sum_{t=1}^{n} \mathbb{E}_{P}[H^{2}(P_{X_{t}|X^{t-1}}, Q_{X_{t}|X^{t-1}})]$$
(6)

To compare (4) and (6), suppose that each pair of conditionals differ by a Hellinger distance of ϵ . Then (4) says the Hellinger distance between the full joint is $O(n\epsilon)$ while (6) shows it is actually $O(\sqrt{n\epsilon})$.

1 Proof of Theorem 1

We will prove Theorem 1 through the use of three lemmas.

First, in order to have a "smarter" interpolation between P_{X^n} and Q_{X^n} , let us define the following intermediate distribution: For $A \subset [n]$, define P^A by substituting the *t*-th conditional $P_{X_t|X^{t-1}}$ in the factorization (1) of P_{X^n} by $Q_{X_t|X^{t-1}}$ for all $t \in A$. Formally,

$$P^{A} \triangleq \prod_{t=1}^{n} (P_{X_{t}|X^{t-1}} \mathbf{1}_{\{t \notin A\}} + Q_{X_{t}|X^{t-1}} \mathbf{1}_{\{t \in A\}})$$

So $P^{\emptyset} = P_{X^n}$ and $P^{[n]} = Q_{X^n}$. Then

$$P^{A} = P^{\varnothing} \prod_{t=1}^{n} \left(\frac{Q_{X_{t}|X^{t-1}}}{P_{X_{t}|X^{t-1}}} \right)^{\mathbf{1}_{\{t \in A\}}}$$

The following lemma is known as the "cut-and-paste" lemma:

Lemma 1. Let $A, B, C, D \subset [n]$. Denote their indicator vectors by $a, b, c, d \in \{0, 1\}^n$. If a + b = c + d, then $H^2(P^A, P^B) = H^2(P^C, P^D)$.

Note: later in our application we only need the following special case. Let A, B be disjoint. Then $H^2(P^A, P^B) = H^2(P^{A \cup B}, P^{\varnothing})$.

Proof. Let $r_{X_t|X^{t-1}} \triangleq \frac{Q_{X_t|X^{t-1}}}{P_{X_t|X^{t-1}}},$ we have

$$1 - \frac{1}{2}H^{2}(P^{A}, P^{B}) = \int \sqrt{P^{A}P^{B}}$$
$$= \mathbb{E}_{P^{\varnothing}} \left[\sqrt{\prod_{t=1}^{n} r_{X_{t}|X^{t-1}}^{a_{t}+b_{t}}} \right]$$
$$= \mathbb{E}_{P^{\varnothing}} \left[\sqrt{\prod_{t=1}^{n} r_{X_{t}|X^{t-1}}^{c_{t}+d_{t}}} \right]$$
$$= 1 - \frac{1}{2}H^{2}(P^{C}, P^{D}).$$

 _	_	_
_	_	_

The second lemma is an " ℓ_2 " fact:

Lemma 2. Let P^0, P^1, \ldots, P^m be arbitrary probability distributions. Then²

$$\frac{1}{m} \sum_{1 \le s < t \le m} H^2(P^t, P^s) \le \sum_{t=1}^m H^2(P^t, P^0)$$
(7)

Proof.

$$2 \cdot \text{LHS} = \frac{1}{m} \sum_{s,t=1}^{m} H^2(P^s, P^t)$$

= $\frac{1}{m} \sum_{s,t=1}^{m} \int (\sqrt{P^s} - \sqrt{P^t})^2$
= $\frac{1}{m} \sum_{s,t=1}^{m} \int (\sqrt{P^s} - \sqrt{P^0} + \sqrt{P^0} - \sqrt{P^t})^2$
= $\frac{1}{m} \sum_{s,t=1}^{m} \int (\sqrt{P^s} - \sqrt{P^0})^2 + (\sqrt{P^t} - \sqrt{P^0})^2 - 2(\sqrt{P^s} - \sqrt{P^0})(\sqrt{P^t} - \sqrt{P^0})$
= $2 \cdot \text{RHS} - \frac{2}{m} \int \left(\sum_{t=1}^{m} (\sqrt{P^s} - \sqrt{P^0})\right)^2$.

The third lemma is a well-known fact in graph factorization.

Lemma 3. Denote by K_n the complete graph with n vertices. For even n, K_n can be decomposed into n-1 edge-disjoint perfect matchings.

As a sanity check, the number of edges $\binom{n}{2} = (n-1) \cdot \frac{n}{2}$ match up. For example, the factorization for n = 4 is shown below:

For general n there are many constructions. For a geometric one, see https://en.wikipedia. org/wiki/Graph_factorization#2-factorization.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Without loss of generality we can assume that $n = 2^K$ by padding P_{X^n} and Q_{X^n} with additional random variables which are 0.

²It is crucial to have no extra constant factors on the RHS. For example, if we apply $(a + b)^2 \le 2a^2 + 2b^2$ in the proof, we get a factor of 2 which would ruin the induction later.

We aim to show the following statement: For any $0 \le k \le K$, any partition A_1, \ldots, A_{2^k} of [n] (each subset of size 2^{K-k}),

$$\sum_{t=1}^{2^k} H^2(P^{A_t}, P^{\varnothing}) \ge c_k \cdot H^2(P^{[n]}, P^{\varnothing}), \quad c_k \triangleq \prod_{i=1}^k (1 - 2^{-i})$$
(8)

and $c_0 \triangleq 1$. Note that $c_k \ge c_{\infty} \approx 0.289$. Applying this for k = K gives us the desired theorem. We prove (8) by induction on k.

Base Case k = 0: This is the coarsest partition and (8) trivially holds with equality.

Induction, from k - 1 **to** k: Fix any partition A_1, \ldots, A_{2^k} of [n] where $|A_t| = 2^{K-k}$ for all $t \in [2^k]$. Assume that (8) holds for k-1. Applying Lemma 3 with 2^k vertices yields an edge-disjoint partition of K_{2^k} as $\{E_a : a = 1, \ldots, 2^k - 1\}$, where each E_a is a perfect matching between 2^{k-1} pairs of vertices. Then

$$\sum_{t=1}^{2^{k}} H^{2}(P^{A_{t}}, P^{\varnothing}) \stackrel{\text{Lemma 2}}{\geq} \frac{1}{2^{k}} \sum_{1 \leq s < t \leq 2^{k}} H^{2}(P^{A_{s}}, P^{A_{t}})$$
(9)

$$\stackrel{\text{Lemma 1}}{=} \frac{1}{2^k} \sum_{1 \le s < t \le 2^k} H^2(P^{A_s \cup A_t}, P^{\varnothing}) \tag{10}$$

$$\stackrel{\text{Lemma 3}}{=} \frac{1}{2^k} \sum_{a=1}^{2^k-1} \sum_{\{s,t\}\in E_a} H^2(P^{A_s\cup A_t}, P^{\varnothing}).$$
(11)

Note that for each a, because E_a is a perfect matching, $\{A_s \cup A_t : \{s,t\} \in E_a\}$ is a (coarser) partition of [n] consisting of 2^{k-1} subsets each of cardinality 2^{K-k+1} . Applying the induction hypothesis, we conclude

$$\sum_{\{s,t\}\in E_a} H^2(P^{A_s\cup A_t}, P^{\varnothing}) \ge c_{k-1}H^2(P^{[n]}, P^{\varnothing}).$$

Combining the above two displays yields

$$\sum_{t=1}^{2^{k}} H^{2}(P^{A_{t}}, P^{\varnothing}) \ge \underbrace{(1-2^{-k})c_{k-1}}_{c_{k}} H^{2}(P^{[n]}, P^{\varnothing}),$$
(12)

completing the proof.

References

[Jay09] TS Jayram. Hellinger strikes back: A note on the multi-party information complexity of and. In International Workshop on Approximation Algorithms for Combinatorial Optimization, pages 562–573. Springer, 2009.