• **Schedule:** Tuesday 330–520pm on zoom
• **Instructor:** Yihong Wu yihong.wu@yale.edu
 ▶ Office hours: by appointment
• **Website:**
or just google S&DS677
Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
Course prerequisites:

- Maturity with probability theory
1. Course prerequisites:
 - Maturity with probability theory
 - Some linear algebra

1. Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end

1. Homeworks (30%): three problem sets

1. Final project (40%):
 - either presenting paper(s) or a standalone research project.
 - topics announced around week 6

Materials: Lecture notes and additional reading materials will be posted online.
Administrivia

1 Course prerequisites:
 ▶ Maturity with probability theory
 ▶ Some linear algebra
 ▶ Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
Administrivia

1. Course prerequisites:
 - Maturity with probability theory
 - Some linear algebra
 - Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2. Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end

3. Homeworks (30%): three problem sets

4. Final project (40%): either presenting paper(s) or a standalone research project. Topics announced around week 6

5. Materials: Lecture notes and additional reading materials will be posted online.
Course prerequisites:
- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

Participation (30%):
- Zoom participation is highly encouraged
Course prerequisites:
- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

Participation (30%):
- Zoom participation is highly encouraged
- Critiques on lecture notes/maybe a few scribes towards the end
Course prerequisites:
▶ Maturity with probability theory
▶ Some linear algebra
▶ Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

Participation (30%):
▶ Zoom participation is highly encouraged
▶ Critiques on lecture notes/maybe a few scribes towards the end

Homeworks (30%): three problem sets
Administrivia

1. Course prerequisites:
 - Maturity with probability theory
 - Some linear algebra
 - Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2. Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end

3. Homeworks (30%): three problem sets

4. Final project (40%)
Administrivia

1. Course prerequisites:
 - Maturity with probability theory
 - Some linear algebra
 - Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2. Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end

3. Homeworks (30%): three problem sets

4. Final project (40%)
 - either presenting paper(s) or a standalone research project.
Administrivia

1. Course prerequisites:
 ▶ Maturity with probability theory
 ▶ Some linear algebra
 ▶ Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2. Participation (30%):
 ▶ Zoom participation is highly encouraged
 ▶ Critiques on lecture notes/maybe a few scribes towards the end

3. Homeworks (30%): three problem sets

4. Final project (40%)
 ▶ either presenting paper(s) or a standalone research project.
 ▶ topics announced around week 6

Materials: Lecture notes and additional reading materials will be posted online.
Course prerequisites:
▶ Maturity with probability theory
▶ Some linear algebra
▶ Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

Participation (30%):
▶ Zoom participation is highly encouraged
▶ Critiques on lecture notes/maybe a few scribes towards the end

Homeworks (30%): three problem sets

Final project (40%)
▶ either presenting paper(s) or a standalone research project.
▶ topics announced around week 6

Materials: Lecture notes and additional reading materials will be posted online.
What this course is about?

Information-theoretic methods in high-dimensional statistics
What this course is about?

Information-theoretic & related methods in high-dimensional statistics
What this course is about?

Information-theoretic & related methods in high-dimensional statistics
Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

\[\theta \in \Theta \mapsto X_1, \ldots, X_n \mapsto \hat{\theta} \]

- Understanding the fundamental limits:
 - Q1: Characterize statistical optimum: What is possible/impossible?
 - Q2: How many samples are necessary and sufficient to achieve a prescribed goal?
 - Q3: Can statistical limits be attained computationally efficiently, e.g., in \(\text{poly}(n,p) \)-time? If yes, how? If not, why?
Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

\[\theta \in \Theta \mapsto X_1, \ldots, X_n \mapsto \hat{\theta} \]

- Understanding the fundamental limits:
Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

\[
\theta \in \Theta \mapsto X_1, \ldots, X_n \mapsto \hat{\theta}
\]

• Understanding the fundamental limits:

 Q1 Characterize statistical optimum: What is possible/impossible?
Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

\[\theta \in \Theta \mapsto X_1, \ldots, X_n \mapsto \hat{\theta} \]

- Understanding the fundamental limits:
 1. Characterize statistical optimum: What is possible/impossible?
 2. How many samples are necessary and sufficient to achieve a prescribed goal?
Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

\[\theta \in \Theta \mapsto X_1, \ldots, X_n \mapsto \hat{\theta} \]

- Understanding the fundamental limits:
 1. Characterize statistical optimum: What is possible/impossible?
 2. How many samples are necessary and sufficient to achieve a prescribed goal?
 3. Can statistical limits be attained computationally efficiently, e.g., in \(\text{poly}(n, p) \)-time? If yes, how? If not, why?
High Dimensionality of Contemporary Datasets

<table>
<thead>
<tr>
<th>Fields</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Research</td>
<td>microarray, ECG, fMRI, ...</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>array sensor data, face recognition, ...</td>
</tr>
<tr>
<td>Finance</td>
<td>asset returns, ...</td>
</tr>
</tbody>
</table>

- Growth of data outpaced by increasing number of features
- A common feature: large d, but just comparable or smaller n

$$\theta \in \mathbb{R}^d \mapsto X_1, \ldots, X_n$$

- low-dimensional structure
 - Intrinsic: θ lies in a low-dimensional subset
 - Extrinsic: θ has no structure but we only estimate low-dimensional functional of θ
Classical topics
Example 1: high-dimensional linear regression

Microarray data:

- Leukaemia dataset [Golub et al. '99]: $d = 7129$ genes and $n = 72$ samples
- Typically $d \gg n$
- Interpretability (gene selection)

Ref: [Golub et al. '99, Zou-Hastie '05]
Example 1: high-dimensional linear regression

Statistical model

\[y = X\beta + \text{noise} \]

- observation: \(y \in \mathbb{R}^n \) and \(X \in \mathbb{R}^{n \times d} \)
- parameter: \(\beta \in \mathbb{R}^d \)
- goal: estimate \(\beta \) or predict \(X\beta \)
- assumption: \(\beta \) is sparse
Example 2: Covariance matrix estimation & PCA

Climate Data

One observation: January average temperature in 1969 \([d = 2592, n = 157]\)

Ref: Bickel & Levina (08)
Example 2: Covariance matrix estimation & PCA

Statistical model

- observation: $X_1, \ldots, X_n \overset{iid}{\sim} N(0, \Sigma) \in \mathbb{R}^d$
- parameter: $\Sigma = \mathbb{E}[XX'] \in \mathbb{R}^{d \times d}$
- goal: estimate Σ or its principle component (PCA)
- assumption: Σ is sparse/smooth(entrywise decay)/low-rank
Problems of combinatorial nature
Example 3: How many words did Shakespeare know?

- Linguistics

Estimating the number of unseen species: How many words did Shakespeare know?

BY BRADLEY EFRON AND RONALD THISTED

Department of Statistics, Stanford University, California

- Ecology

The relation between the number of species and the number of individuals in a random sample of an animal population

BY R. A. FISHER (Galton Laboratory), A. STEVEN CORBET (British Museum, Natural History) AND C. B. WILLIAMS (Rothamsted Experimental Station)
Example 3: How many words did Shakespeare know?

ACT I
SCENE I. Elsinore. A platform before the castle.

FRANCISCO at his post. Enter to him BERNARDO

BERNARDO

Who’s there?

PRINCE FORTINBRAS

Let four captains
Bear Hamlet, like a soldier, to the stage;
For he was likely, had he been put on,
To have proved most royally: and, for his passage,
The soldiers’ music and the rites of war
Speak loudly for him.
Take up the bodies: such a sight as this
Becomes the field, but here shows much amiss.
Go, bid the soldiers shoot.

A dead march. Exeunt, bearing off the dead bodies;
after which a peal of ordnance is shot off

Hamlet experiment

1. Starting from Act I, read a small fraction of the text
2. Stop and estimate the number of distinct words in entire Hamlet
Example 3: How many words did Shakespeare know?

Statistical model: Distinct element problem

- **observation**: X_1, \ldots, X_n sampled without replacements from an urn of k colored balls
- **parameter**: composition of the urn (number of red, blue, etc.)
- **goal**: number of distinct colors
- **assumption**: NONE!
- **Method**: Estimator built from convex/LP duality
Example 3: How many words did Shakespeare know?

\[n_{\text{max}} = 31999, k = 7716 \]
Example 4: Community detection in networks

- Networks with community structures arise in many applications
Example 4: Community detection in networks

- Networks with community structures arise in many applications

- Task: Discover underlying communities based on the network topology
Example 4: Community detection in networks

- Networks with community structures arise in many applications.
- Task: Discover underlying communities based on the network topology.
- Applications: Friend or movie recommendation in online social networks.
Political blogosphere

...in the 2004 U.S. election [Adamic-Glance ’05]
Stochastic block model – graph view
Stochastic block model – graph view

1. n nodes are randomly partitioned into 2 equal-sized communities
Stochastic block model – graph view

1. n nodes are randomly partitioned into 2 equal-sized communities
2. For every pair of nodes in same community, add an edge w.p. p
Stochastic block model – graph view

1. \(n \) nodes are randomly partitioned into 2 equal-sized communities
2. For every pair of nodes in same community, add an edge w.p. \(p \)
3. For every pair of nodes in diff. community, add an edge w.p. \(q \)
Stochastic block model – graph view

1. n nodes are randomly partitioned into 2 equal-sized communities
2. For every pair of nodes in same community, add an edge w.p. p
3. For every pair of nodes in diff. community, add an edge w.p. q
Stochastic block model – adjacency matrix view
Stochastic block model – adjacency matrix view

nz = 7962
Example 4: Community detection

Statistical model: Stochastic block model SBM(n, p, q)

- observation: a single graph G
- parameter: partition of two communities (subsets of $[n]$)
- goal: locate the community (under various criteria)
- assumption: low-rankness of $\mathbb{E}[$adjacency matrix$]$
Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

\[Y = \lambda xx^\top + Z, \]

where

- signal: \(x \) uniform on the hypercube \(\{\pm \frac{1}{\sqrt{n}}\}^n \)
- noise: \(Z \) iid \(N(0, \frac{1}{n}) \)
- goal: recover \(x \) better than chance

\[\text{Find unit vector } \hat{x} = \hat{x}(Y), \text{ s.t. } \mathbb{E}|\langle \hat{x}, x \rangle| = \Omega(1) \]
Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

\[Y = \lambda xx^\top + Z, \]

where

- signal: \(x \) uniform on the hypercube \(\{\pm \frac{1}{\sqrt{n}}\}^n \)
- noise: \(Z \) iid \(N(0, \frac{1}{n}) \)
- goal: recover \(x \) better than chance
 - Find unit vector \(\hat{x} = \hat{x}(Y) \), s.t. \(\mathbb{E}|\langle \hat{x}, x \rangle| = \Omega(1) \)
- Random matrix theory: PCA works iff \(\lambda > 1 \) [Baik-Ben Arous-Peche '04]
Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

\[Y = \lambda xx^\top + Z, \]

where

- signal: \(x \) uniform on the hypercube \(\{ \pm \frac{1}{\sqrt{n}} \}^n \)
- noise: \(Z \) iid \(\mathcal{N}(0, \frac{1}{n}) \)
- goal: recover \(x \) better than chance
 - Find unit vector \(\hat{x} = \hat{x}(Y) \), s.t. \(\mathbb{E}|\langle \hat{x}, x \rangle| = \Omega(1) \)
- Random matrix theory: PCA works iff \(\lambda > 1 \) [Baik-Ben Arous-Peche ’04]
- We will show \(\lambda > 1 \) is needed by any algo (information-percolation method)
What is information theory

Information theory: theory of fundamental limits

1. **Information measures**: How to measure randomness, dependency, dissimilarity (entropy, mutual information, divergence...)

2. **Coding theorems**: Operational problems (data compression, data transmission, etc)

\[
\begin{align*}
\text{information measures} & \quad \text{coding theorems} \\
\text{fundamental limits} & \quad \text{operational meaning}
\end{align*}
\]
Information theory: theory of fundamental limits

1. **Information measures**: How to measure randomness, dependency, dissimilarity (entropy, mutual information, divergence...)

2. **Coding theorems**: Operational problems (data compression, data transmission, etc)

\[\text{coding theorems} \quad \overset{\text{information measures}}{\longrightarrow} \quad \text{fundamental limits} \quad \overset{\text{operational meaning}}{\longrightarrow} \]
Information-theoretic methods

• **Negative results** (converse, impossibility results, lower bound):
 ▶ Conceptually: quantify “information” and “dissimilarity”
 • two distributions too “close” ⇒ impossible to distinguish
 • $I(\text{observation}; \text{parameter})$ too “small” ⇒ impossible to estimate
 • dimension/entropy too “high” ⇒ need large sample size

▶ More advanced techniques:
 • area theorem
 • strong data processing inequality and information-percolation method
 (Broadcasting on trees, spiked Wigner model...)
 • (truncated) second moment method

▶ Positive results (achievability, constructive results, upper bound):
 ▶ maximal likelihood estimate
 ▶ entropy method (estimators based on pairwise comparison)
 ▶ duality method
 ▶ aggregation
 ▶ efficient procedures/algorithms
Information-theoretic methods

- **Negative results** (converse, impossibility results, lower bound):
 - Conceptually: quantify “information” and “dissimilarity”
 - two distributions too “close” ⇒ impossible to distinguish
 - $I(\text{observation}; \text{parameter})$ too “small” ⇒ impossible to estimate
 - dimension/entropy too “high” ⇒ need large sample size
 - More advanced techniques:
 - area theorem
 - strong data processing inequality and information-percolation method (Broadcasting on trees, spiked Wigner model...)
 - (truncated) second moment method

- **Positive results** (achievability, constructive results, upper bound):
 - maximal likelihood estimate
 - entropy method (estimators based on pairwise comparison)
 - duality method
 - aggregation
 - efficient procedures/algorithms
Information-theoretic methods

- **Negative results** (converse, impossibility results, lower bound):
 - Conceptually: quantify “information” and “dissimilarity”
 - two distributions too “close” ⇒ impossible to distinguish
 - $I(\text{observation}; \text{parameter})$ too “small” ⇒ impossible to estimate
 - dimension/entropy too “high” ⇒ need large sample size
 - More advanced techniques:
 - area theorem
 - strong data processing inequality and information-percolation method (Broadcasting on trees, spiked Wigner model...)
 - (truncated) second moment method

- **Positive results** (achievability, constructive results, upper bound):
 - maximal likelihood estimate
 - entropy method (estimators based on pairwise comparison)
 - duality method
 - aggregation
 - efficient procedures/algorithms