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§ 1. Introduction & Max Clique in Erdős-Rényi graphs

1.1 Introduction

1.1.1 Basic Definitions

A graph G = (V,E) consists of

• A vertex set V . Without loss of generality (WLOG), we shall assume V = [n] ≡ {1, . . . , n}
for some positive integer n.

• An edge set E ⊂
(
V
2

)
. Each element of E is an edge e = (i, j) (unordered pair). We say i

and j are connected and write i ∼ j if (i, j) ∈ E.

For the most part, we will be focusing on graphs that are undirected (i.e., edges do not have
orientation) and simple (i.e., no multi-edges or self-loops).

Alternatively, one can also represent a graph as an adjacency matrix A = (Aij)i,j∈[n], which is
an n× n symmetric binary matrix with zero diagonal. In particular, for a simple and undirected
graph G = (V,E), the entries Aij are defined as:

Aij = 1 {i ∼ j} =

{
1 (i, j) ∈ E

0 o.w.
.

Some basic concepts of graphs are defined as follows:

• The neighborhood of a given vertex v ∈ V is defined as N(v) = {u ∈ V : u ∼ v}, i.e., it is
the set of vertices (neighbors) that are connected with v.

• The degree of v is defined as dv = |N(v)|, i.e., the number of neighbors of v.

• Induced subgraph: For any S ⊂ V , the subgraph induced by S is defined as the graph
G[S] = (S,ES), where ES ≜ {(u, v) ∈ E : u, v ∈ S}.

• A clique is a complete subgraph. A graph is complete iff all pairs of vertices in the graph
are connected.

1.1.2 Sample topics

The goal of statistical inference is to using data to make informed decisions (hypotheses testing,
estimation, etc). The usual framework of statistical inference is the following:

θ ∈ Θ︸ ︷︷ ︸
parameter

7→ X︸︷︷︸
data

7→ θ̂︸︷︷︸
estimate

.

The theoretical objectives of this class are two-fold:
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1. Understand and characterize the fundamental (statistical) limits: What is possible/impossible
information-theoretically?

2. Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes,
how? If not, why?

In this course,

• Data = graphs;

• Parameter = hidden (latent, or planted) structure;

• We will focus on large-graph limit (number of vertices → ∞).

As a preview, we briefly describe two models that we will study below: the Planted Clique
Model and the Stochastic Block Model.

The Planted Clique Model Let V be a vertex set and n = |V |, and let k ≤ n be a given positive
integer. The edge set E in a graph G = (V,E) is generated in the following manner:

1. A set S of k vertices is selected out of n vertices to form a clique (all possible edges between
them are added to E).

2. Remaining edges are added independently with probability 1
2 .

Given the resulting graph G = (V,E), the goal is to find the planted (hidden) clique S.
To start, notice that this set up follows a classical statistical framework: a sample (here, the

graph G) is generated from a distribution (i.e., the random process described above), and we want
to estimate a parameter of that distribution (here, the set S) via the sample (here, G).

A decision-theoretic setting is to consider the minimax framework for the worst-case analysis, in
which the goal is to find an estimator Ŝ = Ŝ(G) that correctly recovers S with probability close to
1, regardless of the true set S used to generate the graph G. In other words,

min
S∈([n]

k )
PS

[
Ŝ(G) = S

]
≈ 1,

where PS denotes the law of G conditioned on the location of the planted clique S. Alternatively,
one can consider the more relaxed Bayesian setting, assuming S is drawn uniformly at random.
Equivalently, this amounts to finding an Ŝ that preforms well on average:

E
S∼Unif

(
([n]

k )
)PS

[
Ŝ(G) = S

]
≈ 1.

Remark 1.1. For problems with symmetry, these two formulations are often equivalent, in the
sense that

sup
Ŝ

min
S∈([n]

k )
PS

[
Ŝ(G) = S

]
= sup

Ŝ

E
S∼Unif

(
([n]

k )
)PS

[
Ŝ(G) = S

]
.

This follows from the permutation invariance of the model, which implies the least favorable prior is
uniform.
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The Stochastic Block Model (SBM) Given a vertex set V , suppose V can be partitioned into
two “communities” of equal size. Community membership is represented by a vector

σ = (σ1, . . . , σn) ∈ {±1}n,

where σi = σj means that i and j belong to the same community, and
∑n

i=1 σi = 0 because the size
of the two communities are equal. An edge between two vertices i, j ∈ V is added to E according to
the following probabilities:

P
[
(i, j) ∈ E

]
=

{
p σi = σj

q σi ̸= σj
,

where 0 ≤ p, q ≤ 1 (note that p, q need not sum to 1). Thus, in this model, in-group ties and
out-group ties have a different probability of forming. There are also several different statistical
inference tasks associated with this problem that SBMs address. For example, if p and q are known,
then our goal could be to estimate the parameter σ. Or, if p and q are unknown, then we may be
interested in jointly estimating p, q, and σ.

Note that when p = q, the SBM reduces to the classical Erdős-Rényi random graph G(n, p).

1.2 Asymptotic Behavior of Max Clique in G(n, 12)

We start with the ensemble of the Erdős-Rényi graph: G ∼ G(n, p) is a graph on n vertices where
each pair of vertices is connected independently with probability p. Next, as a warmup, we will
focus on the behavior of the maximum size of a clique in G(n, 12).

In particular, letG ∼ G(n, 12). Define its clique number ω(G) ≜ size of the maximum clique in G.
We will show that ω(G) ≈ 2 log2 n for large n:

Theorem 1.1. For any ϵ > 0, with high probability (whp) as n→ ∞,

ω(G) ≤ (2 + ϵ) log2 n, (1.1)

ω(G) ≥ (2− ϵ) log2 n. (1.2)

In other words, ω(G)
log2 n

→ 2 in probability.

The statistical consequence of this computation will come in in the next lecture.

1.2.1 Proof of (1.1): First moment method

Let ϵ > 0 be any given constant. We will show that P
[
ω(G) ≥ (2 + ϵ) log2 n

]
→ 0.

To start, consider any positive integer k, as well as any S ⊂ [n] where |S| = k. Notice that there
are

(
k
2

)
possible edges that can form between the k vertices in S, meaning that:

P (G[S] is a k-clique) = 2−(
k
2).

And, there are
(
n
k

)
different sets of k vertices in a graph with n vertices. So, by the union bound,

P(∃S ⊂ [n] : G[S] is a k-clique) ≤
(
n

k

)
2−(

k
2).

8



Now, let k0 = (2 + ϵ) log2 n. Again by the union bound, we have that:

P(ω(G) ≥ k0) ≤
n∑

k=k0

(
n

k

)
2−(

k
2)

(a)

≤
n∑

k=k0

(
n2−

(k0−1)
2

)k
≤

∞∑
k=k0

(
n2−

(k0−1)
2

)k (b)

≤ 2(n2−
(k0−1)

2 )k0 ,

where (a) follows from
(
n
k

)
≤ nk and k0 ≤ k, (b) follows from n2−

k0−1
2 =

√
2n−ϵ/2 < 1/2 for

sufficiently large n.

1.2.2 Proof of (1.2): Second moment method

We will now show that lim
n→∞

P[ω(G) ≥ k] → 1, where k ≜ (2− ϵ) log2 n. Define:

Tk ≜ # of k-cliques in G =
∑
|S|=k

1 {G[S] is a clique}. (1.3)

Note that if a graph contains at least one clique of size k, then the max clique must be of size ≥ k,
implying that P[ω(G) ≥ k] ≥ P[Tk > 0]. So, to show that P[ω(G) ≥ k] → 1 as n→ ∞, it suffices to
show instead that P[Tk > 0] → 1.

Intuition

But, before trying to prove that P[Tk > 0] → 1, let’s first build some intuition. What we computed
in the union bound is in fact computing the first moment of E[Tk]. By linearity of expectation, we
have

E[Tk] =
(
n

k

)
2−(

k
2). (1.4)

Clearly, when k = (2 + ϵ) log2 n, E[Tk] ≪ 0, which implies that P[Tk > 0] ≪ 0 since Tk is integer-
valued. As Tk is a positive random variable, it tempting to think that a sufficient condition for
P[Tk > 0] ≫ 0 is E[Tk] ≫ 0. However, this direction is generally false: a counterexample would be a
distribution that places almost all of its probability mass at zero, and the remaining very small
amount of probability mass at, say, 10100. Indeed, while the expected value of a random variable
with this distribution would be very large, the probability that this random variable is non-zero
would still be very small.

So, to show that P[Tk > 0] is large, it won’t be enough to show that E[Tk] is large. What to do?
Well, one way to characterize the distribution in the counterexample above is that it has very high
variance. If we can show that the variance of Tk is not so large, then that would essentially show
that Tk’s distribution does not assign low probability to extremely high valued integers, essentially
ruling out counterexamples like the one previously entertained. Will this be enough?

Second Moment Method

As it turns out, this approach works and is called the Second Moment Method. Briefly, supposeXn

is a non-negative, integer-valued random variable. In this approach, one shows that P[Xn > 0] → 1
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by showing that:
Var[Xn] = o(E2[Xn]),

where Var stands for variance. Since we are going to apply the Second Moment Method to show
that P[Tk > 0] → 1, let’s first take a small detour to prove it works for the general random variable
Xn describe above. And, the first step in doing so will be to prove the Paley-Zygmund inequality.

Lemma 1.1 (Paley-Zygmund Inequality). Let X ≥ 0 be a random variable with 0 < E[X2] <∞.
Then for any 0 ≤ c ≤ 1,

P(X > cE[X]) ≥ (1− c)2
E2[X]

E[X2]
= (1− c)2

E2[X]

E2[X] + Var[X]
. (1.5)

Proof. First, note that:

E[X] = E[X1 {X ≤ cE[X]}] + E[X1 {X > cE[X]}] ≤ cE[X] + E[X1 {X > cE[X]}],

meaning that (1− c)E[X] ≤ E[X1 {X > cE[X]}]. Next, note that by Cauchy Swartz:

E[X1 {X > cE[X]}] ≤
√
E[X2]

√
P(X > cE[X]).

Thus:
(1− c)2E2[X] ≤ E[X2]P(X > cE[X]),

which implies the desired inequality.

To show that the Second Moment Method works, notice that choosing c = 0 in the Paley
Zygmund inequality gives us

P(Xn > 0) ≥ E2[Xn]

E2[Xn] + Var[Xn]
=

1

1 + Var[Xn]
E2[Xn]

,

so if Var[Xn] = o(E2[Xn]), then P(Xn > 0) → 1, as desired.

Remark 1.2. In addition to Paley-Zygmund Inequality, we may also apply the Chebyshev inequality
in the Second Moment Method:

P(Xn > cE[Xn]) = 1− P(Xn ≤ cE[Xn]) ≥ 1− P (|Xn − E[Xn]| ≥ (1− c)E[Xn]) ≥ 1− Var[Xn]

(1− c)2E2[Xn]
.

Hence, if Var[Xn] = o(E2[Xn]), then P(Xn > (1− o(1))E[Xn]) → 1.
The advantage of Paley-Zygmund Inequality over the Chebyshev inequality shows up when

Var[Xn] = Θ(E2[Xn]), for which we can still conclude from Paley-Zygmund Inequality that P(Xn ≥
cE[Xn]) = Ω((1− c)2).

Applying the Second Moment Method

We now return to our original goal of showing that P[Tk > 0] → 1, which we shall prove via the
Second Moment Method. In particular, we need to show that Var[Tk] = o(E2[Tk]). To start, notice
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that:

Var[Tk] = Var

[ ∑
|S|=k

1 {G[S] is a k clique}

]

=
∑
S,S′

|S|=|S′|=k

Cov
[
1 {G[S] is a k clique},1

{
G[S′] is a k clique

}]
(a)
=

∑
|S∩S′|≥2
|S|=|S′|=k

Cov
[
1 {G[S] is a k clique},1

{
G[S′] is a k clique

}]

≤
∑

|S∩S′|≥2
|S|=|S′|=k

P
[
both G[S] and G[S′] are k cliques

]
,

where (a) follows from the fact that, for any two vertex sets S and S′. If |S ∩ S′| ≤ 1 (at most one
node shared between S and S′), then the set of edges formed among nodes in S are disjoint from
the set of edges formed among nodes in S′. Thus, by independence, the covariance is zero.

Now, for any given pair of sets S,S′, let ℓ = |S ∩ S′|. In order for S and S′ to both be k-cliques,
there are a total of 2

(
k
2

)
−
(
l
2

)
possible edges that must be formed (think: inclusion-exclusion

principle), so we have

Var[Tk] ≤
k∑

ℓ=2

∣∣∣{(S, S′) : |S| = |S′| = k, |S ∩ S′| = ℓ
}∣∣∣ · 2−2(k2)+(

ℓ
2) (1.6)

=
k∑

ℓ=2

(
n

k

)(
k

ℓ

)(
n− k

k − ℓ

)
· 2−2(k2)+(

ℓ
2), (1.7)

where the last step follows from the following reasoning: there are
(
n
k

)
ways of picking a set S of k

vertices from a graph on n vertices. And, for each such set S, there are exactly
(
k
ℓ

)
ways to pick

ℓ nodes from S that will also be part of another set S′. Once S and the nodes of S that will be
shared with S′ have been determined, it remains to pick from Sc the remaining k − ℓ nodes of S′,
and there are exactly

(
n−k
k−ℓ

)
ways of doing that.

At this point, one can analyze the above sum by brute force, focusing on the exponent of each
term. Next we present a more “statistician’s approach”. Note that the counting step in (1.6) is
precisely how hypergeometric distribution (sampling without replacement) arises. Indeed, if we have
an urn of n balls among which k balls are red, let H denote the number of red balls if we draw k
balls from the urn uniformly at random without replacements. Then H ∼ Hypergeometric(n, k, k).
Thus, we can express the same quantity in terms of H as follows:

Var[Tk]

E2[Tk]
≤

k∑
ℓ=2

(
k
ℓ

)(
n−k
k−ℓ

)(
n
k

) · 2(
ℓ
2) ≤

k∑
ℓ=2

(
k
ℓ

)(
n−k
k−ℓ

)(
n
k

) · 2ℓk/2 (1.8)

= E[2kH/2
1 {H ≥ 2}] ≤ E[2kH/2]− P[H = 0].

Next we will show that both P[H = 0] → 1 and E[2kH/2] → 1. Indeed,

P[H = 0] =

(
n−k
k

)(
n
k

) =

(
1− k

n

)(
1− k

n− 1

)
· · ·
(
1− k

n− k + 1

)
→ 1,
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since k = (2− ϵ) log2 n = o(
√
n).

To bound the generating function, we use the comparison between sampling with replacements
(binomial) and sampling without replacements (hypergeometric). The following result of Hoeffding
(proved in the homework) will be useful in several places in this course:

Lemma 1.2 (Hoeffding’s lemma). Binom(k, kn) dominates Hypergeometric(n, k, k) in the order of

convex functions. In other words, if B ∼ Binomial(k, kn), then E[f(H)] ≤ E[f(B)] for all convex
functions f .

Using this lemma, we have

E[2kH/2] ≤ E[2kB/2] =

(
1 +

k

n

(
2

k
2 − 1

))k

≤ exp

(
k2

n

(
2

k
2 − 1

))
→ 1.

since k22
k
2 ≪ n by the assumption that k = (2− ϵ) log2 n.

To summarize, we have shown that
Var[Tk]

E2[Tk]
→ 0. By Paley-Zygmund (Lemma 1.1), it follows

that P[Tk > 0] → 1, i.e., P[ω(G) ≥ (2− ϵ) log2 n] → 1, so we’ve proven the desiderata.

Remark 1.3. Note that in computing the second moment, (1.8) can be equivalently written as

Var[Tk]

E2[Tk]
≤ E[2k|S∩S

′|/2
1
{
|S ∩ S′| ≥ 2

}
],

where S and S′ are independent random k-sets drawn uniformly. This is something we will frequently
encounter in computing the second moment, which typically involves two independent copies of the
same randomness and their overlap |S ∩ S′|.

Remark 1.4. As a small aside, we can further show that not only there exists a clique of size
k = (2− ϵ) log2 n, there are an abundance of them. Indeed, by (1.4) and using

(
n
k

)
≥ (nk )

k, we have

E[Tk] =
(
n

k

)
2−(

k
2) ≥

(n
k

)k
2−(

k
2) = nΩ(logn) → ∞.

By Lemma 1.1, we have Tk > o(E[Tk]) with probability 1 − o(1) (in fact, using the Chebyshev
inequality, we can conclude that Tk ≥ (1− o(1))E[Tk] with high probability). This shows that there
exists superpolynomially many cliques of size (2− ϵ) log2 n. Unfortunately, the best polynomial-time
algorithm can only guarantee to find a clique of size (1− ϵ) log2 n with high probability. We will
discuss this next time.

1.3 Grimmett-McDiarmid’s greedy algorithm to find cliques of
size (1− ϵ) log2 n

So far we have shown the following. Let ω(G(n, 12)) denotes the maximum size of cliques in G(n, 12)
which is a random variable. Recall that ω(G(n, 12)) concentrates around 2 log2 n as shown in the
previous lecture. In fact, not only there exists a clique of size (2− ϵ) log2 n, there exist an abundance
of them. The reason is that

E[# of cliques of size k] =

(
n

k

)
2(

k
2) →

{
0 if k = (2 + ϵ) log2 n

+∞ if k = (2− ϵ) log2 n
.
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Now that the statistical aspect of the problem has been understood, what about the computational
aspect? The complexity of the exhaustive search is(

n

log2 n

)
≈ nlogn

and grows superpolynomially in n. What if we limit ourselves to “efficient” algorithms that run in
time polynomial in the size of the graph, say, nC for some constant C. In the following section, we
are going to present a greedy algorithm that runs in polynomial time (in fact, sublinear time) and
is able to find cliques of size (1− ϵ) log2 n (a factor-of-two approximation of the maximum clique).
In contrast, for the max clique problem (finding the maximum clique in a given graph or deciding
whether a clique of a given size exists) in the worst case is impossible to approximate even within a
factor of n1−ϵ, unless P=NP [H̊as99]. This shows the drastic difference between worst-case analsys
and average-case analysis, due to the atypicality of the hard instances. Nevertheless, for G(n, 12), it
remains open whether there exists an efficient algorithm that finds a clique of size bigger than this
threshold, say, 1.01 log2 n.

Before we present a greedy algorithm that provably works, let us start with another greedy
algorithm which is intuitive but might be difficult to analyze.

Algorithm 1: Greedy algorithm I

Start from an arbitrary vertex
Given a clique, repeat:

Add a vertex randomly from the common neighbors of the existing clique
If there is no common neighbors, stop and return the clique

The justification to this algorithm is the following: given that we have found an m-clique, for a
given vertex v outside, the probability that v is connected to all m vertices in the clique is, assuming
that each edge happens with probability 1

2 independently,

P(v is connected to all m vertices) = 2−m.

Therefore, the probability that there exists a v that is connected to all m vertices in the existing
clique is

P(∃v connected to all m) = 1− (1− 2−m)n−m → 1 if 2−m ≪ 1/n, e.g., m = (1− ϵ) log2 n.

However, the reasoning is flawed because given the information that we have an existing clique of
size m, the probabilities of v connected to each of them is no longer 1

2 . Furthermore, the edges are
not conditionally independent either. Therefore it is unclear how to analyze Algorithm 1.

Next we present a variant of the greedy algorithm, due to Grimmett-McDiarmid [GM75],1 which
is easily analyzable.

Theorem 1.2. Fix any ϵ > 0. With probability tending to one as n→ ∞, the output of Algorithm
2 is a clique of size at least (1− ϵ) log2 n.

1The original paper [GM75] deals with the number of vertex coloring (so that no adjacent vertices are colored the
same) and independent set (subset of vertices that induce an empty graph). Note that cliques in the original graphs
correspond to independent sets in the complementary graph, and the complement of G(n, 1

2
) is still G(n, 1

2
).
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Algorithm 2: Greedy algorithm II

Label the vertices v1, . . . , vn arbitrarily
for t = 1 to n do
Given the current clique, if vt is connected to all vertices in the current clique, add vt to the
clique.

end for

Proof. It is obvious that the output of the above algorithm, denoted as Sn, is a clique. It remains
to show that with high probability, the size of the clique is at least (1− ϵ) log2 n.

Let Ti be the time for the size of the clique to grow from i−1 to i. By the design of the algorithm
we can see that Ti’s are independent and geometrically distributed as2

Ti
ind∼ Geo(2−(i−1)) ⇒ ETi = 2i−1.

Therefore,

P(|Sn| ≥ k) = P(T1 + T2 + · · ·+ Tk ≤ n)

≥
k∏

i=1

P
(
Ti ≤

n

k

)
=

k∏
i=1

(
1− (1− 2−(i−1))n/k

)
≥
(
1− (1− 2−k)n/k

)k
≥ 1− k(1− 2−k)n/k

→ 1 if k = (1− ϵ) log2 n.

Remark 1.5. The time complexity of Algorithm 2 is, in expectation,

log2 n∑
i=1

2i−1 × (i− 1) = O(n log2 n).

This is sublinear in the size of the graph (Θ(n2) edges).

2This is reminiscent of the coupon collector problem, where it becomes increasingly more difficult to collect the
last few uncollected coupons, although here the situation is more drastic.
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§ 2. The Planted Clique model and (iterated) degree tests

2.1 Planted Clique model and statistical limits

The planted clique model is a random graph model which can be described as follows: First choose
a subset K of size k uniformly at random from all n vertices and form a clique. The remaining
vertex pairs are connected independently with probability 1

2 . In other words,

∀i, j P [i ∼ j] =

{
1 if both i, j ∈ K
1
2 otherwise

.

Denote the resulting graph G ∼ G(n, 12 , k). (Note that G(n, 12 , 0) is the usual Erdős-Rényi graph
G(n, 12).) As mentioned in the Introduction, there are two types of questions one can ask in the
Planted Clique model:

• Detection: Testing

H0 : G ∼ G(n,
1

2
), versus H1 : G ∼ G(n,

1

2
, k). (2.1)

• Recovery: Given G ∼ G(n, 12 , k), recover the planted clique, say, exactly; namely, find an

estimator K̂ = K̂(G) ⊂ [n], such that K̂ = K whp.

It turns out that the statistical limits of both questions are easy to resolve, which we will first get
out of the way; it is the algorithmic question that will be our focus for the forthcoming lectures.

Theorem 2.1 (Detecting the planted clique: statistical limit). Let ϵ > 0 be an arbitrary small
constant. Consider the hypothesis testing problem (2.1).

• Let k ≥ (2 + ϵ) log2 n. Let G ∼ G(n, 12 , k). Then the test 1 {ω(G) ≥ (2 + ϵ) log2 n} succeeds
whp.

• Let k ≤ (2− ϵ) log2 n. Then it is impossible to detect the planted clique, in the sense that

min
ϕ(·)∈{0,1}

PH0 [ϕ(G) = 1] + PH1 [ϕ(G) = 0] = 1− o(1). (2.2)

Theorem 2.2 (Recovering the planted clique: statistical limit). Let ϵ > 0 be an arbitrary small
constant. Let G ∼ G(n, 12 , k) with K being the planted k-clique.

• Let k ≥ (2 + ϵ) log2 n. Then whp, K is is the unique largest k-clique.

• Let k ≤ (2− ϵ) log2 n. Then it is impossible to find the planted clique, in the sense that

max
K̂(·)

P[K̂(G) = K] = o(1). (2.3)
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Remark 2.1 (Interpretation of statistical limits).

Proof of Theorem 2.1. For k ≥ (2+ ϵ) log2 n, the positive direction follows from that of Theorem 2.2
(to be shown next) and Theorem 1.1 which shows that ω(G) ≤ (2 + ϵ) log2 n whp under the null
model.

Next we prove the impossibility side for k ≥ (2 − ϵ) log2 n. For this we need the basics of
hypothesis testing from Appendix A. Recall that the minimum probability of error on the left side
of (2.2) is given by the total variation 1 − TV(P,Q), where Q and P are the distribution of the
observation G under the null and alternative hypothesis, namely,

Q(G) = 2−(
n
2)

and

P (G) =
1(
n
k

)2−(n2)+(k2) ∑
|S|=k

1 {G[S] is a clique}.

In order to show TV(P,Q) = o(1), by Lemma A.2 it suffies to show χ2(P∥Q) = o(1). The likelihood
ratio is given by

P (G)

Q(G)
=

2−(
k
2)(

n
k

) Tk =
Tk

EQ[Tk]
,

where Tk = Tk(G) is the number of k-cliques in G previously introduced in (1.3). There, in (1.8),
we have shown that VarQ(Tk) = o((EQ[Tk])

2). This is exactly what we need since χ2(P∥Q) =

VarQ(
P
Q(G)) =

VarQ(Tk)
(EQ[Tk])2

= o(1).

Proof of Theorem 2.2. The proof of the positive direction is an exercise in first moment calculation.
(Homework 1.) Note that indeed it is not implied by Theorem 1.1 as one needs to rule of the
possibility of bigger cliques formed by planted edges plus non-planted edges.

The impossibility for recovery is not implied a priori by that of detection proved in Theorem 2.1.
For this, let us examine the posterior distribution of the planted clique given the observed graph G.
Note that

P (G|K = S) = 1 {G[S] is a k-clique}2−(
n
2)+(

k
2).

Since K has a uniform prior, the posterior is simply the uniform distribution of on all k-cliques of
G, i.e.,

P (K = S|G) = 1

Tk
1 {G[S] is a k-clique},

where Tk = Tk(G) is the total number of k-cliques in G; cf. (1.3). Note that by definition, Tk ≥ 1.
Fix any estimator K̂ = K̂(G). Then its probability of success is at most

P
[
K̂(G) = K

]
= E

[
P
[
K̂(G) = K

∣∣G]] ≤ E
[
1

Tk

]
≤ P [Tk ≤ t] +

1

t
,

where the first inequality follows from the uniformity of the posterior. Note that Tk(G) ≥ Tk(G[Kc]),
where G[Kc] ∼ G(n− k, 12 . For all sufficiently large n, k ≤ (2− ϵ) log2 n ≤ (2− ϵ/2) log2(n− k). So,

as shown in Remark 1.4, Tk(G[K
c]) ≥ nΩ(logn) ≡ t whp, completing the proof.
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2.2 Overview of algorithmic approaches

Ignoring the computation cost, we can use exhaustive search to recover the planted clique with high
probability if k ≥ (2 + ϵ) log2 n, because the maximum clique in G(n, 12) is approximately 2 log2 n,
as shown in Section 1.2. For the same reason, if k ≤ (2 − ϵ) log2 n, recovering the planted clique
is information-theoretically impossible, as there is an abundance of cliques of such size in G(n, 12)
(cf. Remark 1.4). However, what if we only consider efficient algorithms? It turns out the state of
the art can only find planted cliques of size k = Ω(

√
n).

In the following sections, we will discuss a number of efficient algorithms that is able to recover
the planted clique with high probability if k = Θ(

√
n).

• Degree test method, which works for k = Ω(
√
n log n). We will discuss an iterative version

that works for k = C
√
n for some C > 0, that runs in linear time.1

• Spectral method, which works for k = C
√
n for some C. This can be improved to arbitrarily

small C at the price of time complexity nO(1/C2).

• Semi-definite programming approach, which also work for k = C
√
n. The added advantage

is robustness, which the previous methods lack.

Remark 2.2. We see that the gap between the information-theoretical limit and what computa-
tionally efficient algorithms can achieve is significantly larger for the planted clique problem (log2 n
versus

√
n) than the counterpart for the maximum clique problem in G(n, 12) (2 log2 n versus log2 n).

Exercise (Slightly smarter exhaustive search). To find the hidden k-clique in G(n, 12 , k), exhaustive

search takes
(
n
k

)
∼ nk time. Here is an nΘ(logn)-time algorithm for all k ≥ C log2 n for a sufficiently

large constant C.

1. By exhaustive search we can find a clique T of size C log2 n. Then it holds that |T ∩K| ≥
(C − 2− ϵ) log2 n whp. (Why?)

2. Let S denote the set of all vertices that has at least 3|T |/4 neighbors in T . Then one can
show that K ⊂ S with high probability.

3. Now S might also contain some non-clique vertices, which requires some cleanup. So we report
the k highest-degree vertices in the induced subgraph G[S]. Hint: show |S \K| is relatively
small. Be careful with the union bound as T is random.

2.3 Degree Test

By degree test we meant declaring the k vertices with the largest degrees as the estimated clique.
The motivation is that the vertices in the clique tend to have a higher degree than those outside.
To analyze this method, let di denote the degree of a vertex i. If i /∈ K, then

di ∼ Binom

(
n− 1,

1

2

)
, Edi ≈

n

2
.

If i ∈ K, then

di ∼ k − 1 + Binom

(
n− k,

1

2

)
, Edi ≈

n+ k

2
.

1Since the graph is dense, here linear time means O(n2).
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Therefore, the separation in mean is proporational to k. Usually, we need the separation to be at
least as large as the standard deviation. Therefore, k = Ω(

√
n) is clearly necessary. Furthermore,

for the degree test method to work, we need an additional
√
log n factor to accommodate for the

possibility that some of the n− k non-clique vertices will have an atypically high degree, and some
of the k vertices in the clique will have an atypically low degree. This will be carried out by an
union bound, as we shall see later. In fact, although the degrees are not mutually independent (di
and dj are positively correlated through 1 {i ∼ j}), they are almost independent so

√
log n factor is

necessary in order for the degrees to fully separate.
Formally, the degree-based estimator is just

K̂ = set of k vertices with the highest degree . (2.4)

We will show that with high probability, the degree based estimator can recover the true planted
clique of size k = Ω(

√
n log n). This simple observation is usually attributed to [Kuč95].

Theorem 2.3. P(K̂ = K) → 1, provided k ≥ C
√
n log n for some absolute constant C > 0.

It is obvious from the definition of the degree-based estimator (2.4) that a sufficient condition
for K̂ = K is that

min
i∈K

di > max
i/∈K

di. (2.5)

Before we prove Theorem 2.3, we first review some basic facts about Gaussian approximation
and concentration inequalities.

Lemma 2.1. Suppose that X1, . . . , Xn ∼ N(0, 1). Then for any fixed ϵ > 0,

Xmax = max
i∈1,...,n

Xi ≤
√

(2 + ϵ) log n w.h.p.

Proof.
P(Xmax > t) ≤ nP(X1 > t) ≤ ne−t2/2 → 0 if t >

√
(2 + ϵ) log n.

Note that Lemma 2.1 is tight if X1, . . . , Xn are independent.
Using the heuristic of approximating binomials by Gaussians, we can analyze the degree test as

follows: If i /∈ K, then

di ∼ Binom

(
n− 1,

1

2

)
≈ N(n/2, n/4)

Using Lemma 2.1, the right hand side of Equation (2.5) is approximately

max
i/∈K

di ≤
√
2 log(n− k)

n

4
+
n

2
≈ n

2
+

1

2

√
2n log n.

Similarly, since for i ∈ K we have di ∼ k +Binom(n− k, 12),

min
i∈K

di ≥ k +
n− k

2
−
√
2 log k

n− k

4
≈ n+ k

2
− 1

2

√
2n log k.

Therefore (2.5) holds with high probability if k ≥
√
Cn log n for some large constant C.

To justify the above Gaussian intuition, we use Hoeffding’s inequality, one of the basic concen-
tration inequalities. We will prove it in Lecture 4 (see Lemma 4.4).
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Lemma 2.2 (Hoeffding’s inequality). Let S = X1 + · · ·+Xn where X1, . . . , Xn are independent
and a ≤ Xi ≤ b,∀i. Then

P(|S − ES| ≥ t) ≤ 2 exp

(
− 2t2

n(b− a)2

)
.

If we apply the Hoeffding inequality to binomial distribution, we get the following corollary:

Corollary 2.1. If S ∼ Binom(n, p),

P(|S − np| ≥ t) ≤ 2 exp

(
−2t2

n

)
.

Two remarks are in order.

Remark 2.3. In the large-deviation regime where t = Θ(n), we have

P(|S − np| ≥ t) = exp (−Θ(n)) .

In the moderate-deviation regime where O(
√
n) ≤ t = o(n), e.g., if t = n

1
2
+ϵ, then we have

P(|S − np| ≥ t) = exp
(
−Θ(n2ϵ)

)
.

When t = o(
√
n), the inequality becomes meaningless.

Remark 2.4. The bound is good if p is a constant like 1
2 . If p = o(1), i.e., for sparse graphs, then

the variance is np≪ n and we should aim for tail bound like exp(−2t2

np ) instead if p≫ 1
n . However,

Hoeffding’s inequality does not capture this.

Using Hoeffling’s inequality, we obtain the following lemma about the degree test:

Lemma 2.3. Suppose G ∼ G(n, 12 , k) with the planted clique K. Let K̂ be the set of the k highest
degree vertices in G. Then,

P
[
K̂ = K

]
≥ 1− 2n exp

(
− k2

8n

)
.

Therefore, if k = Ω(
√
n log n), then K̂ = K with high probability.

For the next algorithm, we need the following lemma that quantifies the convergence rate in the
central limit theorem, in terms of the Kolmogorov distance, that is, the sup norm between CDFs;
this result is due to Berry-Esseen. We state without proof the version for the normal approximation
of binomials (see, e.g., [Dur10, Theorem 3.4.9]).

Lemma 2.4 (Berry-Esseen theorem). For all p, n,

sup
x∈R

|P (Binom(n, p) ≤ x)− P (N(np, np(1− p)) ≤ x)| ≤ 2√
np(1− p)

.
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2.4 Iterating the degree test

The degree test works for k = Ω(
√
n log n). Now we will present an iterative algorithm by Dekel–

Gurel-Gurevich–Peres [DGGP11] that is able to find K in O(n2) times when k = |K| = C
√
n for

some sufficiently large C > 0.
There are essentially two ideas:

1. The first idea is this: if we define the “relative size” as k2

n , then we know from Lemma 2.3 that
it needs to exceed log n in order for the degree test to succeed. If we can subsample the graph
cleverly, then we might be able to gradually increase the relative size until it reaches this
threshold. However, blindly subsample each vertex independently with probability τ clearly
does not work, as n→ nτ and k → kτ and this will only decrease the relative size. Instead,
we are going to subsample in such a way that prefers clique vertices (e.g., based on degrees!),
so that n→ τn and k → ρk and, upon choosing the parameters appropriately, ρ >

√
τ . This

way, the relative size will grow by a constant factor in each iteration, and it takes log log n
rounds to pass the log n threshold.

Specifically, we will generate a sequence of graphs G = G0 ⊃ G1 ⊃ · · · ⊃ GT , so that each Gt

is an instance of the planted clique model G(nt,
1
2 , kt), with

nt ≈ n′t ≜ τ tn, kt ≈ k′t ≜ ρtk (2.6)

where
τ = (1− α)Q(β), ρ = (1− α)Q(β − C

√
α), (2.7)

and Q(t) ≜
∫∞
t

1√
2π
e−x2/2dx denotes the complementary CDF of the standard normal distri-

bution.

2. The catch with the subsampling idea is that we ended up with recovering just a subset of the
hidden clique. Nevertheless, provided this seed set is not too small, it is not hard to blow it
up to the entire clique. Indeed, suppose that we have successfully found a seed set S ⊆ K, we
can recover the whole planted clique by first taking the union of the seed set and its common
neighbors and then finding the k highest-degree vertices therein.

The details of the iterated degree test is summarized in Algorithm 3. Here, for each vertex v
and subset S of vertices,

dS(v) =
∑
j∈S

1 {j ∼ i}

denote the number of neighbors of v in S (the degree of v restricted on S).

Theorem 2.4. If k = C
√
n for sufficiently large C > 0, then K̂ = K with high probability.

Remark 2.5. Before proving the theorem, let us explain the first two steps in Algorithm 3:

• In Step 1, the vertex Vt is chosen based on its degree, since vertices in the clique tend to have
a higher degree. Thus, intuitively, we could have chosen Vt as the vertices in Gt−1 whose
degree exceeds a given threshold. However, in this way we created a lot of dependency and we
cannot ensure each Gt is still an instance of the planted clique model (because we want to
apply the degree test and invoke Lemma 2.3). Instead, what we did is to choose a “test set”
St and compute the degree by withholding this test set. This is a commonly used trick for
type of problems, which we will revist later in stochastic block models.
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Algorithm 3: Iterative degree testing algorithm [DGGP11]

Step 1: Given parameters α, β, T , we will generate G = G0 ⊃ G1 ⊃ · · · ⊃ GT as follows
for t = 0 to T − 1 do
Given the current Gt = (Vt, Et), pick a test subset St ⊂ Vt by including each vertex with
probability α.
Let Vt+1 ≜ {v ∈ Vt \ St : dSt(v) ≥ 1

2 |St|+
β
2

√
|St|}, namely, those vertices whose number of

neighbors in the test set is statistically siginificant.
Denote the induced subgraph Gt+1 = G[Vt+1]

end for
Step 2: Let K̃ = set of

k′T
2 highest-degree vertices on GT , where k

′
T is defined in (2.6).

Step 3: Let K ′ be the union of K̃ and its common neighbors. Report K̂, the k highest-degree
vertices in G′ = G[K ′].

• In Step 2, since GT ∼ G(nT ,
1
2 , kT ), according to the degree test we should choose K̃ as the

kT highest-degree vertices. However, since kT is not observed, we use
k′T
2 as a conservative

proxy, which is a high-probability lower bound for kT .

To prove the theorem, we will prove a series of claims, upon which the proof of the theorem
becomes straightforward. In order to focus on the main ideas, we will be sloppy with notations like “
≈” and “whp”.

Claim 2.1. Define nt = |Vt| and kt = |K ∩ Vt|. For all t, Gt is an instance of G(nt,
1
2 , kt). In other

words, conditioned on (nt, kt), Gt ∼ G(nt,
1
2 , kt).

Proof. This claim is true because the vertex set Vt is chosen without exposing any edges inside
Sc
t (and hence Vt). Indeed, by induction, it suffices to consider t = 0, i.e., G0 → G1. Note that

each vertex v ∈ Sc
0 is included in V1 if its degree in the test set S0, namely, dS0(v), exceeds a given

threshold. Therefore G1 = (V1, E1) is distributed as G(n1,
1
2 , k1), where n1 = |V1| and k1 = |V1 ∩K|.

This can also been seen from the perspective of the adjacency matrix: V1 is determined based on
the submatrix ASc

0,S0 and hence independent of ASc
0,S

c
0
(see Fig. 2.1).

Figure 2.1: The vertex set V1 is chosen by withholding the test set S0.

Claim 2.2. Let Gt = (Vt, Et), then

nt ≈ n′t ≜ τ tn and kt ≈ k′t ≜ ρtk w.h.p.,

where τ and ρ are defined in (2.7).
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Proof. Again, by induction, it suffices to consider t = 0, i.e., G0 → G1. We will use the Berry-Esseen

inequality (Lemma 2.4) to approximate binomials by Gaussians. Since |S0| ∼ Binom(n, α)
w.h.p
≈ αn,

it follows that ∀v ∈ Sc
0,

dS0(v) ∼

{
Binom(|S0|, 12) if v /∈ K

|S0 ∩K|+Binom(|S0\K|, 12) if v ∈ K

where |S0 ∩K| ∼ Binom(k, α) ≈ kα = C
√
nα whp. Thus,

P
(
dS0(v) ≥

1

2
|S0|+

β

2

√
|S0|

)
B-E
≈

{
Q(β) if v /∈ K

Q(β − C
√
α) if v ∈ K

.

Finally, in summary,

|V1| =
∑
v∈V0

1{v ∈ Sc
0}1{dS0(v) ≥

1

2
|S0|+

β

2

√
|S0|} ≈ |V0| (1− α)Q(β)︸ ︷︷ ︸

≜τ

.

Similarly,

k1 = |K ∩ V1| =
∑
v∈K

1{v ∈ Sc
0}1{dS0(v) ≥

1

2
|S0|+

β

2

√
|S0|} ≈ k (1− α)Q(β − C

√
α)︸ ︷︷ ︸

≜ρ

.

Claim 2.3. Let K̃ be the set of the
k′T
2 highest-degree vertices in GT . Choose T = C0 log log n (so

that whp
k2T
nT

≥ log2 n say, and nT ≈ n′T = ρTn ≥ n
polylog(n) and kT ≈ k′T = τTk ≥ k

polylog(n) .) Then

K̃ ⊂ K with high probability.

Proof. By Lemma 2.3, with probability ≥ 1 − nT e
−k2T /(8nT ) ≥ 1 − e−polylog(n), the nodes in the

hidden clique have the highest degrees in GT ∼ G(nT ,
1
2 , kT ). On the high probability event that

kT ≥ k′T
2 , we have K̃ ⊂ K.

Now that we have shown K̃ is a subset of the true clique, we still need to expand it to the entire
clique. Think of K̃ as a “seed set” and the main point is in this case s = |K̃| ≥ (1 + ϵ) log n seeds
suffice. However, the caveat is that K̃ obtained from steps 1 and 2 is random and may depend on
the entire graph. Fortunately, at this point, this can be addressed by taking a union bound over all
s-subsets of K.

Claim 2.4 (Clean-up). With high probability, the following holds: Let K̃ is an s-subset of K (which
can be adversarilly chosen). Let K ′ be the union of K̃ and its common neighbors. Let K̂ be the k
highest-degree vertices on G′ = G[K ′]. If k = |K| ≥ C log n for a suffciently large constant C and
s ≥ (1 + ϵ) log2 n for any constant ϵ ∈ (0, 1), then K̂ = K with high probability.

Proof. Let
K ′ = K̃ ∪ common neighbors = K ∪ F,

where F denotes the non-clique common neighbors. We first show that |F | is small. Fix set K̃. For
any node u ∈ [n]\K,

P [u ∈ F ] = P
[
u ∼ v,∀v ∈ K̃

]
=
∏
v∈K̃

P [u ∼ v] = 2−s.
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Moreover, the events {u ∈ F} are mutually independent across all u ∈ [n]\K. Thus, for a given set
K̃,

P [|F | ≥ ℓ] ≤
(
n

ℓ

)
2−sℓ.

Taking a union bound over all possible K̃ yields that

P
[
∃K̃ : |F | ≥ ℓ

]
≤
(
k

s

)(
n

ℓ

)
2−sℓ

≤ ksnℓ2−sℓ

≤ 2s log2 k+ℓ log2 n−sℓ

= 2(1+ϵ) log2 n log2 k−ϵℓ log2 n → 0

if ℓ = 2
ϵ log k.

Now in G′, for any v ∈ K, we have by definition d(v) ≥ k − 1; for any v /∈ K, we have

d(v) ≤ |F |+ dK(v) ≤ |F |︸︷︷︸
≤OP (log k)

+ max
v/∈K

dK(v)︸ ︷︷ ︸
≤k/2+OP (

√
k logn)

< k − 1,

where the last inequality holds under the assumption that k ≥ C log n for a sufficiently large constant
C. This shows that the k highest-degree vertices in G′ are precisely the true clique K.
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§ 3. Spectral Method - basic pertubation theory

Our goal is to use the spectral method for statistical inference. As we will see, in planted clique and
many related planted problems, the first few eigenvectors of the population matrix EX contain the
information about the planted structures that we are interested in. Since we only have observations
X at hand and do not know EX, we compute the first few eigenvectors of X instead. Writing
X = EX + (X − EX), we expect that the error of estimating the first few eigenvectors of EX can
be bounded by the size of the pertubation X − EX.

3.1 Review of linear algebra

3.1.1 Eigendecomposition

Suppose that X is a symmetric real valued matrix in Rn×n.

Definition 3.1. The pair (λ, v) with λ ∈ R and v ∈ Rn is an eigenpair of X, consisting of an
eigenvalue λ and an eigenvector v, if

Xv = λv.

We order the eigenvalues of X by their sizes such that λ1 ≥ λ2 ≥ · · · ≥ λn. The corresponding
eigenvectors [v1, . . . , vn] form an orthonormal basis (ONB) of Rn. Denote V = [v1, . . . , vn], Λ =
diag(λ1, . . . , λn). We can write the eigendecomposition of X as

X = V ΛV ⊤ =
n∑

i=1

λiviv
⊤
i .

Also note that rank(X) = r ⇔ there exist exactly r nonzero λi’s.

3.1.2 Singular value decomposition (SVD)

Now suppose that X ∈ Rm×n is a real valued rectangular matrix. The singular value decomposition
(SVD) of X is

X = UΣV ⊤ =
∑

σiuiv
⊤
i ,

where Σ = diag(σ1, . . . , σr) ∈ Rr×r, σi ≥ 0, U = [u1, . . . , ur] ∈ Rm×r and V = [v1, . . . , vr] ∈ Rn×r.
The columns of U are orthonormal and we call them left singular vectors and likewise the columns
of V are orthonormal too and we call them right singular vectors.
We can calculate Σ, U and V by taking eigendecompositions of XX⊤ and X⊤X. Indeed,

XX⊤ = UΣ2U⊤ ∈ Rm×m and X⊤X = V Σ2V ⊤ ∈ Rn×n,

and

σi =
√
λi(XX⊤) =

√
λi(X⊤X).
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3.1.3 Matrix norms

Suppose again that X ∈ Rm×n. There are multiple ways to define a norm on X.

• We view X as a mn-dimensional vector with euclidean norm and define the Frobenius norm

∥X∥F = ∥vec(X)∥2 =
√∑

i,j

X2
ij .

• We view X as a linear operator from (Rn, ∥ · ∥p) → (Rm, ∥ · ∥q) with operator norm

∥X∥p→q = sup
∥v∥p=1

∥Xv∥q.

For this course the most relevant matrix is the case of p = q = 2, where we equip Rn with the
euclidean inner product. We denote

∥X∥2→2 =: ∥X∥op,

also known as the spectral norm.

We now prove that
∥X∥op = σmax(X).

Using the SVD of X:

∥X∥2op = sup
∥v∥2=1

∥Xv∥22 = sup
∥v∥2=1

∥∥∥∑σiuiv
⊤
i v
∥∥∥2
2
= sup

∥v∥2=1

∑
σ2i ⟨vi, v⟩2 = σmax(X)2.

Remark 3.1. • ∥ · ∥op is a norm and ∥X∥op = ∥X⊤∥op.

• ∥XY ∥op ≤ ∥X∥op∥Y ∥op.

• If X = x is a vector then ∥X∥op = ∥x∥2.

• ∥ · ∥op is orthogonal invariant, i.e. for any R ∈ O(n), R′ ∈ O(m) we have ∥R′XR∥op = ∥X∥op.

• If X = [X1, . . . , Xn] has orthonormal rows (columns), then ∥X∥op = 1.

Remark 3.2. Recall the matrix inner product: ⟨X,Y ⟩ = trace(Y ⊤X) =
∑

i,j XijYij . Using this
we can write

∥X∥op = σmax(X) = sup
∥u∥2=∥v∥2=1

⟨X,uv⊤⟩ = sup
∥A∥F=1, rank(A)=1

⟨X,A⟩.

Likewise, if X is real and symmetric we have that

λmax(X) = sup
∥v∥2=1

⟨X, vv⊤⟩, ∥X∥op = σmax(X) = sup
∥v∥2=1

|⟨X, vv⊤⟩|.

Similar relations hold for σmin and λmin if one substitutes the sup’s above for inf’s.

3.2 Pertubation of eigenstructures

In this section we assume that we are given two matrices, X and Y = X + Z where Z is a
‘pertubation’ of X. We are interested if eigenvectors and eigenvalues of X and Y are close when Z
is ‘small’. Unfortunately, in general this is not the case.
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3.2.1 Negative results

Eigenvalues The eigenvalues λi are the roots of the polynomial det(λI − X) = 0, which is a
polynomial in λ of degree n. Although the roots are continuous in the coefficients of the polynomial,
in general the modulus of continuity is not Lipschitz and only 1

degree -Hölder continuous, and this is
tight. Indeed, consider the two matrices

X =

[
0 1
0 0

]
and Xε =

[
0 1
ε 0

]
Then λ1(X) = λ2(X) = 0, but λ1(Xε) =

√
ε and λ2 = −

√
ε. More generally consider

X =


0 1 0 . . . 0
...

. . .
. . .

...
0 . . . . . . . . . 1
0 . . . . . . . . . 0

 and Xε =


0 1 0 . . . 0
...

. . .
. . .

...
0 . . . . . . . . . 1
ε . . . . . . . . . 0

 .
One can show that λi(X) = 0 but that λi(Xε) = (−1)ε1/ne2πij/n for i = 1, . . . , n, where j denotes
the imaginary part.

Therefore we need more assumptions on X to be able to obtain Lipschitz bounds, e.g. that X is
a real and symmetric matrix.

Eigenvectors But even in the symmetric case eigenvector pertubations may fail dramatically.
For ε > 0 consider

X =

[
1 + ε 0
0 1− ε

]
and Y =

[
1 ε
ε 1

]
.

The eigenvalues of these two matrices are the same

λ1(X) = λ1(Y ) = 1 + ε, λ2(X) = λ2(Y ) = 1− ε.

However, the eigenvectors are far apart:

v1(X) =

[
1
0

]
, v2(X) =

[
0
1

]
but v1(Y ) =

1√
2

[
1
1

]
, v2(Y ) =

1√
2

[
1
−1

]
.

The lesson from this is that we need separation between the eigenvalues, a spectral (eigen) gap.

3.2.2 Pertubation bound for eigenvalues

Let X,Y, Z be real symmetric matrices in Rn×n and suppose Y = X + Z. We have that

λ1(X) + λn(Z) = λ1(X) + inf
∥v∥2=1

⟨Z, vv⊤⟩

≤ sup
∥v∥2=1

⟨X + Z, vv⊤⟩ = λ1(Y )

≤λ1(X) + sup
∥v∥2=1

⟨Z, vv⊤⟩ = λ1(X) + λ1(Z)

and therefore
|λ1(X)− λ1(Y )| ≤ max(|λ1(Z)|, |λn(Z)|) = ∥Z∥op.

More generally we have the following theorem (homework):

Theorem 3.1 (Weyl’s inequality / Lidskii’s inequality).

|λi(X)− λi(Y )| ≤ ∥Z∥op.
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3.2.3 Pertubation bounds for eigenspaces

Let X,Y, Z again be real symmetric matrices in Rn×n and suppose Y = X + Z. Suppose that
X =

∑
i λiuiu

⊤
i and Y =

∑
ρiviv

⊤
i . We want to prove a pertubation bound for u ≜ u1 and v ≜ v1

and more generally for U = [u1, . . . , ur] and V = [v1, . . . , vr]. However, considering ∥u− v∥2 makes
no sense as u and v are only determined up to their sign, and similarly U and V are only defined
up to orthogonal transformation. There are two possible workarounds:

• Consider the distance

min
s∈{±1}

∥u+ sv∥2 =
√
2− 2|⟨u, v⟩| =

√
2− 2 cos θ = 2 sin

θ

2
≤

√
2 sin θ, (3.1)

where cos(θ) ≜ |⟨u, v⟩|, and more generally, infR∈O(r) ∥U − V R∥.

• Consider the distance between the linear subspaces spanned by u and v, defined through their
respective projection matrices:∥∥∥uu⊤ − vv⊤

∥∥∥2
F
= 2(1− ⟨u, v⟩2) = 2 sin2(θ),

and in the general case ∥UU⊤ − V V ⊤∥F or ∥UU⊤ − V V ⊤∥op.

Theorem 3.2 (Davis-Kahan). Let cos θ = |⟨u1, v1⟩|. Suppose max(ρ1 − λ2, λ1 − ρ2) > 0. Then

sin θ ≤ ∥Z∥op
max(ρ1 − λ2, λ1 − ρ2)

.

Proof. Assume that ρ1 ≥ λ2. Let us start from the eigenvalue equations:

Xu = λ1u and Y v = ρ1v.

Denote U⊥ = [u2, . . . , un] ∈ Rn×n−1. Then

U⊤
⊥X =

u
⊤
2
...
u⊤n

X =

λ2u
⊤
2

...
λnu

⊤
n

 =

λ2 . . .

λn


u

⊤
2
...
u⊤n

 .
Hence

U⊤
⊥ (X + Z)v = ρ1U

⊤
⊥ v ⇔

λ2 . . .

λn

U⊤
⊥ v + U⊤

⊥ZV = ρ1U
⊤
⊥ v

⇔

ρ1 − λ2
. . .

ρ1 − λn

U⊤
⊥ v = U⊤

⊥ZV

⇔ U⊤
⊥ v =


1

ρ1−λ2

. . .
1

ρ1−λn

U⊤
⊥ZV.
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Taking the ∥ · ∥op-norm on both sides gives

∥U⊤
⊥ v∥2 ≤

∥∥∥∥∥∥∥


1
ρ1−λ2

. . .
1

ρ1−λn


∥∥∥∥∥∥∥
op

∥∥∥U⊤
⊥

∥∥∥
op
∥Z∥op =

∥Z∥op
ρ1 − λ2

.

Finally, note that

∥U⊤
⊥ v∥22 = v⊤U⊥U

⊤
⊥ v = v⊤(I − uu⊤)v = 1− ⟨u, v⟩2 = sin2(θ).

If ρ1 < λ2, then λ1 > ρ2. Exchanging the roles of X and Y we obtain the other statement.

More generally, considering the first r eigenvectors we have for U = [U1, . . . , Ur] and V = [V1, . . . Vr]
that for any unitarily invariant norm ∥ · ∥,

∥U⊤
⊥V ∥ ≤ ∥Z∥

max(ρr − λr+1, λr − ρr+1)
.

One can generalize this to singular vectors by a technique sometimes called self-adjoint dilation:1

For X = UΣV ⊤ ∈ Rm×n, Y = Ũ Σ̃Ṽ ⊤ consider the matrix[
0 X
X⊤ 0

]
∈ R(m+n)×(m+n),

and likewise for Y . Observe that[
0 X
X⊤ 0

] [
u1
v1

]
= σ1

[
u1
v1

]
and

[
0 X
X⊤ 0

] [
u1
−v1

]
= −σ1

[
u1
−v1

]
.

Now we can apply the Davis-Kahan Theorem (and sin θ
2 ≤ sin θ) to obtain

min
s∈{±1}

∥∥∥∥[u1v1
]
+ s

[
ũ1
ṽ1

]∥∥∥∥
2

≤
2

∥∥∥∥[ 0 Z
Z⊤ 0

]∥∥∥∥
op

|σ1(X)− σ2(Y )|
=

2∥Z∥op
|σ1(X)− σ2(Y )|

.

1Thanks for Cheng Mao for pointing this out.
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§ 4. Basic Random Matrix Theory

Let Z = (Zij) ∈ Rn×n be an i.i.d or a symmetric with upper part i.i.d (i.e. Zij = Zji
i.i.d.∼ P for

1 ≤ i ≤ j ≤ n) matrix with EZij = 0 and bounded variance and sub-Gaussian tails. We will prove
next that w.h.p.

∥Z∥op ≤ C
√
n.

In comparison we have w.h.p.
∥Z∥F ≍ n.

For now we will discuss some intuition why
√
n is the right order for the operator norm by focusing

on P = N (0, 1). First observe that

Z =

Z
⊤
1
...
Z⊤
n


and ∥Zi∥2 ≍

√
n by the CLT.

Intuition 1: Observe that θi ≜
Zi

∥Zi∥2 ∼ Unif(Sn−1), where Unif(Sn−1) stands for the unit sphere in

Rn. Thus ⟨θi, θj⟩ ≍ 1
n⟨Zi, Zj⟩ =

∑
k ZikZjk

n ≍ 1√
n
, where the last step holds by CLT as ZikZjk have

zero mean, variance 1, and mutually independent across all k. Therefore the rows of Z are almost
orthogonal and hence the operator norm should roughly equal the ∥ · ∥2-norm of the largest row.

Intuition 2: Since ∥Z∥op = supv
∥Zv∥2
∥v∥2 , fix a particular v ∈ Sn−1. Then

Zv =

⟨Z1, v⟩
...

⟨Zn, v⟩

 ∼ N (0, In).

This shows that ∥Z∥op ≥
√
n. A better choice is v = Z1. Indeed, in that case

Zv =


∥Z1∥22
⟨Z2, Z1⟩

...
⟨Zn, Z1⟩

 .
As before ∥Z1∥22 ≍ n and

∑
i>1⟨Zi, Z1⟩2 ≍ n2 which yields that ∥Zv∥2 ≍

√
2n, which shows that

∥Z∥op ≥
√
2n. In fact one can do even better and prove that w.h.p.

∥Z∥op = (2 + o(1))
√
n.
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4.1 Gaussian Random Matrix

For simplicity, let’s consider a symmetric n × n Z having independent N(0, 1) above-diagonals
and N(0, 2) diagonals. It will become transparent that the variance of the diagonal is immaterial,
provided it is small, say, a constant. This model is referred to as Gaussian Orthogonal Ensemble
(GOE). We are interested in

∥Z∥op = σmax = max
u,v∈Sn−1

⟨Z, uv⊤⟩. (4.1)

Note that we can write Z = 1√
2
(W +W⊤), where W is an n× n matrix whose n2 entries are all iid

N(0, 1).

Remark 4.1. The distributions of the diagonals are not important for the operator norm. To see
this, note

∥Z∥op ≤ ∥Zo∥op + ∥diag(Z)∥op,

where Zo is the same as Z except that the diagonals are set to zero, and diag(Z) = diag(Zii). By
union bound, ∥diag(Z)∥op = max1≤i≤n |Zii| = Op(

√
log n) ≪ Op(

√
n), and thus negligible.

Starting from the variational formula (4.1), note that for fixed u, v ∈ Sn−1, we have

⟨Z, uv⊤⟩ = 1√
2
⟨W +W⊤, uv⊤⟩ = 1√

2
⟨W,uv⊤ + uv⊤⟩ ∼ N

(
0,

1

2
∥uv⊤ + vu⊤∥2F

)
= N(0, 2),

because ∥uv⊤ + vu⊤∥2F = 2+ ⟨uv⊤, vu⊤⟩ = 4. However, we need to deal with all u, v simultaneously,
To bound P(maxv∈Sn−1⟨Z, vv⊤⟩ > t), we would like to apply the union bound. However, the

sphere here is not a finite set. In order to handle this, we can use the discretization technique —
the ϵ-net argument – to approximate a continuous max by a discrete max.

Definition 4.1. V ⊂ Sn−1 is called an ϵ-net (covering), if ∀u ∈ Sn−1, ∃v ∈ V s.t. ∥u− v∥2 ≤ ϵ.

Lemma 4.1. Let ϵ < 1
2 . For any ϵ-net V ,

max
u,v∈V

⟨Z, uv⊤⟩ ≤ ∥Z∥op ≤ 1

1− 2ϵ
max
u,v∈V

⟨Z, uv⊤⟩.

Proof. We only need to show the right inequality. Choose u ∈ Sn−1 such that ⟨Z, uv⊤⟩ = ∥Z∥op.
Then ∃ũ, ṽ ∈ V such that ∥u− ũ∥2 ≤ ϵ and ∥v − ṽ∥2 ≤ ϵ. It follows that

∥Z∥op = ⟨Z, uv⊤⟩ = ⟨Z, ũṽ⊤⟩+ ⟨Z, uv⊤ − ũṽ⊤⟩
= ⟨Z, ũṽ⊤⟩+ ⟨Z, (u− ũ)v⊤⟩+ ⟨Z, ũ(v − ṽ)⊤⟩
≤ ⟨Z, ũṽ⊤⟩+ ∥Z(u− ũ)∥2 + ∥Z(v − ṽ)∥2
≤ max

u,v∈V
⟨Z, uv⊤⟩+ 2ϵ∥Z∥op.

Next we give a simple bound on the cardinality of the ϵ-net.

Definition 4.2. For A ⊂ Rd, V = {v1, . . . , vm} ⊂ A is called an ϵ-packing, if ∀i ̸= j, ∥vi − vj∥2 ≥ ϵ.
An ϵ-packing V is maximal if it cannot be made bigger, i.e., ∀u ∈ A\V , V ∪ {u} is not an ϵ-packing.
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We make two key observations for these concepts:

• Any maximal ϵ-packing is an ϵ-net.

• For any ϵ-packing V of A, |V | ≤ vol(A+ ϵ
2B)/vol( ϵ2B), where B is the unit norm ball. Here

A+B ≜ {x+ y : x ∈ A, y ∈ B} is the Minkowski sum of two sets.

The first observation is just by definition. We can construct a maximal ϵ-packing through greedy
search. The second one is because we can put |V | balls of radius ϵ

2 into A + ϵ
2B and keep them

disjoint. So the total volume of balls should not exceed that of the A+ ϵ
2B. Among many measures,

we choose volume because it’s location invariant. We can summarize the observations as

size of the smallest covering ≤ size of any maximal packing ≤ volume ratio.

Now set A = Sn−1. Then A+ ϵ
2B ⊂ B + ϵ

2B = (1 + ϵ
2)B.1 The volume ratio

vol(A+ ϵ
2B)

vol( ϵ2B)
≤

vol((1 + ϵ
2)B)

vol( ϵ2B)
=

(1 + ϵ
2)

nvol(B)

( ϵ2)
nvol(B)

=

(
1 +

2

ϵ

)n

.

What we discussed above concludes the following lemma.

Lemma 4.2 (Size of ϵ-net). There exists an ϵ-net V for Sn−1, of size |V | ≤
(
1 + 2

ϵ

)n
.

Remark 4.2. The above upper bound is essentially tight. To see this, for any ϵ-net V , we have
Sn−1 ⊂ ∪v∈V (v + ϵB) so Sn−1 + ϵB ⊂ ∪v∈V (v + 2ϵB). Thus by the union bound,

vol(Sn−1 + ϵB) ≤ vol (∪v∈V (v + 2ϵB)) ≤
∑
v∈V

vol(2ϵB) = |V |(2ϵ)nvol(B).

For small ϵ, Sn−1 + ϵB = (1 + ϵ)B\(1− ϵ)B is a spherical shell. So vol(Sn−1 + ϵB) = ((1 + ϵ)n −
(1− ϵ)n)vol(B), and we get 2n|V | ≥ (1ϵ + 1)n − (1ϵ − 1)n ≍ n(1ϵ )

n−1

Theorem 4.1. ∥Z∥op ≤ C
√
n whp for some universal constant C.

Proof. Set ϵ = 1
4 and choose V as in Lemma 4.2 with |V | ≤ 9n. By Lemma 4.1, ∥Z∥op ≤

2maxu,v∈V ⟨Z, uv⊤⟩. For ∀t > 0,

P
(
max
u,v∈V

⟨Z, uv⊤⟩ > t

)
≤
∑

u,v∈V
P(⟨Z, uv⊤⟩ > t)

≤ |V |2 · 2e−
t2

4 = 2en log 9− t2

4 .

Choose t = C
2

√
n with a universal constant C > 4

√
log 9. Then we know ∥Z∥op ≤ C

√
n with

probability at least 1− 2e−C′n, where C ′ = C2/16− log 9 > 0.

1The first inclusion does not lose much volume, because the volume of a ball in high dimension is concentrated
near the shell anyway.

31



4.2 Sub-Gaussian Random Matrix

Reviewing the whole proof of Theorem 4.1, we can see there is only one part that the Gaussian

assumption is used: the tail bound P(|⟨Z, uv⊤⟩| > t) ≤ 2e−
t2

4 . Thus the result of Theorem 4.1 can
be naturally extended to other random variables with such tail bound.

Definition 4.3. A random variable X is said to be sub-Gaussian with parameter σ2, or σ2-SG in
short, if ∀λ, Eeλ(X−EX) ≤ eσ

2λ2/2.

For a σ2-SG random variable X and t > 0, Chernoff bound yields that P(X − EX > t) ≤

eσ
2λ2/2−λt for all λ ≥ 0. Choosing λ = t/σ2, we have P(X − EX > t) ≤ e−

t2

2σ2 , and similarly for the
other tail. Overall, a σ2-SG random variable satisfies the same tail bound as N(0, σ2), namely

P(|X − EX| > t) ≤ 2e−
t2

2σ2 . (4.2)

We can also view the tail bound as the definition of σ2-SG. Note that σ2-SG random variables have
variance at most σ2, which can be shown easily through Taylor expansion of MGF. Sometimes σ2 is
called the “variance proxy”.

We also need some basic observations on subgaussianity. The proof is omitted.

Lemma 4.3. 1. If X is σ2-SG and τ2 > σ2, then X is τ2-SG.

2. If X is σ2-SG, then αX is α2σ2-SG.

3. If X is σ2-SG, then X + µ is σ2-SG for any constant µ.

4. If X1, . . . , Xn are independent and each Xi is σ
2
i -SG, then

∑n
i=1Xi is (

∑n
i=1 σ

2
i )-SG.

We are now ready to give an extension of Theorem 4.1:

Theorem 4.2. Let Z = (Zij)n×n a real symmetric matrix with EZ = 0. Assume that, for

1 ≤ i ≤ j ≤ n, Zij are independent and σ2-SG. Then ∥Z∥op ≤ C
√
nσ2 with probability at least

1− 2e−C′n for some universal constant C,C ′.

Proof. For any u, v ∈ Sn−1, Lemma 4.3 shows that ⟨Z, uv⊤⟩ =
∑

i Ziiuivi + 2
∑

i<j Zijuivj is SG
with parameter

σ2

∑
i

u2i v
2
i + 4

∑
i<j

u2i v
2
j

 ≤ 2σ2

(∑
i

u2i

)(∑
i

v2i

)
= 2σ2.

Thus we get from (4.2) that P(|X − EX| > t) ≤ 2e−
t2

4σ2 for all t > 0. The rest is identical to the
proof of Theorem 4.1.

In order to analyze spectral method for the Planted Clique model, we need to deal with Bernoulli
random matrices. So let’s find the SG parameter of Bernoulli random variables. The following
result of Hoeffding, previously stated as Lemma 2.2, shows that bounded random variables are SG.

Lemma 4.4 (Hoeffding). If X ∈ [−a, a] a.s. for some a > 0, then it is 4a2-SG.
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Proof. First, we prove when X is a Rademacher random variable:

EeλX =
1

2
(eλ + e−λ) =

∞∑
k≥0,k even

λk

k!
=

∞∑
k=0

λ2k

(2k)!
≤

∞∑
k=0

λ2k

2kk!
= eλ

2/2. (4.3)

Second, when |X| ≤ a a.s., we apply a symmetrization argument. Let X ′ be an independent copy
of X and ϵ a Rademacher random variable independent of everything else. Then X −X ′ has a

symmetric distribution and X −X ′law= ϵ(X −X ′). Then

Eeλ(X−EX) = Eeλ(X−EX′) = EeλXe−λEX′

(a)

≤ EeλXEe−λX′
= Eeλ(X−X′)

= Eeλϵ(X−X′)

= E
(
E(eλϵ(X−X′)|X,X ′)

)
(b)

≤ E
(
eλ

2(X−X′)2/2
) (c)

≤ e2λ
2a2

where (a) applies Jensen’s inequality; (b) applies (4.3); and (c) is because |X −X ′| ≤ 2a a.s..

Since Bernoulli random variable is 1-SG, an immediate consequence is the following tail bound
for binomial random variables:

P [Binom(n, p) ≥ np+ t] ≤ exp

(
− t2

2n

)
(4.4)

Combining Lemma 4.4 with Theorem 4.2, we get the following corollary:

Corollary 4.1. Let A be the adjacency matrix of an (inhomogeneous) Erdős-Rényi graph G with n
vertices, where i ∼ j with probability pij independently. Then ∥A− EA∥op ≤ C

√
n with probability

at least 1− 2e−C′n for some universal constant C,C ′.

For G ∼ G(n, p), the above result is does not depend on p, because Lemma 4.4 simply states
that Bern(p) is 1-SG regardless of the value of p. As such, the resulting bound is tight for dense
graphs with p = O(1), but loose for sparse graphs with p = o(1). For the latter case, it is natural
to expect the spectral fluctuation to be O(

√
np because the variance of Bern(p) is on the order

p. Indeed, we can improve the sub-Gaussian constant to σ2(p) ≲ 1
log 1

p

, which is the best possible

(check Def. 4.3 by setting λ = log(1/p)), leading to the improved result that whp,

∥A− EA∥op ≲

√
n

log 1
p

However, this is still loose as the correct behavior is indeed O(
√
np) when p is not too small, namely,

p = Ω( lognn ). (We will come back to this in Lecture 10.) Overall this means dealing with sparse
graphs using sub-Gaussian technology leads to highly suboptimal result.
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§ 5. Spectral method for Planted Clique

We now apply the perturbation result from Lecture 3 and the basic random matrix result from
Lecture 4 to the hidden clique problem, following [AKS98].

5.1 Spectral methods for Planted Clique Model

Let G ∼ G(12 , n, k) where the hidden k-clique is denoted by K ⊂ [n]. Denote the adjacency matrix
of G by A, with

Aij =

{
1 i, j ∈ K

Bern(12) o.w.
.

It will be more convenient to work with the signed adjacency matrixW (±1 as opposed to 0/1-valued),
where

Wij =

{
2Aij − 1 i ̸= j

0 i = j
.

The following is a spectral method to find the clique:

1. Find the top eigenvector u of W .

2. Let K̃ consist of those vertices i ∈ [n] with the k largest |ui|.

3. (Clean up) Denote by K̂ the set of vertices having ≥ 3k
4 neighbors in K̃. In other words,

K̂ = {i ∈ [n] : d
K̃
(i) ≥ 3k

4 }.

Theorem 5.1 ([AKS98]). If k ≥ C
√
n for some large constant C, then P(K̂ = K) → 1.

Proof. First, we show K̃ is that approximately correct: |K̃ ∩K| ≥ (1− ϵ)k whp for some ϵ = ϵ(C).
Let W ∗ = ξξ⊤, where ξ = 1K = (1 {i ∈ K})1≤i≤n is the indicator vector for the planted clique.
Since W ∗ is rank-one, so λ1(W

∗) = ∥ξ∥22 = k with top eigenvector v = 1√
k
ξ, and λ2(W

∗) = 0. By

Davis-Kahan’s sinΘ-theorem (Theorem 3.2 together with (3.1)), provided that λ1(W
∗)−λ2(W ) > 0,

min
s∈{±}

∥u+ sv∥2 ≤
2∥W −W ∗∥op
λ1(W ∗)− λ2(W )

. (5.1)

WLOG, assume the LHS is ∥u− v∥2. Note that

∥W −W ∗∥op ≤ ∥EW −W∥op + ∥EW −W ∗∥op ≤ ∥EW −W∥op + 1 ≤ C0

√
n (5.2)

whp for some universal C0 > 1 and all sufficiently large n by Theorem 4.2. On the same event, by
Weyl’s inequality (Theorem 3.1), λ2(W ) = λ2(W ) − λ2(W

∗) ≤ ∥W −W ∗∥op ≤ C0
√
n. Plugging

this back into (5.1), we get that

∥u− v∥2 ≤
2C0

C − C0
≤ ϵ (5.3)
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holds whp for C big enough.

Second, we claim that ∥u− v∥2 ≤ ϵ actually implies

|K̃ ∩K| ≥ (1− ϵ′)k (5.4)

for some small ϵ′ depending on ϵ. To see this, note that |K| = |K̃| = k and thus |K\K̃| = |K̃\K|
and it is equivalent to show this is at most ϵ′k. Moreover,

ϵ2 ≥ ∥u− v∥22 =
∑
i∈K

(
ui −

1√
k

)2

+
∑
i ̸∈K

u2i .

Now, we separately consider two cases.

• If |ui| ≤ 1
2
√
k
for all i ̸∈ K̃, then

ϵ2 ≥
∑

i∈K\K̃

(
1√
k
− ui

)2

≥ 1

4k
|K\K̃|.

• If |uj | > 1
2
√
k
for some j ̸∈ K̃, then by the definition of K̃, we have |ui| > 1

2
√
k
for all i ∈ K̃. It

follows that

ϵ2 ≥
∑

i∈K̃\K

u2i ≥
1

4k
|K̃\K|.

In sum, in either case, (5.4) holds with ϵ′ = 4ϵ2.

Third, we claim that K̂ = K with high probability. We proceed on the event of ∥u− v∥2 ≤ ϵ.

• For each vertex i ∈ K, d
K̃
(i) ≥ d

K̃∩K(i) = |K̃ ∩K| − 1 ≥ (1 − ϵ′)k − 1. So we have i ∈ K̂
when ϵ′ < 1

4 .

• For each vertex i ̸∈ K, d
K̃
(i) ≤ dK(i) + |K̃\K|. From above, we know |K̃\K| ≤ ϵ′k. And

dK(i) ∼ Bin(k, 12). By Hoeffding’s inequality, for all ϵ′ ≤ 1/8,

P
(
dK(i) ≥ (

3

4
− ϵ′)k

)
≤ P

(
dK(i) ≥ 5

8
k

)
≤ e−

k
32 .

Applying a union bound over all vertices i /∈ K gives that

P
(
∃i /∈ K : dK(i) ≥ (

3

4
− ϵ′)k

)
≤ ne−

k
32 .

In all, on the events ∥u− v∥ ≤ ϵ and dK(i) < (34 − ϵ′)k for all i /∈ K, we have K̂ = K. To wrap up
the whole proof, we choose ϵ = 1

8 . Then ϵ
′ = 4ϵ2 = 1

16 . Choose C ≥ 18C0 so the second inequality
in (5.3) is guaranteed. Therefore,

P(K̂ ̸= K) ≤ P (∥u− v∥ > ϵ) + P
(
∃i /∈ K : dK(i) > (

3

4
− ϵ′)k

)
≤ P(∥W − EW∥op > C0

√
n) + ne−

k
32

≤ 2e−C′
0n + ne−

C
32

√
n → 0.
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Remark 5.1. 1. Alternatively, one can take u as the second leading eigenvector of A. The top
eigenvector of A is almost deterministic and not informative, since it is almost proportional to
the all-ones vector.

2. Thresholding technique is widely used in non-parametric estimation. Here, the step 3 (clean
up) can be viewed as a version of thresholding.

5.2 Improving the constant

Next we show that the constant C in Theorem 5.1 can be made arbitrarily small, at the price
of increasing the time complexity (still poly(n) but with a bigger exponent). This part is generic
and applies to any algorithm. The idea is as following. Fix a subset of vertices S ⊂ V , |S| = s.
Define N∗(S) as the set of common neighbors of S, i.e., N∗(S) = {v ∈ V \S : ∀u ∈ S, v ∼ u} =(⋂

u∈S N(u)
)
\S. Let’s say s = 2. Next, consider the induced subgraph G′ = G[N∗(S)]. If S ⊂ K,

then G′ = G(|N∗(S)|, 12 , k − 2) and |N∗(S)| ∼ Bin(n− k, 14) + k − 2 = (1 + oP (1))
n
4 when k = o(n).

So as we can see, by working on this subgraph, n decreases exponentially while k decreases linearly.
The upgraded algorithm is thus summarized below:

For any s-subset S ⊂ V , run the existing algorithm on G′ = G[N∗(S)] and output Q. Repeat
until S ∪Q is a k-clique. And the final output is S ∪Q.

When the search over S finds S ⊂ K, the requirement in Theorem 5.1 asks for k−s ≥ C
√
n · 2−s

to guarantee the success of the spectral method, namely, Q = K\S. So suppose we aim to find
planted clique of size k ≥ δ

√
n, where δ is an arbitrary constant. Picking s = 2 log2

C
δ , the algorithm

above is guaranteed to be find K whp. The extra search time is at most
(
n
s

)
= nO(log 1

δ
) that is

polynomial in n.
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§ 6. Semidefinite programming I: Planted clique

In this lecture we discuss semidefinite programming (SDP) relaxation in the context of the planted
clique problem. We discuss two SDPs:

• A standard form of SDP relaxation for the planted clique problem (after [FK00, HWX16])

• A convexified maximum likelihood estimator with nuclear norm constraint, which can also be
written as SDP (after [CX16]).

We show that both methods succeed in finding the hidden clique of size Ω(
√
n) with high probability,

using the following two types of proof techniques respectively:

• Dual proof: we construct the needed Lagrangian multipliers (also called dual certificates or
dual witnesses) that together with the desired solution X∗ fulfill the KKT condition, thereby
certifying the optimality of X∗.

• Primal proof: we show that no feasible solution other than the desired X∗ achieve a higher
objective function.

Although the two methods are of distinct nature (one is constructive and one is non-construcive),
for analyzing convex programs both methods are ultimately equivalent; nevertheless, the specific
execution (e.g. explicit construction of dual certificates) need not be the same.

In addition, we show that the standard SDP relaxation of the hidden clique problem, unlike
previously discussed methods like the degree test or the spectral method, is robust with respect
to certain adversarial perturbation. Aside from robustness, SDP also possesses the advantages of
not requiring any cleanup step unlike spectral methods (Section 5.1) or the iterative degree tests
in (Section 2.4), and that it can be solved in polynomial time. (See Section 6.2.4 on rounding an
approximate solution.) However, in practice solving a large SDP can be quite slow.

6.1 The planted clique problem and spectral method revisited

Recall the in the planted clique model, a clique K of size k is planted in the Erdös-Rényi graph
with success probability 1/2. Denote the corresponding adjacency matrix as A, and G(n, 1/2, k) the
distribution A is generated from. Define W ∈ Rn×n to be the following transformation of A:

Wij =

{
2Aij − 1, i ̸= j;

0, i = j.

Note thatW takes value 1 on edges connecting two members within the clique, and is i.i.d. Rad(1/2)
for all other above-diagonal entries. It is easy to see that the MLE for the planted clique problem

37



can be written as

ûMLE = argmax
u

∑
i,j

uiujWij

s.t. u ∈ {0, 1}n,∑
ui = k,

or equivalently in matrix form,

ûMLE = argmax
u

⟨W,uu⊤⟩

s.t. u ∈ {0, 1}n,
∥u∥2 = k. (6.1)

Notice that the spectral method in Section 5.1 that uses the top eigenvector of W is a relaxation
of (6.1). By relaxation we mean enlarging the constraint set in order to speed up the computation.
Indeed, the spectral method takes the top eigenvector of W by solving

ûspectral = argmax
u

⟨W,uu⊤⟩

s.t. u ∈ Rn,

∥u∥2 = k. (6.2)

One would hope that after relaxation, the optimality of the optimizer in the original problem is
not lost. Unfortunately that is not the case for the relaxation done in (6.2). We proved previously
in Lecture 5 that the spectral method typically only recovers most of the members in the clique,
thus requires a cleanup step to recover the entire clique. In other words, we relaxed the constraint
set too much. We will develop two tighter relaxations to (6.1), namely our semidefinite programs.
The standard form of SDP is derived using the idea of lifting. Let us first illustrate the lifting idea
on spectral program (6.2).

Definition 6.1. An optimization problem is said to be convex if the objective function is a convex
function and the constraint set is a convex set.

Although easy to solve, the optimization (6.2) is not convex. Nevertheless, it can be written as
a convex optimization via the lifting idea.

Definition 6.2. A symmetric matrix X ∈ Rn×n is called positive semidefinite (PSD), denote by
X ⪰ 0, if y⊤Xy ≥ 0 for all y ∈ Rn.

Consider the following program:

X̂spectral = argmax
X

⟨W,X⟩

s.t. X ⪰ 0,

Tr(X) = k. (6.3)

Proposition 6.1. The optimization (6.2) is equivalent to (6.3).
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To prove Proposition 6.1 we need to introduce the notion of extremal points in a convex set.
Let S be a convex set. We say a point s ∈ S is an extreme point of S if it cannot be written as
convex combinations of other points in S. The importance of extremal points is that points in a
convex set S can be written as convex combinations of extreme points. There are various results of
this flavor in convex analysis, the most general being the Krein-Milman theorem. We recall the
following result for Euclidean spaces:

Theorem 6.1 (Carathéodory theorem). Suppose that S is a convex set in Rd. Then each s ∈ S
can be written as a convex combination of at most d+ 1 extreme points of S.

Proof of Proposition 6.1. Write X = uu⊤ to reformulate (6.2) as

max
X

⟨W,X⟩

s.t. X ⪰ 0,

Tr(X) = k,

rank(X) = 1.

The lifting step only drops the rank one constraint on X. The proposition can be proved by
arguing that dropping the rank constraint does not incur any sub-optimality. Notice that in (6.3),
the objective function is linear in X and the constraint set is convex. Therefore optimality occurs
at one of the extreme points. To see that simply notice that for each feasible X, by Carathéodory’s
theorem it can be written as a convex combination of a finite number of extreme points in the
feasible set. Write X =

∑
iXiαi, which gives

⟨W,X⟩ =
∑
i

⟨W,Xi⟩αi.

Therefore the objective function evaluated at X has to be beaten (or at least match) its value at
one of the extreme points. Given that all extreme points of the feasible set {X : X ⪰ 0,Tr(X) = k}
are of rank one, the rank constraint is automatically enforced by the optimization (6.3).

6.2 Standard SDP relaxation

6.2.1 Formulation

Start by rewriting the MLE program (6.1) in a lifted form.

X̂MLE = argmax
X

⟨W,X⟩

s.t. X ⪰ 0,

0 ≤ X ≤ J, (entrywise)

Tr(X) = k,

⟨X,J⟩ = k2,

rank(X) = 1. (6.4)

Proposition 6.2. The MLE optimization (6.1) is equivalent to (6.4).

Proof. It is easy to check that for all u in the feasible set of (6.1), the matrix uu⊤ is in the feasible
set of (6.4). We only need to check the other direction. In other words, we need to show that every
X in the feasible set of (6.4) can be written as uu⊤ for some u in the feasible set of (6.1).
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The positive semidefinite constraint combined with the rank one constraint imply that X = uu⊤

for some u ∈ Rn. The trace constraint gets translated to
∑

i u
2
i = k; the constraint ⟨X,J⟩ = k2 is

equivalent to |
∑

i ui| = k. What’s more, by looking at the diagonal entries Xii = u2i ≤ 1 we have
ui ∈ [−1, 1]. Also, Xij ≥ 0, so all the non-zeros of u are either all positive or all negative. Assume
the former. Then

∑
i u

2
i = k and

∑
i ui = k force the integrality ui ∈ {0, 1}. Thus u lies in the

feasible set of (6.1).

We consider the following SDP relaxation of the MLE by dropping the rank-one constraint and
the constraint that X ≤ J in (6.4). (The first relaxation is the most important one as it makes the
program convex. We could have kept the box constraint X ≤ J but it turns out we don not need it
for the proof of success.) Define

X̂SDP = argmax
X

⟨W,X⟩

s.t. X ⪰ 0,

X ≥ 0,

Tr(X) = k,

⟨X,J⟩ = k2. (6.5)

Remark 6.1. Recall that the standard form for a linear program (LP) is

max
x

⟨a, x⟩

s.t. ⟨bi, x⟩ ≤ 0 for i = 1, ...,m.

Compare with the standard form for an SDP:

max
X symmetric

⟨W,X⟩

s.t. ⟨Bi, X⟩ ≤ 0 for i = 1, ...,m,

X ⪰ 0.

The set of all positive semidefinite matrices form a cone (X ⪰ 0 and α ≥ 0 then αX ⪰≥ 0). The
PSD constraint is a conic condition. Notice that a matrix X ∈ Rn×n is call PSD if ⟨X,uu⊤⟩ ≥ 0 for
all u ∈ Rn. Hence the PSD constraint can be viewed as a continuum of linear constraints.

6.2.2 Statistical guarantee: dual proof

Denote by ξ = (1 {i ∈ K})1≤i≤n the indicator vector of the hidden clique K. Let X∗ = ξξ⊤. We
show that if the size of the clique is of order

√
n, then the SDP relaxation (6.5) is unique solved by

X∗. Thus we can recover the hidden clique from the solution of the SDP.

Theorem 6.2. There exists a constant C > 0 such that if k ≥ C
√
n, then with high probability X∗

is the unique maximizer of the SDP relaxation (6.5).

Remark 6.2. With some work the constant C can be reduced to 1. We will not optimize the choice
of C in the proof of the theorem.

Remark 6.3. Clearly X∗ is an optimizer of (6.5). To prove Theorem 6.2 we will mostly need to
establish the uniqueness of X∗. To see the optimality of X∗, note that for each X in the feasible set
of (6.5),

⟨W,X⟩ =⟨W + I, X⟩ − Tr(X) ≤ ⟨J, X⟩ − Tr(X) = k2 − k.
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where the inequality is from W + I ≤ J and the entrywise non-negativity of X. This is achieved
by ⟨W,X∗⟩ = k2 − k, because W takes value 1 for all off-diagonal entries in K ×K. Therefore
⟨W,X⟩ ≤ ⟨W,X∗⟩ for all feasible X.

The proof is via the standard dual approach to optimality: we will construct a set of Lagrangian
multipliers for (6.5) (also called “dual certificates” or “dual witnesses”) that certifies the optimality
of X∗.

Attach to each constraint in (6.5) a Lagrangian multiplier, i.e., S ⪰ 0, B ≥ 0, η, λ ∈ R. Write
down the Lagrangian for the SDP (6.5):

L(X,S,B, η, λ) = ⟨W,X⟩+ ⟨S,X⟩+ ⟨B,X⟩+ η(k − Tr(X)) + λ
(
k2 − ⟨X,J⟩

)
.

Since the inner products of two PSD matrices is always nonnegative, one important observation
is that

max
X

⟨W,X⟩ ≤ min
S⪰0,B≥0,η,λ

max
X

L(X,S,B, η, λ). (6.6)

Lemma 6.1. Suppose there exists S ⪰ 0, B ≥ 0, η, λ ∈ R such that

W + S +B − ηI− λJ = 0, (first-order condition)

⟨S,X∗⟩ = 0, ⟨B,X∗⟩ = 0, (complementary slackness)

λn−1(S) > 0, (uniqueness)

then X∗ = ξξ⊤ is the unique global maximizer for (6.5).

Proof. At the high level, the reasoning for any duality result is always of the following type:

1. First-order condition ensures L(X,S,B, η, λ) is the same for any X;

2. Complementary slackness ensures L(X∗, S,B, η, λ) = ⟨W,X∗⟩.

Then we are done with optimality: ∀ feasible X,

⟨W,X⟩ ≤ L(X,S,B, η, λ) = L(X∗, S,B, η, λ) = ⟨W,X∗⟩ .

Indeed, let’s rewrite the Lagrangian multiplier as

L(X,S,B, η, λ) = ⟨X,W + S +B − ηI− λJ⟩+ kη + k2λ.

By the first order condition, the first term is 0 thanks to the first order condition. Hence
L(X,S,B, η, λ) = kη + k2λ does not depend on X. By (6.6), for any feasible X we have

⟨W,X⟩ ≤ kη + k2λ.

By the complementary slackness condition X∗ achieves the above with equality

⟨W,X∗⟩ = kη + k2λ.

This shows X∗ is a maximizer.
To prove X∗ is the maximizer (uniqueness), suppose for some feasible X ′ we have〈

W,X ′〉 = ⟨W,X∗⟩ .
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Since L(X ′, S,B, η, λ) = ⟨W,X ′⟩+ ⟨S,X ′⟩+ ⟨B,X ′⟩ ≤ ⟨W,X∗⟩, we must have ⟨S,X ′⟩ = 0. Note
that the positive semidefiniteness of S implies that ⟨S,X∗⟩ = 0 is equivalent to Sξ = 0, i.e., ξ is an
eigenvector for the smallest eigenvalue λn = 0 of S. Since X ′ is positive semidefinite and S has a
strictly positive second smallest singular value, ⟨S,X ′⟩ = 0 forces

X ′ = cξξ⊤ = cX∗

for some constant c. The trace constraint ensures that Tr(X) = Tr(X∗). Hence c has to be one,
meaning X ′ = X∗.

Proof of Theorem 6.2. From Lemma 6.1, it suffices to construct B ≥ 0, ηλ ∈ R such that

S = ηI+ λJ−B −W ⪰ 0,

and Sξ = 0, ⟨B,X∗⟩ = 0, λn−1(S) > 0.
The condition Sξ = 0 is equivalent to

ηξ + λk1 = Bξ +Wξ. (6.7)

Recall that X∗ = ξξ⊤. The condition ⟨B,X∗⟩ = 0 is equivalent to Bij = 0 for all (i, j) ∈ K ×K.
Therefore for all i ∈ K, the i’th entry of Bξ is zero. Let y =Wξ. This vector records the (centered)
number of neighbors of each vertex has in the clique. For i ∈ K, pull out the i’th place in the vector
equality (6.7).

η + kλ = (Bξ)i + yi = k − 1.

Deduce that η = k(1− λ)− 1.
For i /∈ K, we have

kλ = (Bξ)i + yi. (6.8)

Construct B from B = ξb⊤ + bξ⊤ for some b ∈ Rn such that bi = 0 for all i ∈ K. Such matrix
B is of rank 2 and takes the block form

B =

[
0 column-wise constant

row-wise constant 0

]
.

For B defined as such, we have Bξ = kb. Hence (6.8) can be rewritten as

kλ = kbi + yi,

implying that the choice of b satisfies bi = λ− yi/k for all i /∈ K.
We still need to ensure that B ≥ 0. Equivalently, we need bi ≥ 0 for all i. This entails

λ ≥ 1

k
max
i/∈K

yi,

Note that each yi is a sum of k i.i.d. Rademacher(1/2). Thus we can choose λ = 1/2 (in reality
λ = o(1) works) to ensure the above displayed equation holds with high probability.

It remains to verify S ⪰ 0 and λn−1(S) > 0. In other words, we need

xTSx > 0 for all x ∈ Sn−1 s.t. ⟨x, ξ⟩ = 0.

Use the first-order condition to write

xTSx = η + λx⊤Jx− xTBx− xTWx.
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The second term in the right-hand side is nonnegative by positive semidefiniteness of the all ones
matrix. We have xTBx = 0 from ⟨x, ξ⟩ = 0. Write W = EW + (W − EW ) to deduce that

xTSx ≥ k

2
− 1− x⊤EWx− ∥W − EW∥op.

Note that EW = ξξ⊤ − diag(ξ), therefore x⊤EWx ≤ 0 for all x ⊥ ξ. In (5.2) we have shown that
∥W − EW∥op ≤ C0

√
n with high probability. Hence xTSx ≥ (k − C0

√
n) > 0 as long as k ≥ C

√
n

for some large enough constant c.

6.2.3 A negative result

We showed exact recovery (with high probability) of the clique of the SDP (6.5) under the assumption
that k is at least some large multiple of

√
n. We will show the requirement on the clique size cannot

be improved. In fact if k is smaller than some small constant multiple of
√
n, there will typically be

a spurious maximizer for (6.5) that does not provide any information on the location of the clique.

Theorem 6.3. If k ≤ c
√
n (for example c = 1/2 works), then with high probability, the SDP (6.5)

has a maximizer X ∈ Rn×n that is supported by KC ×KC . In other words,

1. X is in the feasible set of (6.5).

2. ⟨W,X⟩ = ⟨W,X∗⟩ = k2 − k.

Proof. Define Z =WKC ,KC ∈ Rm×m, where m = n− k. We will construct the feasible alternative
solution X as follows. Let

X =

[
0 0
0 Y

]
,

where Y ∈ Rm×m is a matrix we need to specify so that X satisfies the feasibility conditions. In
terms of Y , that means

1. Y ⪰ 0,

2. Y ≥ 0,

3. Tr(Y ) = k,

4. ⟨Y,J⟩ = k2.

Let

Y =
k

m
I+ αZ + β(J− I).

In other words, Yii =
k
m and Yij = αZij + β. It is easy to check that conditions 2 is satisfied as long

as β ≥ α ≥ 0. Condition 3 is satisfied by specifying the diagonal entries of Y to be k/m. Condition
4 translates to

k + α⟨Z,J⟩+ βm(m− 1) = k2. (6.9)

We also need ⟨X,W ⟩ = k(k − 1), i.e.

αm(m− 1) + β⟨Z,J⟩ = k(k − 1). (6.10)
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Solve the linear system (6.9) with (6.10) to obtain the pair

α = β =
k2 − k

m2 −m+ ⟨Z,J⟩
=
k2

n2
(1 + oP (1))

for k ≤
√
n/2.

It remains to ensure condition 1 holds. To show that Y ⪰ 0 it suffices to show

k

n
≥ α∥Z∥op.

The operator norm of the i.i.d. Radamacher matrix Z is smaller than 2
√
n with high probability.

Therefore, the right-hand size can be upper bounded by (k2/n2)
√
n(2 + oP (1)). This means

k ≤
√
n(1/2 + oP (1).

1

6.2.4 Rounding an approximate optimal solution

Unlike linear programs, there are no known solver for semidefinite programs that outputs the
exact optimizer in polynomial time. Via the ellipsoid method, an SDP can only be solved in
polynomial time up to some accuracy. To be exact, it is possible to produce a feasible solution,
in poly(n,m, 1/ϵ) time, e.g. by the ellipsoid method, whose objective value is at least (1− ϵ)OPT,
where n = number of variables, m = number of constraints and ϵ is the relative accuracy. Thus, in
order to obtain a genuinely polynomial-time algorithm, we need to that show, as a sanity check,
that the same statistical guarantee can be attained if we only solve the SDP relaxation up to certain
relative accuracy ϵ = 1

poly(n) followed by some simple post processing (rounding); otherwise, it
defeats the purpose considering this relaxation.

In the context of the planted clique problem, we showed in Theorem 6.2 that as long as k ≥ C
√
n

for some constant C, then with high probability, X∗ is the unique optimizer of (6.5). Suppose we
found a feasible solution X to (6.5), such that

⟨W,X⟩ ≥ (1− ϵ)⟨W,X∗⟩.

Next, we can apply simple rounding scheme to convert X to X̂ ∈ {0, 1}n×n, where

X̂ij =

{
0 if Xij ≤ 1

2 ,

1 if Xij >
1
2 .

Theorem 6.4 (Rounding). Under the assumptions of Theorem 6.2, if ϵ ≤ c1
√
n/k3 for some c1 > 0,

then X̂ = X∗ with high probability.

Proof. Suppose, for the sake of contradiction, that X̂ ̸= X∗. By assumption ⟨W,X⟩ ≥ ⟨W,X∗⟩ − δ,
with δ = k(k − 1)ϵ. From the definition of X̂, we know that X̂ ̸= X∗ means

∃(i0, j0) ∈ K ×K, s.t. X∗
i0,j0 = 1, but Xi0,j0 ≤ 1

2
;

or ∃(i1, j1) /∈ K ×K, s.t. X∗
i1,j1 = 0, but Xi0,j0 >

1

2
;

1This should be contrasted with the positive result k ≤
√
n(2 + oP (1). In fact, this can be improved to

k ≤
√
n(1 + oP (1)) by choosing λ = o(1) in the proof of Theorem 6.2.
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As a consequence, we have ∥X∗ −X∥2F > 1/4. However, there is no contradiction to the optimality
gap yet, because when (i1, j1) is an edge, it might balance the loss of the objective value inside the
clique.

Next, we use the dual variables to assess the suboptimality. Recall the set of dual certificates
constructed in the proof of Theorem 6.2:

S ⪰ 0, s.t. Sξ = 0, B ≥ 0, η, λ ∈ R.

Under the assumptions of Theorem 6.2 we showed

λn−1(S) ≥ c2
√
n

for some c2 > 0 with high probability. Recall that if the first order conditions on the Lagrangian
multiplier are satisfied, the Lagrangian L(X,S,B, η, λ) = kη + k2λ does not depend on X. Deduce
that

⟨W,X∗ −X⟩ = ⟨S,X⟩+ ⟨B,X⟩.

Denote the optimality gap δ = ⟨W,X∗ −X⟩, which satisfies δ ≤ k(k − 1)ϵ, we have from the above
⟨S,X⟩ ≤ δ.

Let u = ξ/
√
k be the (unit) eigenvector of S corresponding to zero eigenvalue. We have

S ⪰ λn−1(S)
(
I− uu⊤

)
.

Therefore by positive semidefiniteness of X,

⟨S,X⟩ ≥ c2
√
n⟨X, I− 1

k
X∗⟩.

Together with the upper bound on ⟨S,X⟩ we have

⟨X, I− 1

k
X∗⟩ ≤ δ

c2
√
n

Tr(X)=k⇐=====⇒ ⟨X,X∗⟩ ≥ k2 − kδ

c2
√
n
.

We are now ready to obtain an upper bound on ∥X∗ −X∥2F :

∥X∗ −X∥2F = ∥X∗∥2F + ∥X∥2F − 2⟨X,X∗⟩.

The truth X∗ = ξξ⊤ is with Frobenius norm k2. Again thanks to X ⪰ 0,

∥X∥F ≤ ∥X∥∗ = Tr(X) = k.

Therefore

∥X∗ −X∥2F ≤ k2 + k2 − 2

(
k2 − kδ

c2
√
n

)
=

2kδ

c2
√
n
≤ 0.2

as long as δ < 0.1c2
√
n/k, which is satisfied if ϵ < 0.1c2

√
n/k3. We have arrived a contradiction

with ∥X∗ −X∥2F ≥ 1
4 .
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6.2.5 Robustness against monotone adversary

In this section we consider a semi-random model to address the robustness of the methods we
analyzed so far, following [FK00, FK01]. we show that the standard SDP relaxation of the hidden
clique problem, unlike previously discussed methods like the degree test or the spectral method, is
robust with respect to any monotone adversary. An adversary is a (possibly random) modification
on the observed data designed to derail certain estimators. A monotone adversary in the context of
the planted clique problem takes the observed adjacency matrix A ∼ G(n, 1/2, k) and it is allowed
to arbitrarily delete edges while leaving the clique intact.

An important observation is that although monotone adversary seems to be helpful as it only
makes the clique more pronounced, it can break the consistency of both the degree test and spectral
method.

• We proved in Section 2.3 that as long as the size of the clique is of order k ≍
√
n log n, the

degree test consistently recovers the location of the true clique K. To design a monotone
adversary that breaks the degree test, simply remove all edges between i ∈ K and j ∈ Kc.
The modified adjacency matrix takes the form

Ã ∼
[
1 0
0 G(n− k, 12)

]
.

After modification, the degree of vertex i for i ∈ K is k; while the degree of i for i /∈ K is
distributed Bin(n− k, 1/2). The degree test will obviously fail at picking out the location of
K.

• To break the spectral method, design the monotone adversary as follows:

Ã ∼

k-clique 0 0

0 G(n−k
2 , 12) 0

0 0 G(n−k
2 , 12)

 .
The top two eigenvectors of Ã would typically be aligned with the two blocks contained in Kc

(with λ1 ≈ λ2 ≈ n−k
4 ), and they are no longer informative about the hidden clique K.

Next we argue that X̂SDP is automatically robust against monotone adversary. Denote the
corresponding W after modification as W̃ . Then for all feasible X ̸= X∗, we have

⟨W̃ ,X⟩ ≤ ⟨W,X⟩ < ⟨W,X∗⟩ = ⟨W̃ ,X∗⟩.

where the strict inequality is because X∗ is the unique global maximizer of the original problem, and
the last equality is because the adversary kept the planted clique intact. In other words, whenever
X∗ is the maximizer under W , it remains the maximizer under W̃ .

6.3 Convexified MLE

Recall the lifted version of the MLE (6.4). The trace constraint Tr(X) = k is equivalent to∑
i λi(X) = k. By positive semideniteness of X all eigenvalues of X are nonnegative and are also

singular values. Therefore the nuclear norm ∥X∥∗ =
∑

i λi(X) = k.
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Following [CX16], the convexified MLE is obtained by relaxing the trace constraint in (6.4) to
an inequality constraint and dropping the rank-one constraint, hence making the feasible set convex.
Define

X̂convex = argmax
X

⟨W,X⟩

s.t. ∥X∥∗ ≤ k,

0 ≤ X ≤ J,

⟨X,J⟩ = k2. (6.11)

Remark 6.4 (Matrix norm revisited). We continue the discussion of matrix norms in Section 3.1.3.
Recall that the nuclear norm ∥X∥∗ is the ℓ1 norm of the singular values of X, which when X is
symmetric, equals the summation of the absolute values of the eigenvalues of X.

More generally the Schatten p-norm of a matrix X (denoted as ∥X∥Sp) is defined as the ℓp norm
of the singular values of X. For instance, we have

∥X∥S2 = ∥X∥F , the Frobenius norm of X;

∥X∥S∞ = σmax(X) = ∥X∥op, the operator norm of X;

∥X∥S1 = ∥X∥∗, the nuclear norm of X.

In general, the dual norm of a norm ∥ · ∥ is defined as

∥ · ∥∗ = max
y:∥y∥≤1

⟨·, y⟩ . (6.12)

The subscript ∗ here stands for the dual norm, not to be confused with the nuclear norm.
From duality between the usual ℓp vector norms, it is easy to derive that(

∥ · ∥Sp

)
∗ = ∥ · ∥Sq ,

where 1/p+ 1/q = 1. In particular, we have for that the nuclear norm is dual with the operator
norm. Hence for the nuclear norm of X,

∥X∥∗ = max
∥Y ∥op≤1

⟨X,Y ⟩ .

6.3.1 SDP formulation

The following proposition allows us to rewrite the program (6.11) as an SDP in the standard form:

Proposition 6.3. For a matrix X ∈ Rm×n, ∥X∥∗ ≤ 1 if and only if there exists W1 ∈ Rm×m,
W2 ∈ Rn×n, such that

Tr(W1) + Tr(W )2 ≤ 2, and (6.13)[
W1 X
X⊤ W2

]
⪰ 0.

Proof. (“if” part) the PSD assumption (6.13) implies that

[
u⊤, −v⊤

] [W1 X
X⊤ W2

] [
u
−v

]
≥ 0 ∀u, v.
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Choose u = ui to be the i’th left singular vector of X, and v = vi to be the i’th right singular vector
of X. We have

2u⊤i Xvi ≤ u⊤i Wiui + vTi W2Vi.

Note that the left-hand side is equal to twice the i’th singular value of X. Take summation of the
inequality above over 1 ≤ i ≤ r ≜ min{m,n} to deduce that

2∥X∥∗ ≤ ⟨W1,
∑

uiu
⊤
i ⟩+ ⟨W2,

∑
viv

⊤
i ⟩.

Note that W1 is positive semidefinite (simply take v = 0). Similarly we have W2 ⪰ 0. Combining
with the fact that

∑
uiu

⊤
i ⪯ I,

∑
viv

⊤
i ⪯ I, and ⟨A,B⟩ ≥ 0 when A,B ⪰ 0, we have that the

right-hand side of the display above is bounded by Tr(W1) + Tr(W2) ≤ 2.
(“only if” part) Suppose X = UΣV ⊤ is the singular value decomposition of X, where U ∈ Rm×r,

V ∈ Rn×r, and Σ is a r × r diagonal matrix with non-negative entries. Choose

W1 = UΣU⊤, W2 = V ΣV ⊤.

First check the trace condition:

Tr(W1) + Tr(W2) = 2Tr(Σ) = 2∥X∥∗ ≤ 2.

Next check the positive semidefinite condition. For all u ∈ Rm, v ∈ Rn, we have[
u⊤, −v⊤

] [W1 X
X⊤ W2

] [
u
−v

]
=
[
u⊤, −v⊤

] [UΣU⊤ UΣV ⊤

V ΣU⊤ V ΣV ⊤

] [
u
−v

]
=(U⊤u− V T v)TΣ(U⊤u− V T v) ≥ 0,

since Σ is a diagonal matrix with nonnegative diagonal entries.

6.3.2 Subgradient and norms

Suppose a function f : Rd → R is convex and differentiable. Then the gradient ∇f(x0) at each x0
defines an affine minorant:

f(x) ≥ f(x0) + ⟨∇f(x0), x− x0⟩, ∀x.

When f is not differentiable, we could work with the sub-gradients of f . A sub-gradient of f at x0
is defined as any element of

∂f(x0) =
{
u ∈ Rd : f(x) ≥ f(x0) + ⟨u, x− x0⟩ , ∀x

}
.

For example, ∂| · |(0) = [−1, 1]. Note that for smooth f , subgradient and gradient coincide, i.e.,
∂f(x0) = {∇f(x0)}.

Next we find the sub-gradient of the nuclear norm ∥ · ∥∗. Being the ℓ1 norm of the singular
values of X, it is not differentiable. In fact, it is easy to show that the subgradients of any norm are
precisely those vectors for which the duality (6.12) is tight:

Proposition 6.1 (Subgradient of norms). Let ∥ · ∥ and ∥ · ∥∗ be a pair of dual norms. Then

∂∥ · ∥∗(x0) =

{
{y : ⟨x0, y⟩ = ∥x0∥∗, ∥y∥ = 1} x0 ̸= 0

{y : ∥y∥ ≤ 1} x0 = 0
. (6.14)
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Proof. “⊃”: For any y in the RHS, and for any x, ∥x0∥∗ + ⟨y, x− x0⟩ = ⟨y, x⟩ ≤ ∥y∥∥x∥∗ ≤ ∥x∥∗.
“⊂”: Suppose ∥x∥∗ ≥ ∥x0∥∗ + ⟨y, x− x0⟩ for all x. Then

⟨y, x0⟩ − ∥x0∥∗ ≥ sup
x∈Rd

⟨y, x⟩ − ∥x∥∗
(6.12)
=

{
0 ∥y∥ ≤ 1

+∞ ∥y∥ > 1

This implies that, necessarily, ∥y∥ ≤ 1 and ⟨y, x0⟩ = ∥x0∥∗. If x0 ̸= 0, then this further means
∥y∥ = 1.

Specializing to the nuclear norm, we have the following (we only need ⊃ direction for analyzing
convexified MLE next):

Corollary 6.1. For any X ̸= 0, denote its SVD as X = UΣV ⊤. Then

∂∥ · ∥∗(X) = {UV ⊤ + P⊥(Y ) : ∥Y ∥op ≤ 1},

where P⊥(Y ) = (I − UU⊤)Y (I − V V ⊤) is the projection onto the orthogonal complement of the
linear subspace T = {UA⊤ +BV ⊤ : A ∈ Rn×r, B ∈ Rn×r}. Note the orthogonal complement of T
consists of matrices whose column span is orthogonal to that of X (i.e., span(U)) and whose row
span is orthogonal to that of X (i.e., span(V )).

Proof. Exercise.

6.3.3 Statistical guarantee: primal proof

Theorem 6.5. Assume that k ≥ C0
√
n for some constant C0. Whp, the unique solution to (6.11)

is given by = X∗.

Proof. We will show that whp, the objective function of any feasible X ̸= X∗ is inferior, i.e.,
⟨X,W ⟩ < ⟨X∗,W ⟩. To this end we will show that whp, for any feasible X,

⟨X∗ −X,W ⟩ ≳ ∥X −X∗∥ℓ1 (6.15)

As before, ξ = 1K∗ be the indicator vector of the hidden clique and u = 1√
k
ξ. Then X∗ = ξξ⊤,

which is almost the same as EW = X∗−diag(ξ). Let E = uu⊤ = 1
kX

∗ denote the projection matrix
onto span(ξ). As in Corollary 6.1, define the projection operator P⊥(Y ) = (I − E)Y (I − E) and
P (Y ) = Y − P⊥(Y ) = EY + Y E − EY E.

Write

⟨X∗ −X,W ⟩ = ⟨X∗ −X,X∗⟩︸ ︷︷ ︸
(a)

+ ⟨X∗ −X,P⊥(W −X∗)⟩︸ ︷︷ ︸
(b)

+ ⟨X∗ −X,P (W −X∗)⟩︸ ︷︷ ︸
(c)

.

Then

(a): This term dominates:

(a) =
∑

(i,j)∈K∗×K∗

(1−Xij) =
1

2
∥X −X∗∥ℓ1

where the last step is due to ⟨X−X∗,J⟩ = 0 (from feasibility) so that
∑

(i,j)∈K∗×K∗(1−Xij) =∑
(i,j)/∈K∗×K∗ Xij .
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(b): We find a subgradient of ∥·∥∗ at X∗. Note that X∗ is rank-one, so by Corollary 6.1, ∂∥·∥∗(X∗) =
{E + P⊥(Y ) : ∥Y ∥op ≤ 1}. Now,

0 ≥ ∥X∥∗ − ∥X∗∥∗ by feasibility

≥ ⟨X −X∗, E⟩︸ ︷︷ ︸
=− 1

2k
∥X−X∗∥ℓ1

+⟨X −X∗, P⊥(Y )⟩. by subgrad.

Taking Y = ± W−X∗

∥W−X∗∥op , we get

|(b)| ≤ ∥W −X∗∥op
2k

∥X −X∗∥ℓ1

(c): By duality, we have
|(c)| ≤ ∥P (W −X∗)∥ℓ∞∥X −X∗∥ℓ1 .

Combining (a), (b) and (c), we get

⟨X∗ −X,W ⟩ ≥
(
1

2
− ∥W −X∗∥op

2k
− ∥P (W −X∗)∥ℓ∞

)
∥X −X∗∥ℓ1 .

Here ∥W − X∗∥op ≤ ∥W − E[W ]∥op + ∥diag(ξ)∥op ≤ C
√
n + 1 for some constant C whp, by

Theorem 4.2. Since k = C0
√
n for some sufficiently large C0, it suffices to show that ∥P (W −

X∗)∥ℓ∞ = o(1) whp.
Note thatW−X∗ =W−E[W ]−diag(ξ) and P (diag(ξ)) = Ediag(ξ)+diag(ξ)E−Ediag(ξ)E = E

so
∥P (W −X∗)∥ℓ∞ ≤ ∥P (W − E[W ])∥ℓ∞ + ∥P (diag(ξ)∥ℓ∞︸ ︷︷ ︸

1/k

Next, for any Y , P (Y ) = EY + Y E − EY E, where ∥EY E∥ℓ∞ ≤ ∥EY ∥ℓ∞∥E∥ℓ∞→ℓ∞ ≤ ∥EY ∥ℓ∞ .
Thus

∥P (Y )∥ℓ∞ ≤ 3∥EY ∥ℓ∞ ,

where we used the fact that for any symmetric Y (e.g. W − E[W ]) whose support is disjoint from
that of E,

∥EY ∥ℓ∞ = ∥Y E∥ℓ∞ =
1

k
max
i/∈K∗

∑
j∈K∗

Yij .

Furthermore, for each i, P
[
|
∑

j∈K∗(Wij − EWij)| ≥
√
kt
]
≤ exp(−ct2), by Hoeffding’s inequality

(Lemma 2.2). Therefore whp, ∥P (W − E[W ])∥ℓ∞ ≤ 3∥E(W − E[W ])∥ℓ∞ ≤
√

C logn
k , and we are

done.

Exercise: Give a dual-based proof of Theorem 6.5 by identifying the appropriate dual certificates.
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Part II

Planted partition model
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§ 7. Detection threshold for SBM

7.1 Planted partition model and overview

In the second part of the course, we will study the problem of community detection in a broad
sense. Consider the following abstract planted partition model, where a matrix A = (Aij)1≤i<j≤n is
observed whose distribution depends on the latent labels σ = (σ1, . . . , σn) ∈ {±1}n, such that

Aij ∼

{
P σi = σj

Q σi ̸= σj
. (7.1)

Given A, the goal is to recover the labels σ accurately.
Two prominent special cases are the following:

Stochastic block model (SBM) Here P = Bern(p) and Q = Bern(q). In this case the set of
vertices [n] is partitioned into two communities V+ = {i : σi = +1} and V− = {i : σi = −1}, and
A is the adjacency matrix of a random graph, such that two nodes i and j are connected with
probability p if they belong to the same community, and with probability q if otherwise. The case
of p > q is referred to as “assortative”, such as friendship networks, and p < q as “disassortative”,
such as predator-prey networks.

The community structure is determined by the vector σ, which, depending on the problem
formulation, could either be fixed or random. We will frequently consider special cases:

• iid model: Each σi is equally likely to be ± (Rademacher) and independently.

• exact bisection: |V+| = |V−| = n/2 (when n is even) and the partition is chosen uniformly at
random from all bisections.

Typically these two models behave very similarly.

Spiked Wigner model (Rank-one deformation) Here P = N(
√

λ
n , 1) and Q = N(−

√
λ
n , 1).

In matrix notation,

A =

√
λ

n
σσ⊤ + Z, (7.2)

where Z is such that {Zij : 1 ≤ i < j ≤ n} are iid N(0, 1). Therefore A can be viewed is a rank-one
perturbation of a Gaussian Wigner matrix.

As opposed to the treatment of the planted clique problem in Part I, we will be focusing on

• Sharp threshold, i.e., finding the exact constant in the fundamental limit (and achieving them
with fast algorithms).
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• “Sparse” graphs, where the edge density tends to zero (at different speed), unlike the hidden
clique model G(n, 12 , k)

We will focus on the following three formulations (recovery guarantees):

Detection Here there is a null model. For example,

• For spiked Wigner model, the null hypothesis is A is iid Gaussian. The sharp threshold is
given by λ = 1, in the sense that for any fixed ϵ, it is possible to test the hypotheses with
vanishing error probability if λ ≥ 1 + ϵ, and impossible if λ ≤ 1− ϵ.

• For SBM with bisection, we want to test against the null hypothesis of no community structure,
that is, an Erdős-Rényi graph G(n, p+q

2 ) with the same average degree. The most interesting

regime is bounded average degree p = a
n , q =

b
n for constants a, b, and the sharp threshold is

given by (a−b)2

2(a+b) = 1.

Correlated (weak) recovery Here and below, there is no null model. The goal is to recover the
community structure (labels) strictly better than random guessing. Let σ̂ = σ̂(A) be the estimator.
Its overlap with the true labels σ is |⟨σ̂, σ⟩| and the number of misclassification errors (up to a
global sign flip) is expressed as

ℓ(σ, σ̂) = min
s∈{±1}

∥σ̂ − sσ∥1 = n− |⟨σ̂, σ⟩| .

In the iid setting, random guessing would yield, by CLT, |⟨σ̂, σ⟩| = OP (
√
n) and E[|⟨σ̂, σ⟩|] = o(n).

The goal of weak recovery is to achieve a positive correlation, namely

E[|⟨σ̂, σ⟩|] = Ω(n).

Although in general detection and correlated recovery are two different problems, for both SBM and
spiked Wigner the thresholds coincide. In fact, for certain models one can have a generic reduction
between the problems (e.g. spiked Wigner, see Homework).

(Almost) exact recovery Almost exact recovery means achieving a vanishing misclassification
rate: Eℓ(σ, σ̂) = o(n). Typically the sharp threshold is expressed in terms of Hellinger distance as

H2(P,Q) ≫ 1
n , where H

2(P,Q) ≜ EQ

[(√
P/Q− 1

)2]
=
∫
(
√
P −

√
Q)2.

Exact recovery means ℓ(σ, σ̂) = 0 with probability tending to 1. Typically the sharp threshold is

given by H2(P,Q) = (2+ϵ) logn
n .

A more statistical flavored question is to characterize the optimal (in the sense of minimax)

misclassification rate 1
nℓ(σ, σ̂), which typically behaves as exp(−H2(P,Q)

2 ).

7.2 Detection threshold for SBM

It will be useful to recall the basics on hypothesis testing and the relevant information measures
from Appendix A. Here, we want to test the hypothesis

H0 : G ∼ G

(
n,
p+ q

2

)
vs. H1 : G ∼ SBM(n, p, q).
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Under the SBM model, we assume the the labels σ = (σ1, . . . , σn) are either iid Rad(12), or drawn
uniformly at random from all bisections. The detection problem is non-trivial in the regime of
bounded average degree:

p =
a

n
, q =

b

n
, (7.3)

where a, b are constants.

Theorem 7.1. If (a−b)2

2(a+b) > 1, detection is possible, in the sense of total variation distance that

TV(Law(G|H0),Law(G|H1)) → 1. (7.4)

Conversely, if (a−b)2

2(a+b) ≤ 1, detection is impossible, in the sense that

TV(Law(G|H0),Law(G|H1)) ≤ 1− Ω(1). (7.5)

We start with the impossibility part. For non-detection it is enough to show

χ2(Law(G|H0)||Law(G|H1)) = O(1). (7.6)

The calculation for SBM can be carried out in the general setting of (7.1), where P and Q
denote the weight distribution for edges within and without communities. For each label σ ∈ {±1}n,
the distribution of the adjacency matrix is

Pσ = Law(A|σ) =
∏
i<j

(P1{σi=σj} +Q1{σi ̸=σj}) =
∏
i<j

(
P +Q

2
+
P −Q

2
σiσj

)
. (7.7)

Let P1 denote the marginal distribution of A, namely, Pσ averaged over the random labels σ:

P1 =
∑
σ

P (σ) · Pσ

where P (σ) denotes the PMF of σ. We aim to show P1 is not perfectly distinguishable from the null

distribution P0 ≡
∏

i<j
(P+Q)

2 . To this end, we bound their χ2-divergence by applying Lemma A.3.
Fix two assignment σ, σ̃ ∈ {±1}n. Then

G(σ, σ̃) ≡
∫
PσPσ̃

P0

=

∫ ∏
i<j

(
P+Q
2 + P−Q

2 σiσj

)(
P+Q
2 + P−Q

2 σ̃iσ̃j

)
P+Q
2

=
∏
i<j


∫
P +Q

2︸ ︷︷ ︸
=1

+

∫
P −Q

2︸ ︷︷ ︸
=0

σiσj +

∫
P −Q

2︸ ︷︷ ︸
=0

σ̃iσ̃j +

∫
(P −Q)2

2(P +Q)︸ ︷︷ ︸
≜ρ

σiσj σ̃iσ̃j


=
∏
i<j

(1 + ρσiσj σ̃iσ̃j)

≤ exp

ρ∑
i<j

σiσj σ̃iσ̃j

 ≤ exp
(ρ
2
⟨σ, σ̃⟩2

)
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Thus, by Lemma A.3, we have

χ2(P1∥P0) + 1 ≤ Eσ,σ̃

[
exp

(ρ
2
⟨σ, σ̃⟩2

)]
,

where σ̃ is an iid copy (“replica”) of σ.
For SBM(n, p, q), we have P = Bern(p) and Q = Bern(q). Under the scaling (7.3), we have

ρ =
(p− q)2

2(p+ q)
+

((1− p)− (1− q))2

2(1− p+ 1− q)
=
τ + o(1)

n
, τ ≜

(a− b)2

2(a+ b)
.

Next we consider two situations:

Independent labels: σ, σ̃
iid∼ {±1}n. By CLT, 1√

n
⟨σ, σ̃⟩ = 1√

n

∑n
i=1 σiσ̃i

D−→Z ∼ N(0, 1). Assum-

ing convergence of MGF (see Lemma 7.1 next) and invoking the MGF of χ2(1) distribution, we
have

χ2(P1∥P0) + 1 = E exp

(
τ + o(1)

2n
⟨σ, σ̃⟩2

)
→ E

(τ
2
Z2
)

=

{
∞ if τ ≥ 1

1√
1−τ

if τ < 1.
(7.8)

Exact bisection: Let us consider the case where σ, σ̃ are drawn iid and uniformly at random
from the set {θ ∈ {±1}n :

∑
θi = 0}. For simplicity, write

σ = 2ξ − 1, σ̃ = 2ξ̃ − 1,

Then both ξ, ξ̃ are iid uniform random n
2 -sparse binary vectors, and ⟨σ, σ̃⟩ = 4⟨ξ, ξ̃⟩ − n. Therefore,

⟨ξ, ξ̃⟩ ∼ Hypergeometric(n,
n

2
,
n

2
),

which means (check!)1

⟨ξ, ξ̃⟩ − n
4√

n
16

D−→Z ∼ N(0, 1).

Thus the dichotomy (7.8) applies to bisection as well.
To pass from weak convergence to convergence of the MGF, the following lemma is useful:

Lemma 7.1 (Convergence of MGF). Assume that Xn
D−→X. Let Mn(t) = E exp(tXn) and M(t) =

E exp(tX). If there exists some constant α > 0 such that

sup
n
P (|Xn| > x) ≤ exp(−αx)

for all x > 0, then Mn(t) →M(t) for all |t| < α.

Remark 7.1. • The critical case of (a−b)2

2(a+b) = 1 also implies non-detection. Proving this is

outside the scope of this section as the χ2 truly blows up.

• The threshold of the spiked Wigner model (7.2) is given by λ = 1. This can be proved by the
same second moment method (homework).

1Note that the variance of Hypergeometric(n, n
2
, n
2
) is exactly half of its counterpart Binom(n

2
, 1
2
). Why? Think

about sampling with and without replacements. See, e.g., [Fel70, p. 194]) for the central limit theorem for hypergeo-
metric distributions.
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7.3 Test by counting cycles

Below we describe a test for

H0 : G ∼ G(n,
p+ q

2
) vs. H1 : G ∼ SBM(n, p, q).

that achieves the sharp threshold in Theorem 7.1, following [MNS15]. We will consider the labels
being iid Rad(12). Note that the average vertex degree is matched under H0 and H1. The test is
based on counting “short” cycles – by short we mean much shorter than the longest cycle, but the
length still need to be slowly growing with n. As there is no generic polynomial-time algorithm
for counting k-cycles for growing k, in the next section we make it polynomial-time relying on the
randomness of the graph.

Consider the number of k-cycles (not induced cycles) as the test statistic, denoted by Xk. As a
warmup, consider the behavior of Xk in G(n, dn). Then by union bound,

P(Xk > 0) ≤ E[Xk] =

(
n

k

)
k!

1

2k

(
d

n

)k

≤ dk,

where the overcounting factor 2k is the number of symmetries (automorphisms) of Ck, namely, cyclic
shift and flip. Thus there are no cycles of growing length if d < 1. Of course, this first-moment
calculation does not tell us about the existence of k-cycles. Nevertheless, it is known that if d ≥ 1,
the longest cycle is of length Ω(n) [Bol01, Chap. 8].

Now let us get back to the original problem of testing G(n, a+b
2n ) versus SBM(n, an ,

b
n) in Theo-

rem 7.1. Assume that a > b. Define

s =
a− b

2
, d =

a+ b

2
.

Then the condition (a−b)2

2(a+b) > 1 is the same as s2 > d. Since d > s, this implies that s > 1 and a > 2.

Intuition: For k not too big (we will see that k = o(log n/ log logn) is OK), Xk has a Poisson
limit under both model with different parameters:

Under H0: Xk
D−→Poi

(
dk

2k

)
Under H1: Xk

D−→Poi

(
dk + sk

2k

)
.

This suggests that we can distinguish the two hypothesis using Xk as a test statistic. Specifically,

consider the test 1
{
Xk ≤ dk+sk/2

2k

}
. We can simply use Chebyshev’s inequality to bound the Type-I

and Type-II errors. As such, it suffices to compute the mean and variance of Xk under H0 and H1.
We will show that

Under H0: EXk = (1 + o(1))
dk

2k
, VarXk = (1 + o(1))

dk

2k
,

Under H1: EXk = (1 + o(1))
dk + sk

2k
, VarXk = (1 + o(1))

dk + sk

2k
.

Under the condition s2 > d, we have

E1[Xk]− E0[Xk] ≫
√

Var0(Xk) + Var1(Xk),

provided that k = ω(1). Hence, it follows from the Chebyshev’s inequality that, for the test

1

{
Xk ≤ dk+sk/2

2k

}
, the sum of Type-I and Type-II errors is o(1).
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7.3.1 First moment calculation

Under H0. First we note that

Xk =
1

2k

∑
v1,...,vk;

all ordered k-tuple
from V (G)

1{v1∼v2,v2∼v3,...,vk∼v1},

which implies

EXk =
1

2k

(
n

k

)
k!︸ ︷︷ ︸

≜[n]k

P{v1 ∼ v2, v2 ∼ v3, . . . , vk ∼ v1}︸ ︷︷ ︸
=( d

n
)
k

≈ 1 + o(1)

2k
dk (7.9)

under H0, where the last equality holds provided k = o(
√
n) (Why? Think about birthday problem).

Under H1. We just need to recompute the probability in (7.9), which now depends on the labels
of the vertices. Consider the adjacency matrix A. Then given any two vertices vi, vi+1, we have

Avi,vi+1 ∼

{
Bern(p) if σi = σi+1

Bern(q) if σi ̸= σi+1.

Given any k-tuple {v1, v2, . . . , vk} of vertices, suppose N denotes the number of disagreements of
adjacent labels, given by

N =

k∑
i=1

1{σ(vi )̸=σ(vi+1)}

with k + 1 understood as 1 circularly. Write

N =
k−1∑
i=1

1{σ(vi )̸=σ(vi+1)}︸ ︷︷ ︸
≜T

+1{σ(vk) ̸=σ(v1)}︸ ︷︷ ︸
≜S

.

Then we have T ∼ Binom(k − 1, 12) and

S =

{
0 T is even

1 T is odd

is a parity bit, so that N = S + T is always even.
It is clear that conditioned on N = m, the probability of v1, . . . , vk forming a cycle is qmpk−m.

Note that

P(N = m) =

{
0 m odd

P(Binom(k − 1, 12) = m− 1 or m) =
(
k
m

)
2−k+1 m even

.
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Thus

P(v1 ∼ v2, v2 ∼ v3, . . . , vk ∼ v1) =
k∑

m=0

qmpk−m · P(N = m)

=
k∑

m=0
m even

qmpk−m

(
k

m

)
2−k+1

=
k∑

m=0

(−q)mpk−m + qmpk−m

2

(
k

m

)
2−k+1

=

(
p+ q

2

)k

+

(
p− q

2

)k

= n−k(sk + dk).

Thus, under H1,

E(Xk) =
[n]k
2k

{(
p+ q

2

)k

+

(
p− q

2

)k
}

k=o(
√
n)

=
1 + o(1)

2k

(
sk + dk

)
.

7.3.2 Second moment calculation

We only consider the variance under the null model, as the computation under the planted model
is similar. Given an ordered k-tuple of vertices (viewed as a k-cycle in the complete graph)
T = (v1, . . . , vk), define bT = 1 {v1 ∼ v2, · · · , vk ∼ v1}. Then under H0, we have

Var(Xk) =
1

4k2

∑
T,T ′

Cov(bT , bT ′) =
1

4k2

 ∑
T,T ′:T=T ′

Var(bT )︸ ︷︷ ︸
≤E[bT ]=(d/n)k

+
∑
T ̸=T ′

T∩T ′ ̸=∅

Cov(bT , b
′
T )

 ,

where T = T ′ means they form the same k-cycle in the complete graph, and the last equality holds
because if T ∩ T ′ = ∅ (no common edge), then Cov(bT , b

′
T ) = 0.

Consider two distinct k-cycles T and T ′ that are overlapping. Let

ℓ = number of common edges, v = number of common vertices.

Note that

• Cov(bT , bT ′) ≤ E[bT bT ′ ] = p2k−ℓ.

• Crucially,
v ≥ ℓ+ 1.

This is because the intersection of two cycles is a forest (each connected component is a path),
so that v = ℓ+ cc ≥ ℓ+ 1, where cc denotes the number of connected components of T ∩ T ′.

• Given v, the number of such pairs of (T, T ′) is at most [n]k
(
k
v

)(
n−k
k−v

)
k! = [n]2k−v[k]v

(
k
v

)
. To see

this, note that there are at most [n]k different choices of T . Also, given T , there are
(
k
v

)(
n−k
k−v

)
different choices of the vertex set of T ′. Finally, k! counts all the possible orderings of vertices
in T ′.
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Combining these, we get

∑
T ̸=T ′

T∩T ′ ̸=∅

Cov(bT , b
′
T ) ≤

k−1∑
ℓ=1

∑
v≥ℓ+1

[n]2k−v[k]v

(
k

v

)(
d

n

)2k−ℓ

≤
k−1∑
ℓ=1

∑
v≥ℓ+1

n2k−ℓ−1kk
(
k

v

)(
d

n

)2k−ℓ

≤ 1

n
kk+12kd2k

= o(1), provided that k = o(log n/ log log n),

where the third inequality applies
∑

v≥ℓ+1

(
k
v

)
≤ 2k. So we get

Var(Xk) =
1

4k2

∑
T,T ′:T=T ′

Var(bT ) + o(1)

=
1

4k2

∑
T,T ′:T=T ′

(
E [bT ]− E [bT ]

2
)
+ o(1)

=
1

4k2
[n]k × 2k ×

(
d

n

)k
(
1−

(
d

n

)k
)

+ o(1)

=
1 + o(1)

2k
dk.

Remark 7.2. In fact, under H0, we can show that for any fixed integer m ≥ 1,

E [[Xk]m] = E [Xk(Xk − 1) · · · (Xk −m+ 1)] = (1 + o(1))

(
dk

2k

)m

.

It follows from the method of moments (quoted below) that Xk
D−→Poi

(
dk

2k

)
.

Lemma 7.2 (Method of moments). Let Xn be a sequence of random variables. Suppose there exists

λ > 0 such that for every fixed m ≥ 1, E [[Xn]m] → λm as n→ ∞. Then Xn
D−→Poi(λ).

7.4 Approximately counting cycles in polynomial time

A caveat: The naive way of counting (exhaustive search) k-cycles takes nk time, which is not
polynomial in n if k → ∞. From the previous analysis, we see that we need to count k-cycles with
slowly growing k.

Fix: The trick is to use the sparsity of the random graph and approximately count the number
of k-cycles.

Definition 7.1 (ℓ-tangle free). An ℓ-tangle is a connected subgraph of diameter at most 2ℓ that
contains at least two cycles.

A graph G is called ℓ-tangle free if no subgraph of G is an ℓ-tangle. In other words, for all
v ∈ V (G), its ℓ-hop neighborhood Nℓ(v) contains at most one cycle.

Lemma 7.3. If G ∼ G(n, dn) and d is a constant, then G is ℓ-tangle free if ℓ = o(log n) (In general
ℓ log d = c log n for small constant c suffices).
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Proof. Suppose G contains an ℓ-tangle. Then G must contain a subgraph H of the following form

with m edges and v vertices, such that m ≤ 4ℓ and m ≥ v + 1. Note that m = 4ℓ happens when H
consists of two 2ℓ-cycles sharing a common vertex.

There are O(ℓ3) such graphs H up to isomorphism (i.e., unlabelled graphs), as there are O(ℓ)
choices for the length of each cycle and the connecting path. Also, given a unlabelled graph H,
there are at most nv different vertex labelings, as each vertex in H can have at most n different
labels.

Then by union bound, we get that

P [G contains an ℓ-tangle ] = P [∃H of the above form and H is a subgraph of G ]

≤ O(ℓ3)× nv
(
d

n

)m

≤ O(ℓ3)× nm−1

(
d

n

)m

≤ O(ℓ3)
d4ℓ

n
= o(1),

where the last equality holds as long as ℓ log d≪ log n.

Next we discuss the connection between counting and linear algebra. Let’s start with triangles
(k = 3):

Example 7.1 (Counting triangles). Suppose that A is the adjacency matrix of G. Given any vertex
v in G,

(A3)vv =
∑
a,b

AvaAabAbv

is in fact twice the number of triangles incident to v. Therefore, Tr(A3) = 6× the number of triangles
in G.

To count k-cycles one can consider computing Tr(Ak), which can be done in the time of eigenvalue
decomposition. But

Tr(Ak) = number of closed walks of length k ≫ number of k-cycles .

The strategy next is use the tangle-free structure and count the number of non-backtracking (NB)
walks (vertices and edges may repeat).

Definition 7.2 (Non-backtracking walk). We say

• (v1, v2, . . . , vk) is a NB walk if vt ∼ vt+1 and vt ̸= vt−2 for all t.

• (v1, v2, . . . , vk) is a closed NB walk if vt ∼ vt+1 and vt ̸= vt−2 for all t and v1 = vk.

For example,
Consequences: Conditioned on G being 2k-tangle free, any closed NB walk of k steps is either

a k-cycle, or an m cycle traversed (in the same direction) for k
m times. Otherwise, we have a

2k-tangle such as two short cycles sharing a vertex (see Fig. 7.1 above). This reduces the problem
of counting k-cycles to counting the number of closed NB walks of length m, for all m = 1, . . . , k.
Specifically, let Nm

uv be the number of NB walks from u to v of length m. Let

nm ≜
∑

v∈V (G)

Nm
vv
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Figure 7.1: Examples of backtracking and non-backtracking walks.

denote the number of closed NB walks of length k. Recall that Xk denote the number of k-cycles.
Then

2kXk = nk −
∑

m:m divides k

2mXm

6X3 = n3.

It remains to compute nk, which further reduces to computing Nm
uv for all pairs u, v. It turns

out Nm
uv can be counted recursively and given by the following three-term recursion:

Nm+1
uv =

∑
w∼v

Nm
uw − (dv − 1)Nm−1

uv . (7.10)

In matrix notation: let N (m) = (Nm
uv) and D = diag(dv). Then we have2{

N (m+1) = N (m) ·A−N (m−1)(D − I),

N (1) = A, N (2) = A2 −D
(7.11)

which means we can compute all Nm
uv’s using matrix multiplication.

Finally, to justify (7.10), simply notice that the first term on the RHS counts all NB walks of
length m from u to a neighbor w of v, which, followed by another step from w to v, constitute
a walk of length m + 1 from u to v. But, it can be backtracking. So we need to subtract those
backtracking walks out, which are precisely given by the second term: fix any NB walk from u to v
of length m− 1, say, u, . . . , v′, v, where v′ ∈ N(v). Append this walk by w ∈ N(v)\{v′} constitutes
a NB walk from u to w in m steps.

2In the special case of d-regular graphs, (7.11) becomes N (m+1) = N (m) ·A− (d− 1)N (m−1). This means N (m) is
a polynomial of A, in fact, the Chebyshev polynomial, which satisfies the same three-term recurrence. See [ABLS07]
for more.
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§ 8. Correlated recovery

Recall the stochastic block model

G ∼ SBM(n, p, q)

σ = (σ1, . . . , σn) ∈ {±1}n

P[i ∼ j] =

{
p if σi = σj

q if σi ̸= σj .

Goal: As described in Section 7.1, an estimator σ̂ = σ̂(G) achieves correlated recovery if the overlap
is strictly better than random guessing, that is,

E [|⟨σ̂, σ⟩|] = Ω(n) ⇔ E
[
min
s∈±1

∥σ̂ − sσ∥1
]
≤ (1− Ω(1))n.

8.1 Impossibility

We start with an information theoretic characterization of correlated recovery:

Theorem 8.1 (Mutual information characterization). Correlated recovery is possible ⇔ I(σ1, σ2;G) =
Ω(1) as n→ ∞.

Remark 8.1 (Mutual information and probability of error). Note that for all x1, x2 ∈ {±},

Law(G|σ1 = x1, σ2 = x2) = Law(G|σ1 = −x1, σ2 = −x2)

This means the product σ1σ2 is a sufficient statistic of the pair (σ1, σ2) for G and hence

I(σ1, σ2;G) = I(σ1σ2;G).

The condition I(σ1σ2;G) = Ω(1) means that G offers some nontrivial information so that one can
decide whether a (or any) pair of vertices have the same label better than chance. This can be
quantified as follows.

Aside: mutual information vs probability of error. Suppose we have two random variables X ∼
Rad(12) and Y . Then

min
X̂(·)

P(X ̸= X̂(Y )) =
1

2
[1− TV(P+, P−)]. (8.1)

where

P+ ≜ L(Y |X = +)

P− ≜ L(Y |X = −).
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So no better than random guess ⇔ TV(P+, P−) = o(1). We further claim this is equivalent to
I(X;Y ) = o(1).

Indeed,

I(X;Y ) = EX

[
D(PY |X∥PY

]
)

=
1

2

[
D(P+∥P̄ ) +D(P−∥P̄ )

]
P̄ =

P+ + P−
2

Pinsker
≥ TV2(P+, P̄ ) + TV2(P−, P̄ )

=
1

2
TV2(P+, P−).

On the other hand, from the inequality D ≤ χ2 we get

I(X;Y ) ≤ 1

2

[
χ2(P+∥P̄ ) + χ2(P−∥P̄ )

]
=

1

2

[∫
(P+ − P̄ )2

P̄
+

∫
(P− − P̄ )2

2

]
=

∫
(P− − P+)

2

2(P+ + P−)
≤ 1

2

∫
|P+ − P−| = TV(P+, P−).

.

Remark 8.2. Mutual information characterization in Theorem 8.1 holds under much more general
conditions, e.g., k-community SBM. See [WX18, Appendix A].

Proof of Theorem 8.1.
(“⇐”) Suppose that I(σ1, σ2;G) ≥ ϵ. Then by symmetry I(σi, σj ;G) ≥ ϵ for all i ̸= j. Therefore,

by Remark 8.1 and (8.1), for all i ̸= j, ∃T̂ij = T̂ij(G), such that

P{T̂ij = σiσj︸︷︷︸
Tij

} ≥ 1

2
+ δ.

for some δ = δ(ϵ). Then we can define an estimator of the labels σ̂ = (σ̂1, . . . , σ̂n) by

σ̂1 = +1, σ̂i = T̂1i, i = 2, . . . , n.

Then the expected number of correctly classified nodes is

max
s∈{±1}

∑
i∈[n]

P [σi = sσ̂i] =
∑
i∈[n]

P
[
T1i = T̂1i

]
≥ (1/2 + δ)n.

(“⇒”) Suppose I(σi, σj ;G) = o(1). Then ∀T̂ij , P[T̂ij = σiσj ] = 1
2 + o(1). This means given

σ̂ = (σ̂1, . . . , σ̂n), we have

2n2 − E|⟨σ, σ̂⟩|2 = E∥σσ⊤ − σ̂σ̂T ∥2F
= 4 ·

∑
i ̸=j

P(σiσj ̸= σ̂iσ̂j)

= 2n2 − o(n2),

which means E|⟨σ̂, σ⟩|2 = o(n2). It follows that E [|⟨σ, σ̂⟩|] = o(n).
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Next we show that

τ =
(a− b)2

2(a+ b)
< 1 =⇒ I(σ1, σ2;G) = o(1) =⇒ Correlation recovery impossible.

First note the following variational representation of total variation:

TV(P+, P−) =
1

2
inf
Q

√∫
(P+ − P−)2

Q
. (8.2)

Proof. By C-S,
∫ (P+−P−)2

Q =
∫
(P+−P−√

Q
)2
∫
(
√
Q)2 ≥ (

∫
|P+ − P−|)2 = 4TV2, with equality if

Q = |P+ − P−|/
∫
|P+ − P−|.

To apply this variational representation, take Q = Law of G(n, dn). To show I(σ1σ2;G) = o(1),

it suffices to show
∫ (P+−P−)2

Q = o(1). This is a second-moment calculation similar to what we did in
Lecture 7 for detection. The difference is that here there is no null model and we have to compute
the exact asymptotic instead of just an upper bound. Write∫

(P+ − P−)
2

Q
=

∫
P 2
+

Q
+

∫
P 2
−
Q

− 2

∫
P+P−
Q

.

Next we show that ∫
PzPz̃

Q
= C(τ) + o(1),∀z, z̃ ∈ {±1},

where C(τ) is some constant independent of z and z̃. Consider the case of iid labels, where

σi
i.i.d.∼ Rad(1/2). By the same argument in Section 7.2, we have∫

PzPz̃

Q
=

∫
Eσ [Pσ | σ1σ2 = z]Eσ̃ [Pσ̃ | σ̃1σ̃2 = z̃]

Q

Fubini
= Eσ⊥σ̃

[∫
PσPσ̃

Q
| σ1σ2 = z, σ̃1σ̃2 = z̃

]

= Eσ⊥σ̃

∏
i<j

(1 + ρσiσj σ̃iσ̃j) | σ1σ2 = z, σ̃1σ̃2 = z̃


= Eσ⊥σ̃

[
e
∑

i<j log(1+ρσiσj σ̃iσ̃j) | σ1σ2 = z, σ̃1σ̃2 = z̃
]

= Eσ⊥σ̃

[
e

∑
i<j

(
ρσiσj σ̃iσ̃j− ρ2

2
(σiσj σ̃iσ̃j)

2+O(ρ3)

)
| σ1σ2 = z, σ̃1σ̃2 = z̃

]

= e−
ρn
2
− ρ2

2 (
n
2)+O(ρ3n2)Eσ⊥σ̃

[
e

1
2
ρ⟨σ,σ̃⟩2 | σ1σ2 = z, σ̃1σ̃2 = z̃

]

(b)
= e−

τ
2
− τ2

4
+o(1)Eσ⊥σ̃

exp
(
τ + o(1)

2

1

n
⟨σ, σ̃⟩2︸ ︷︷ ︸
N(0,1)2

)
| σ1σ2 = z, σ̃1σ̃2 = z̃


(c)
= (1 + o(1)) e−

τ
2
− τ2

4
1√
1− τ

≜ C(τ) + o(1),

64



where (b) follows from ρ = τ
n + (a−b)2

4n2 +O(1/n3); (c) follows from CLT almost the same as before:
1√
n
⟨σ, σ̃⟩ = 1√

n

∑n
j=3 σj σ̃j +

1√
n
(σ1σ̃1 + σ2σ̃2), where the first term is asymptotically N(0, 1) and

independent of (σ1, σ2, σ̃1, σ̃2), and the second term is negligible.
More generally,

• For exact bisection the same statement holds true, except that one should be more careful
with the conditioning.

• For the spiked Wigner model (7.2), the same calculation shows that λ < 1 =⇒ correlated
recovery is impossible.

• In fact, for the spiked Wigner model, one can directly prove (by a sample splitting reduction)
that impossibility of detection =⇒ impossibility of correlated recovery (Homework).

8.2 Correlated recovery via spectral methods: first attempt

Next we explain how to achieve the sharp threshold of correlated recovery via suitable versions of
spectral methods. We only provide the main ideas and some proof sketch.

Spiked Wigner model: Let’s rewrite (7.2) as follows:

W =
µ

n
σσ⊤ + Z.

where the entries of Z is N(0, 1n), so that its eigenvalues are between [−2, 2] with high probability.
Consider the following spectral method for estimation σ: take the top eigenvector û = u1(W ) of

the matrix W corresponding to the largest eigenvalue λ1, and report sign(u1) as the estimate σ̂.
Let u = 1√

n
σ. This method succeeds in correlated recovery if and only (why?) if |⟨u, û⟩| is bounded

away from 0.
The well-known BBP phase transition [BBAP05] states that

λ1(W )
a.s.→

{
µ+ 1

µ if µ > 1

2 if µ ≤ 1,

and correspondingly, û is correlated with u if and only if λ1(W ) escapes the bulk of the spectrum,
namely,

|⟨u, û⟩| a.s.→

{
1− 1

µ2 if µ > 1

0 if µ ≤ 1,

SBM(n, p, q) model: Suppose that the adjacency matrix of the graph G is given by A. Mimicking
the above Gaussian result, the ”wishful thinking” on our part is to view

A = EA+A− EA

where

EA =
p q

q p
= p+q

2 × 1 +p−q
2 × + -

- +
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except for the zero diagonal, and Var(Aij − EAij) =
a+o(1)

n or b+o(1)
n . It follows that

∑
j Var(Aij −

EAij) =
d+o(1)

n , with d = (a+ b)/2. The first eigenvector of EA is uninformative, and the second
is exactly the label. So we can consider taking the signs of the second eigenvector of A. If we
pretend the entries of the perturbation A−EA are iid N(0, dn), then making analogy to the Gaussian

result shows that the sharp thresholding is given by s = a−b
2 >

√
d, which is the exactly the sharp

threshold we want to show.
However, applying spectral method to A itself does not work, as sparse graphs are plagued by

high degree vertices. Indeed, for G(n, dn) with constant d, it is known [KS03]

λ1(A) = ∥A∥ =
√
dmax(1 + o(1)), dmax = Θ

(
log n

log logn

)
. (8.3)

In fact, not only the top eigenvalue, λi(A) = λ1(1− o(1)) for an unbounded many of i [KS03, Sec. 4].

Suppose that di = dmax, ei is the i-th coordinate vector. Then ∥A∥ ≥ ∥Aei∥
∥ei∥ =

√
dmax. As the matrix

has all non-negative entries, by Perron Frobenius theorem we can say that ∥A∥ = λ1(A), which
concludes the proof.

To see the effect of high-degree vertices, let’s look at power iteration: say di = dmax. Then

(A2k)ii =
∑

i2,...,i2k

Aii2Ai2i3 · · ·Ai2ki (8.4)

= number of closed walks from i to i of length 2k

≥ dkmax,

where the last inequality follows by restricting to those backtracking paths that goes from i to one
of its neighbors and immediately goes back. Thus

∥A∥2k ≥ ∥Akei∥22 = e⊤i A
2kei ≥ dkmax.

Thus λ1(A) = ∥A∥ ≥
√
dmax, where the first inequality follows from Perron-Frobenius theorem

applied to the nonnegative matrix A. The other side can be shown by arguing that most of
the contribution in the moment calculation comes from those backtracking paths. Thus the top
eigenvalue λ1(A) is not bounded. In fact, correspondingly, the limiting spectral distribution of the
bulk has unbounded support.

The fact that dmax is unbounded even when the average degree d is bounded is because of the
following: for each v,

dv ∼ Binom(n,
d

n
) ≈ Poi(d)

Pretending they are independent, the maximum of n iid Poisson is given by the 1
n -quantile, namely,

e−ddk

k! ≈ 1
n , that is, k ≈ logn

log logn .
In summary: Adjacency matrix of sparse graphs is plagued by high-degree vertices, and the top

eigenvector is localized on those vertices and not informative.
Solutions:

1. Regularize, e.g., remove high-degree vertices then apply spectral methods. However, it is
unclear whether this achieves the sharp thresholds of s2 ≥ d. In [CO10] a sufficient condition
of s2 ≳ d log d is shown.
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2. Turn to other matrices, e.g., the non-backtracking matrix, which we explain in Section 9.3.
The motivation comes from the above moment calculation (8.4), wherein the pathological
behavior is due to backtracking in the neighborhood of the high-degree vertices, so we remove
those.

3. Turn to SDP. This can resolve the high-degree issue by imposing the diagonal constraint
Xii = 1, but is difficult to achieve the sharp correlated recovery threshold. We will study SDP
in the sparse graphs later and show SDP achieves the almost exact recovery threshold.
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§ 9. Belief propagation and non-backtrack matrix

In this lecture, we first derive the belief propagation (BP) for community detection under the
stochastic block model. Then we study the noise sensitivity of BP around the trivial fixed point.
This gives rise to the conjectured threshold for the correlated recovery and motivates a new type of
spectral method based on the so-called non-backtracking matrix.

9.1 BP algorithm

We beging by showing that the SBM graph with constant average degree is locally tree like. Then
we derive the exact belief propagation algorithm for an infinite tree. Finally, we apply the same
algorithm on the original SBM graph.

It is known that for Erdős-Rényi random graph G(n, dn), the local neighborhood behaves as (can

be coupled to) a Galton Watson tree with offspring distribution Poi(d). Similarly, for SBM(n, an ,
b
n),

the local neighborhood behaves as a two-type Galton Watson tree T , where the total offspring
distribution is still Poi(d) with d = a+b

2 , and each + has Poi(a2 ) children of type + and Poi( b2)
children of type −, and vice versa. This can be encoded into the following matrix:

M =

[
a
2

b
2

b
2

a
2

]
. (9.1)

More formally, we can prove the following coupling lemma. For each vertex i ∈ [n] and t, let Gt
i

denote the subgraph of G induced by the vertices whose distance from i is at most t. Let T t
i denote

the two-type Galton Watson tree T rooted at vertex i of depth t, and τ denote the labels of vertices
in T , where τi ∼ Unif({±}).

Lemma 9.1 (Locally-tree like property). Consider SBM(n, an ,
b
n) graph G with average degree

d = a+b
2 and the underlying community σ uniformly generated at random. Assume t log d = o(log n).

For any fixed vertex i, there exists a coupling between (G, σ) and (T, τ) such that

P
[(
Gt

i, σGt
i

)
=
(
T t
i , τT t

i

)]
≥ 1− n−1+o(1).

Proof. The proof basically follows by applying the Poisson approximation of the Binomial distribution
and showing that the local neighborhood Gt

i does not contain a cycle with high probability. See
e.g. [HWX15, Appendix C] for a formal proof.

9.1.1 BP on a two-type Galton Watson tree

Using the recursive tree structure, it turns out that the posterior probability p(τi|T t
i ) can be

computed recursively. This leads to the so-called belief propagation algorithm. Specifically, let ∂i
denote the set of childen of vertex i and π(i) denote the parent of i.
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Let

Λt
i→π(i) ≜

1

2
log

P
[
τi = +|T t

i

]
P [τi = −|T t

i ]
.

The following lemma gives a recursive formula to compute uti→π(i).

Lemma 9.2. Let β = 1
2 log(a/b). For t ≥ 1,

Λt+1
i→π(i) =

∑
ℓ∈∂i

f
(
Λ
(t)
ℓ→i

)
, f(x) ≜ tanh−1[tanh(β) tanh(x)]. (9.2)

Proof. Let Ni denote the number of childen of vertex i.

Λt+1
i→π(i)

(a)
=

1

2
log

P
[
T t+1
i |τi = +

]
P
[
T t+1
i |τi = −

]
(b)
=

1

2
log

P [Ni|τi = +]

P [Ni|τi = −]
+

1

2

∑
ℓ∈∂i

log
P
[
T t
ℓ |τi = +

]
P
[
T t
ℓ |τi = −

]
(c)
=

1

2

∑
ℓ∈∂i

log

∑
x∈± P

[
T t
ℓ |τℓ = x

]
P [τℓ = x|τi = +]∑

x∈± P
[
T t
ℓ |τℓ = x

]
P [τℓ = x|τi = −]

(d)
=

1

2

∑
ℓ∈∂i

log
P
[
T t
ℓ |τℓ = +

]
a

a+b + P
[
T t
ℓ |τℓ = −

]
b

a+b

P
[
T t
ℓ |τℓ = +

]
b

a+b + P
[
T t
ℓ |τℓ = −

]
a

a+b

(e)
=

1

2

∑
ℓ∈∂i

log
exp

(
2β + 2Λt

ℓ→i

)
+ 1

exp
(
2Λt

ℓ→i

)
+ exp (2β)

(f)
=
∑
ℓ∈∂i

f
(
Λ
(t)
ℓ→i

)
,

where (a) holds due to τi ∼ Unif({±}); (b) follows because Ni and {T t
ℓ : ℓ ∈ ∂i} are independent

conditional on τi; (c) holds as Ni ∼ Poi(d) is independent from τi, and T t
ℓ is independent of τi

conditonal on τℓ; (d) follows from the sample splitting property of Poisson so that τℓ = τi with
probability a

a+b and τℓ = −τi with probability b
a+b ; (e) holds by plugging in the definition of β and

Λt
ℓ→i; (f) follows from the following generic identity:

tanh(y) = tanh(β) tanh(x) ⇐⇒ y =
1

2
log

exp(2x) exp(2β) + 1

exp(2x) + exp(2β)
.

9.1.2 BP for SBM

To detect which community a given vertex i belongs to, a natural approach is to compare the
posterior ratio log P[σi=+|G]

P[σi=−|G] to a certain threshold.1. As we have seen, when the average degree
is d, the neighborhood of vertex i is tree-like with high probablility as long as the radius of the
neighborhood satisfies t log d = o(log n); moreover, on the tree, the posterior ratio can be exactly
computed in a finite recursion via belief propagation. These two observations together suggest

1Careful readers may notice that due to the symmetry between + and −, this posterior ratio is always equal to 1.
Let us not worry about this, as this symmetry can be broken easily, for example by fixing the community label of an
arbitrary vertex to be +.
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the following belief propagation algorithm for approximately computing the posterior ratio for the
community recovery problem on SBM. Define the message transimitted from vertex i to one of its
neighbor j at (t+ 1)-th iteration as

ut+1
i→j =

∑
ℓ∈∂i\{j}

f
(
u
(t)
ℓ→i

)
, (9.3)

where ∂i denotes the set of neighbors of i in G. Note that motivated by the tree structure, when
computing the outgoing message from i to j, crucially we exclude the incoming message from j to i.
This prevents the unuseful echoes of messages that bounces back and forth between i and j and
allows for gathering useful information over multi-hop neighbors. Then we can approximate the
posterior ratio log P[σi=+|G]

P[σi=−|G] by the belief of vertex i at (t+ 1)-th iterations, uti, which is determined
by combining incoming messages from its neighbors as follows:

ut+1
i =

∑
ℓ∈∂i

f
(
u
(t)
ℓ→i

)
.

Remark 9.1 (Computational efficiency of BP). Note that in total there are 2|E| messages, which
are updated according to (9.3) for every iteration. Thus the total computational complexity per
iteration is linear in the number of edges, rendering BP particularly attracting in sparse graphs
where |E| ≪ |V |2.

Remark 9.2 (BP in general contexts). In the above, since the community label is binary, it is
convenient to derive the BP in terms of the posterior ratio. With multiple community labels, we
can derive the BP directly in terms of the posterior probability P

[
τi|T t

i

]
in a similar fashion. In

fact, more generally, BP (a.k.a. sum-product algorithm) is an iterative algorithm for approximately
computing the marginals for graphical models (cf. [MM09, Chapter 14] for a detailed exposition).

9.2 Trivial fixed point and noise sensitivity of BP

In this section, we study the BP update rule (9.3). To begin with, we collect some simple yet useful
properties of f as below.

Properties of f :

• f(0) = 0, f(−∞) = −1, and f(+∞) = +1.

• f ′(x) = (1−tanh2(x)) tanh(β)

1−tanh2(β) tanh2(x)
, so 0 ≤ f ′(x) ≤ tanh(β). In particular, f ′(0) = tanh(β).

• f ′′(x) ≤ 0, so f(x) is concave

It immediately follows from f(0) = 0 that u
(t)
i→j ≡ 0 is always a fixed point, in which every node

is equally likely to be in the +1 or −1 community. This fixed point is trivial, in the sense that if BP
starts from this fixed point, then it will get stuck and never do better than random guessing.

Question: If we initially perturb the BP messages away from the trivial fixed point, should BP
fly away from it - hopefully toward the truth- or fall back in?
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Answer: It turns out that the trivial fixed point is unstable if and only if τ = (a−b)2

2(a+b) > 1. To see
this, let us assume the BP messages are independently perturbed away from the trivial fixed point

by some small random noise, i.e., u
(0)
ℓ→i = ϵℓ, where ϵℓ’s are i.i.d. with mean 0 and a sufficiently small

variance κ. Since the messages u
(t)
ℓ→i are expected to be small, we can apply Taylor expansion and

approximate

f
(
u
(t)
ℓ→i

)
≈ f(0) + f ′(0)u

(t)
ℓ→i = tanh(β)u

(t)
ℓ→i,

where the last equality holds because f(0) = 0 and f ′(0) = tanh(β). This give rises to a linearized
BP:

u
(t+1)
i→j ≈ tanh(β)

∑
ℓ∈∂i\j

u
(t)
ℓ→i. (9.4)

Let us investigate the behavior of this LBP on the two-type Galton-Watson tree T t
i rooted at i of

depth t. We get that

u
(t)
i→j ≈

∑
leaves ℓ in T

(t)
i

tanht(β)ϵℓ.

Since the perturbations have mean 0, the mean of u
(t)
i→j is also 0. For the variance, however,

Var
(
u
(t)
i→j

)
≈

∑
leaves ℓ in T

(t)
i

tanh2t(β)κ ≈ tanh2t(β)dtκ,

where the first approximation holds as the perturbations are independent across different leaves,

and the last approximation holds as the number of leaves in T
(t)
i is roughly dt according to the

standard branching process. Note that the variance diverges to ∞ as t tends to ∞, when

tanh2(β)d > 1 ⇐⇒ (a− b)2

2(a+ b)
> 1, (9.5)

suggesting that the BP messages fly away from the trivial fixed point. In fact, [DKMZ11] further

conjectured that under condition (9.5), the BP messages u
(t)
i→j are positively correlated with the

true community label σi for sufficiently large iterations t.

Conjecture 9.1. Consider the BP algorithm (9.3) with random initialization and let σ̂i =
argmaxx∈± u

t
i(x). Then for sufficiently large t, with high probability

|⟨σ̂i, σi⟩| = Ω(n).
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While convincing numerical evidence is provided in [DKMZ11], a rigorous proof of the conjecture
remains open.

9.3 Spectrum of non-backtracking matrices

While a rigorous analysis of the BP is challenging due to its non-linear dynamic, the linearized
BP given in (9.4) turns out to be easier to analyze, by relating it to the spectrum of a so-called
non-backtracking matrix.

Given a simple undirected graph G = (V,E), denote the set of oriented edges (ordered pairs) by

E⃗ = {(u, v) : {u, v} ∈ E}. The non-backtracking matrix B ∈ {0, 1}E⃗×E⃗ is defined as follows: for
e = (e1, e2), f = (f1, f2) ∈ E⃗,

Bef = 1{e2=f1}1{e1 ̸=f2}.

Then we can rewrite (9.4) in a compact matrix notation as:

u(t+1) ≈ tanh(β)B⊤u(t).

This can be viewed as a power method applied to the NB matrix B⊤. Thus we expect u(t) converges
to the leading eigenvectors of B⊤.

Remark 9.3. The stability of the trivial fixed point can be also understood through the eigenvalues
of B. As we will see, the largest eigenvalue λ1(B) = d + o(1). The corresponding eigenvector
is asymptotically aligned with the all-one vector. Since the perturbations have mean 0 so that∑

ℓ u
(t)
ℓ→i ≈ 0, the relevant eigenvalue is the second largest eigenvalue of B. We will show later that

λ2(B) = max
{√

d, a−b
2

}
+ o(1), which is a−b

2 + o(1) when a−b
2 >

√
d. Thus the trivial fixed point of

the BP is unstable if and only if

a− b

2
>

√
d and tanh(β)

a− b

2
> 1.

It turns out (somewhat magically) that the two above conditions coincide and reduce to τ = (a−b)2

2(a+b) >
1. Moreover, as we will show later, when τ > 1, the eigenvector corresponding to the second-largest
eigenvalue of B is correlated with the true community label σ, thereby achieving the correlated
recovery.

To warm up, let us first study some basic properties of NB matrices.

Properties of NB matrix. Let n = |V |, m = |E|.

1. Row sum: ∀e = (u, v),
∑

e′∈E⃗ Bee′ = dv − 1.

2. B is not symmetric, but satisfies the following symmetry: Given e = (e1, e2), let e
−1 = (e2, e1)

denote its reversal. Then
(B⊤)ef = Be−1f−1 . (9.6)

In matrix notation, let P = (1
{
e = f−1

}
) denote the involution that maps a vector (xe : e ∈ E⃗)

to (xe−1 : e ∈ E⃗) such that P⊤ = P and P 2 = I. Then

B⊤ = PBP

(in other words, BP is a symmetric) and consequently Bk = PBkP .
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3. B is a 2m× 2m matrix, and can be partitioned into four m×m blocks (The first m rows and
columns correspond to edges in one direction, and the next m rows and columns correspond
to edges in the reversed direction):

B=
B11 B12

B21 B22

B11 = BT
22

B12, B21 symmetric.

To see this, by (9.6),

B⊤ =

[
B⊤

11 B⊤
21

B⊤
12 B⊤

22

]
=

[
B22 B21

B12 B11

]
.

It follows that B11 = B⊤
22, and B12, B21 are symmetric.

Note: Since B is not symmetric, i.e., Bef ̸= Bfe, the eigenvalues of B may be complex-valued.

4. Singular values of B are {dv − 1 : v ∈ V } ∪ {1} and thus not informative.

There are two different approaches to see this. One way is to find eigenvalues of BB⊤.
Here we follow a second approach using the fact that BP is symmetric. In particular,
denote the eigenvalue decomposition of BP as BP =

∑2m
j=1 sjxjx

⊤
j . It follows that B =∑2m

j=1 sjxj(Pxj)
⊤ =

∑2m
j=1 |sj |xjy⊤j , where yj = sgn(sj)Pxj . This gives rise to the singular

value decomposition of B. Hence, it reduces to determining the spectrum of BP . To this end,
note that

(BPξ)e =
∑
f

(BP )efξf =
∑
f

∑
e′

Bee′Pe′fξf =
∑
f

Bef−1ξf ,

where the second equality holds by the definition of involution P . Now, we can see that if
we let ξe = 1 for all incoming edges e to v and ξe = 0 otherwise, then (BPξ)e = (dv − 1)ξe.
This shows that ξ is an eigenvector of BP with eigenvalue dv − 1. By varying the node v, we
have n of them in total. Further, if we let ξe = 1 and ξf = −1 for some f such that Bef−1 = 1
and ξe′ = 0 otherwise, then (BPξ)e = −ξe. Thus ξ is an eigenvector of BP with eigenvalue
−1. Since for every node v, we can fix an incoming edge to be e and choose any other dv − 1
incoming edges as f , we have in total

∑
v(dv − 1) = 2m− n such eigenvectors.

More generally, denote the eigenvalue decomposition of BkP as BkP =
∑2m

j=1 sj,kxj,kx
⊤
j,k. We

have Bk =
∑2m

j=1 |sj,k|xj,ky⊤j,k with yj,k = sgn(sj,k)Pxj,k, which is the SVD of Bk. It turns out

that the SVD of Bk for large k reveals the eigen-structure of B. In particular, we have the
following classical Perron-Frobenius theorem.

Theorem 9.1 (Perron-Frobenius Theorem). Suppose B is irreducible, i.e., ∀(i, j), ∃k such
that (Bk)ij > 0. Then the following holds.

• λ1(B) is real and positive, and |λi(B)| < λ1(B) for all i ≥ 2.

• Let ξ denote the right eigenvector of B with eigenvalue λ1(B), i.e., Bξ = λ1(B)ξ. We
have ξi > 0 for all i.

• Let Bk =
∑

j sj,kxj,ky
⊤
j,k denote the SVD of Bk. Then

λ1(B) = lim
k→∞

(s1,k)
1/k and lim

k→∞
∥ξ − x1,k∥2 = 0.
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The above theorem suggests that we can study the eigenvalue of B through the SVD of Bk or
equivalently the EVD of Bk(B⊤)k. This is exactly how we will analyze the spectrum of NB
matrix B.

5. Ihara-Bass identity [Ter10, p. 89]: Let A,D,B denote the adjacency matrix, diagonal degree,
and non-backtracking matrices. Then for any complex number z ∈ C,

det(I− zB) = (1− z2)m−n det(I− zA+ z2(D − I)), (9.7)

where D = diag(dv). This means B has 2(m − n) useless eigenvalues that are equal to
±1, and the rest of the 2n eigenvalues are useful, and are given by the 2n roots of the
polynomial det(λ2I − λA + D − I). Note that λ2I − λA + D − I is known as the “Bethe
Hessian” matrix [SKZ14] and gives a more efficient way to compute the eigenvalues of B.

For a d-regular graph with D = dI. Then λ is an eigenvector of B if and only if λ = ±1 or
λ2+d−1

λ is an eigenvalue of A.

Proof of Ihara-Bass identity:

Proof. Let S ∈ Rn×2m and T ∈ R2m×n be defined as

Su,v→w =

{
1 if u = v

0 o.w.
Tu→v,w =

{
1 if v = w

0 o.w.

Let
ξoutu = (Sξ)u =

∑
v→w

Su,v→wξv→w =
∑

w:w∼u

ξu→w

and
ξinw = (ξ⊤T )w =

∑
u→v

ξu→vTu→v,w =
∑

u:u∼w

ξu→w.

Recall the involution operator Pef = 1
{
e = f−1

}
. Then (Pξ)u→v = ξv→u, P

2 = I and
P = P⊤. Note that

• (ST )uv = 1 {u ∼ v} = Auv;

• (TS)u→v,s→t = 1 {v → s}, so TS − P = B;

• SPT = D.

Note that P (by putting rows and columns corresponding to e and e−1 next to each other)

consists of blocks

[
0 1
1 0

]
along the diagonal. Thus P has eigenvalues ±1. For any complex

z /∈ {±1}, we have

det(I− zB) = det(I+ zP − zTS) = det(I+ zP ) det
(
I− (I+ zP )−1zTS

)
Note that det(I+ zP ) = (1− z2)m and (I+ zP )−1 = 1

1−z2
I− z

1−z2
P . It follows that

det(I− zB) = (1− z2)m det

(
I−

(
1

1− z2
I− z

1− z2
P

)
zTS

)
= (1− z2)m det

(
I− zS

(
1

1− z2
I− z

1− z2
P

)
T

)
= (1− z2)m det

(
I− z

1− z2
A+

z2

1− z2
D

)
= (1− z2)m−n det

(
(1− z2)I− zA+ z2D

)
,
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where the second equality holds by Sylvester’s determinant identity: det(I+AB) = det(I+BA).
By continuity, this must also hold for z → ±1.

For sparse random graphs, the spectrum of the NB matrix looks like the following for G(n, dn)

and SBM(n, an ,
b
n): [BLM18]

In addition, the following result gives a spectral method based on B that achieves the optimal
threshold:

Theorem 9.2 ([BLM18]). Let s = a−b
2 , d = a+b

2 . Let u2 = u2(B) be the second largest eigenvector
of B. Define

σ̂v = sign

( ∑
e:e2=v

(u2)e

)
.

Then σ̂ achieves correlated recovery if s2 > d.

Proving this result is outside the scope here. We explain some intuitions:

Why is B not hindered by high-degree vertices? This applies to both Erdős-Rényi and SBM.
Here we consider the former. In the previous section, we see for G(n, dn), the outlier eigenvalues of
A exist due to high-degree vertices. This no longer occurs for B. To explain some intuition, we
apply the trace method to Bk(B⊤)k for some large k. We claim that for each oriented edge e,

(Bk(B⊤)k)ee (9.8)

= # NB walks starting with e in k steps then reversing the last step and returning to e in k steps

such as

Indeed, using the symmetry property,

(Bk(B⊤)k)ee =
∑

e2...e2k

Be1e2Be2e3 . . . Bekek+1
B⊤

ek+1ek+2
. . . B⊤

e2ke2k+1
e1 = e, e2k+1 = e

(9.6)
=

∑
Bee2Be2e3 . . . Bekek+1

B⊤
e−1
k+1e

−1
k+2

. . . B⊤
e−1
2k e−1

To simplify the counting in (9.8), crucially, recall the locally tree-like structure of sparse graphs:
with high probability, for each vertex u, its k-hop neighborhood Nk(u) is a tree, provided that k is
not too big, e.g. k = o(log n). If Nk(v) is a tree, then for each summand in (9.8), the path must
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reverse itself (otherwise there will be a cycle). Thus, on the event that locally tree-like structure
holds, we have

(Bk(B⊤)k)ee = The number of kth generation descendents of u ≈ dk,

even if the degree of u is as large as logn
log logn !

The last step follows from basic results in branching process, which states that the total number
of kth-generation children grows exponentially as dk. More formally, we have the following theorem.

Theorem 9.3. Let Z0 = 1 and Zk =
∑Zk−1

i=1 Yi, where Yi
i.i.d.∼ Poi(d) with d > 1. Let Fk denote the

σ-field generated by {Z1, . . . , Zk}. Then there exists a random variable X such that

Zk

dk
L2

−→ X

and E [X|Fk] = Zk/d
k.

Proof. Let Xk = Zk/d
k. Then we have E [Xk|Fk] = Xk−1 and hence Xk is a martingale w.r.t. the

filtration Fk. We can further show Var(Xk) = Var(Xk−1) + d−k and hence Var(Xk) =
∑k

i=1 d
−i ≤

1
1−1/d . Thus the theorem follows from the martingale convergence theorem.

Finally,

2m∑
i=1

|λi(B)|2k = ∥Bk∥2F = Tr(Bk(Bk)T ) ≈ 2mdk

which suggests that the bulk of the eigenvalues belong to the disk of radius
√
d, i.e., all but a o(1)

fraction of eigenvalues of B should be within the disk {z ∈ C : |z| ≤
√
d + ϵ} for some arbitrary

constant ϵ > 0 and all large n. In fact, [BLM18] shows that all but (1 for Erdős-Rényi and 2 for
SBM) eigenvalues are within the disk.

Why is the eigenvector of B informative? This applies to SBM.

Let ξ ∈ RE⃗ denote the 2nd eigenvector of B. Let ξ∗ ∈ RE⃗ be defined by ξ∗e = σ(e2), where
e = (e1, e2) as usual. For each node v, we estimate its label σ(v) by σ̂v = sign(

∑
e:e2=v ξe).

To gain some insight, let’s proceed with the following wishful thinking : Suppose we can apply
power method to study the behavior of the eigenvectors. Since ξ∗ is orthogonal to the all-one vector,
the 1st eigenvector of B in the population case, let’s hope we can gain some insight about the 2nd
eigenvector ξ by studying Bkξ∗ for some large k.2 Fix an edge e = (e1, e2) with e2 = v.

(Bkξ∗)e =
∑
f

(Bk)efξ
∗
f

=
∑

f :σ(f2)=+

(Bk)ef︸ ︷︷ ︸
# of kth-gen children of type + ≜Z+

k

−
∑

f :σ(f2)=−

(Bk)ef︸ ︷︷ ︸
# of kth-gen children of type − ≜Z−

k

where the last step follows again from the tree structure of Nu(k).
The celebrated result of Kesten-Stigum [KS66] says that the behavior of this number is governed

by the matrix M in (9.1), whose eigenvalues are λ1 = d and λ2 = s. More formally,

2The rationale of the power method is that 1
∥Bkξ∗∥B

kξ∗ will converge to ξ, but since the matrix B is not symmetric,

this does not quite work.
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Theorem 9.4. If λ22 > λ1, then there exists a random variable X such that

Z+
k − Z−

k

λk2

L2

−→ X,

E [X|Fk] = (Z+
k − Z−

k )/λk2, and X is correlated with the label of the root.

Proof. The proof is similar to that of Theorem 9.3. Let Xk = (Z+
k − Z−

k )/λ
k
2. Then we can show

E [Xk|Fk−1] = Xk−1 and hence Xk−1 is a martingale w.r.t. the filtration Fk. We can further
show that Var(Xk) = Var(Xk−1) + (λ1/λ

2
2)

k. Thus under the assumption that λ22 > λ1, we have
Var(Xk) = O(1). The theorem then follows from the martingale convergence theorem.

Theorem 9.4 implies that (Bkξ∗)e has non-trivial correlation with σv, and correlated recovery
can be achieved by majority vote.

Now, let’s intuitively verify that (Bkξ∗)/λk2 is approximately an eigenvector of B with eigenvalue
λ2 = s = (a− b)/2. Indeed,

B
Bkξ∗

λk2
= λ2

Bk+1ξ∗

λk+1
2

≈ λ2
Bkξ∗

λk2
,

where the last approximation holds because by Theorem 9.4, (Bkξ∗)e/λ
k
2 converges as k → ∞ so that

(Bkξ∗)e/λ
k
2 ≈ (Bk+1ξ∗)e/λ

k+1
2 . In a similar vein, we can also argue that (Bk1)e/λ

k
1 is approximately

the eigenvector of B with eigenvalue λ1 = d = a+b
2 .

Nevertheless, the above plan is too simplistic as B is asymmetric so the straightforward power
method does not work. In reality, to apply the power method properly, one needs to study the
EVD of B by considering the SVD of Bk or equivalently the EVD of Bk(Bk)⊤. But as opposed to
the above calculation for Bk which only involves the number of children at the kth generation, the
same calculation with Bk(Bk)⊤ will involve the number of children of all generations up to k.3 For
details, see [BLM18, Sec 8].

9.4 Reconstruction on a two-type Galton-Watson tree process

While a rigorous proof of Conjecture 9.1 is still lacking [DKMZ11], we can perform a rigorous analysis
of BP in a closely related, but simpler reconstruction problem on the two-type Galton-Watson tree.

Question: Given the labels at the depth t of the GW tree T , can we estimate the label of the

root better than random guessing, as t→ ∞? More formally, let T
(t)
i denote the tree rooted at i up

to depth t and L
(t)
i denote the set of leaves at depth t. Does limt→∞ P

[
σi = +1|T (t)

i , σ
L
(t)
i

]
= 1/2?

If yes, then we cannot do better than random guessing.

Answer: It turns out that the reconstruction is possible if and only if λ22 > λ1, i.e., τ =
(a−b)2

2(a+b) > 1. In particular, we can achieve the threshold using the simple majority voting, that is,

σ̂i = sgn
(∑

ℓ∈L(t)
i

σℓ

)
. This follows from the Kesten-Stigum theorem stated in Theorem 9.4. We

can do even better in terms of the error probability. It is not hard to show that the estimator that
minimizes the error probability is given by the maximum a posterior (MAP) estimator:

σ̂i = arg max
s∈{±1}

P
[
σi = s|T (t)

i , σ
L
(t)
i

]
.

3To see this, note that B2(B2)⊤ will involve paths like u, u1, u2, u1, u2, where ui is a ith-gen children.
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Figure 9.1: Extracted from [Moo17]

Moreover, this MAP estimator can be efficiently computed via BP (9.2) initialized as

Λ
(0)
ℓ→i =

{
+∞ if σℓ = +

−∞ if σℓ = −
∀ℓ ∈ L

(t)
i

9.4.1 Density evolution and Gaussian approximation

In this section, we analyze the belief propagation (9.2) by characterizing the density evolution of
the BP messages. Define

U
(t)
±

d
= Λ

(t)
i→j conditional on σi = ±1.

By symmetry, the above holds for i→ j replaced by any children-parent pair ℓ→ i. Moreover, for

all different children nodes ℓ ∈ ∂i \ j, since the subtrees rooted at ℓ are disjoint, it follows that Λ
(t)
ℓ→i

are independent conditional on σi. Therefore, according to the BP update rule (9.2),

U
(t)
±

d
=

N+∑
ℓ=1

f
(
U

(t−1)
±,ℓ

)
+

N−∑
ℓ=1

f
(
U

(t−1)
∓,ℓ

)
, (9.9)

where N+ ∼ Poi(a/2), N− ∼ Poi(b/2), U
(t)
±,ℓ are i.i.d. copies of U

(t)
± , and they are mutually

independent.

Remark 9.4. Note that (9.9) gives a recursion of the distribution of U t
±, which is known as

density evolution. We make two important remarks in order. First, the above derivation crucially
exploits the recursive structure of the trees. It turns out that such derivation can be generalized to
locally-tree graphs, see e.g. [HWX15]. Second, characterizing the density evolution is a key to the
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analysis of BP, which is hard in general, because the recursion maps between (infinite-dimensional)
probability distributions on R. Sometimes, if we are lucky, the density evolution can collapse to a
recursion of a finite dimensional object. One way to obtain such dimension reduction is via Gaussian
approximation.

Gaussian approximation in large degree asymptotic

Let us first state informally the high-level idea. If the average degree parameters a, b are relatively

large, then U
(t)
± are Poisson sums of many i.i.d. random variables, which are approximately Gaussian

due to the central limit theorem. Since Gaussian density is determined by mean and variance, we
only need to characterize the recursions of mean and variance.

To this end, let us assume a, b→ ∞ while keeping τ = (a−b)2

2(a+b) to be a fixed constant in the sequel.

The following lemma characterizes the recursions of mean and variance of U
(t)
± .

Lemma 9.3. For all t ≥ 1, it holds that

E
[
U

(t)
±

]
= ±τE

[
tanh(U

(t−1)
+ )

]
+O

(
a−1/2

)
, (9.10)

Var
(
U

(t)
±

)
= τE

[
tanh(U

(t−1)
+ )

]
+O

(
a−1/2

)
. (9.11)

The next lemma from [KS12, Theorem 3] is an analog of Berry-Esseen theorem for Poisson sum.

Lemma 9.4. Let Sv = X1 + . . . + XNv , where Xi’s are i.i.d. with finite second moment and
E
[
|Xi|3

]
≤ ρ3, and Nv ∼ Poi(v) for some v > 0. Then

sup
x

∣∣∣∣∣∣P
Sv − vE [X1]√

vE
[
X2

1

] ≤ x

− P [Z ≤ x]

∣∣∣∣∣∣ ≤ CBEρ
3√

v
(
E
[
X2

1

])3 ,
where CBE = 0.3041 and Z ∼ N (0, 1).

The above two lemmas together imply that

U
(t)
±

(d)
≈ N

(
±τE

[
tanh(U

(t−1)
+ )

]
, τE

[
tanh(U

(t−1)
+ )

])
.

More formally, we have the following theorem.

Theorem 9.5. Define (µt : t ≥ 0) recursively by

µ0 = ∞ and µt = τE [tanh (µt−1 +
√
µt−1Z)]

for Z ∼ N (0, 1). Then for any t ≥ 1:

sup
x

∣∣∣∣∣P
[
U

(t)
± −±µt√

µt
≤ x

]
− P [Z ≤ x]

∣∣∣∣∣ = O(a−1/2).

The above theorem shows that U
(t)
± is approximately distributed as N (±µt, µt). Let h(v) ≜

E [tanh (v +
√
vZ)]. One can show that h(v) is continuous on [0,∞) and 0 ≤ h′(v) ≤ 1 for

v ∈ (0,+∞) with h′(0) = 1. One can also prove that h(v) is strictly concave [DAM15, Lemma 6.1].
Therefore, the recursion µt = τh(µt−1) exhibits a phase transition at threshold τ = 1.
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• If τ ≤ 1, then as t → ∞, µt → 0 and hence P
[
σi = + | T (t)

i , σ
L
(t)
i

]
→ 1

2 , i.e., it is impossible

to do strictly better than random guessing.

• If τ > 1, then as t → ∞, µt → µ∗ > 0 and hence P
[
σi = ± | T (t)

i , σ
L
(t)
i

]
> 1

2 conditional on

σi = ±, achieving the correlated recovery.

Proof of Lemma 9.3

Proof. By definition and symmetry between +1 and −1, we have

Λ
(t)
i→j conditional on σi = − (d)

= −u(t)i→j conditional on σi = +.

Therefore, U
(t)
−

(d)
= −U (t)

+ and hence it suffices to prove the lemma for U t
−. Moreover,

exp
(
2Λ

(t)
i→j

)
=

P
[
σi = +1|T (t)

i , σ
L
(t)
i

]
P
[
σi = −1|T (t)

i , σ
L
(t)
i

] =
P
[
T
(t)
i , σ

L
(t)
i

|σi = +1
]

P
[
T
(t)
i , σ

L
(t)
i

|σi = −1
] ,

where the last equality holds because the prior distribution of σi is uniform. Therefore, by change
of measure, for any measurable function g,

E
[
g
(
Λ
(t)
i→j

)
|σi = −1

]
= E

[
g
(
Λ
(t)
i→j

)
exp

(
−2Λ

(t)
i→j

)
|σi = +1

]
.

It follows that

E
[
g(U

(t)
− )
]
= E

[
g(U

(t)
+ ) exp

(
−2U

(t)
+

)]
. (9.12)

Now, we are ready to compute E
[
U

(t)
−

]
. By Taylor expansion,

f(x) = tanh−1[tanh(β) tanh(x)]

=
1

2
log

(
exp(2x+ 2β) + 1

exp(2x) + exp(2β)

)
= −β +

exp(4β)− 1

2
g(x)− (exp(4β)− 1)2

4
g2(x) +O

(∣∣∣e4β − 1
∣∣∣3) ,
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where g(x) = 1/
[
1 + e−2(x−β)

]
. Thus it follows from (9.9) that

U−(t) =− β (N+ +N−) +
exp(4β)− 1

2

N−∑
ℓ=1

g
(
U

(t−1)
+,ℓ

)
+

N+∑
ℓ=1

g
(
U

(t−1)
−,ℓ

)
− (exp(4β)− 1)2

4

N−∑
ℓ=1

g2
(
U

(t−1)
+,ℓ

)
+

N+∑
ℓ=1

g2
(
U

(t−1)
−,ℓ

)+O

(∣∣∣e4β − 1
∣∣∣3)× (N+ +N−) .

Taking expectation yields that

E
[
U

(t)
−

]
=− β

a+ b

2
+

exp(4β)− 1

4

(
bE
[
g
(
U

(t−1)
+

)]
+ aE

[
g
(
U

(t−1)
−

)])
− (exp(4β)− 1)2

8

(
bE
[
g2
(
U

(t−1)
+

)]
+ aE

[
g2
(
U

(t−1)
−

)])
+O

(∣∣∣e4β − 1
∣∣∣3)× (a+ b) .

In view of (9.12) and β = 1
2 log

a
b , we have

bE
[
g
(
U

(t−1)
+

)]
+ aE

[
g
(
U

(t−1)
−

)]
= bE

[
g
(
U

(t−1)
+

)
+ e2β exp

(
−2U

(t−1)
+

)
g
(
U

(t−1)
+

)]
= b,

where the last equality holds due to the definition of g. Similarly,

bE
[
g2
(
U

(t−1)
+

)]
+aE

[
g2
(
U

(t−1)
−

)]
= bE

[
g2
(
U

(t−1)
+

)
+ e2β exp

(
−2U

(t−1)
+

)
g2
(
U

(t−1)
+

)]
= bE

[
g
(
U

(t−1)
+

)]
.

Combining the last three displayed equation gives that

E
[
U

(t)
−

]
= −βa+ b

2
+

exp(4β)− 1

4
b− (exp(4β)− 1)2

8
bE
[
g
(
U t−1
+

)]
+O

(∣∣∣e4β − 1
∣∣∣3)× (a+ b) .

Now, using Taylor expansion, we have

β =
1

2
log

a

b
=
a− b

2b
− (a− b)2

4b2
+O

(
|a− b|3

b3

)
and

e4β − 1 = 4β +
1

2
(4β)2 +O(β3).

Since τ = (a−b)2

2(a+b) is a fixed constant, it follows that

−βa+ b

2
+

exp(4β)− 1

4
b =

(a− b)2

2(a+ b)
+O(a−1/2) = τ +O(a−1/2)

and
(exp(4β)− 1)2

8
b = 2τ +O(a−1/2)

and ∣∣∣e4β − 1
∣∣∣3 (a+ b) = O(a−1/2).

Finally, note that ∣∣∣∣g(x)− 1

1 + exp(−2x)

∣∣∣∣ ≤ |exp(2β)− 1| = O(a−1/2).
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Assembling all these together yields that

E
[
U

(t)
−

]
= τ − 2τE

 1

1 + exp
(
−2U

(t−1)
+

)
+O(a−1/2) = −τE

[
tanh

(
U

(t−1)
+

)]
+O(a−1/2).

Analogously, we can show that

Var
(
U

(t)
−

)
= τE

[
tanh(U

(t−1)
+ )

]
+O

(
a−1/2

)
.

9.5 Concluding remarks

We have been focusing exclusively on the symmetric two-community case for correlated recovery. It
turns out that most of the theory developed here can be generalized to multiple communities with
extra effort. With multiple k communities, the Kesten-Stigum threshold becomes

(a− b)2

k (a+ (k − 1)b)
> 1.

However, for large k (k ≥ 5), this no longer coincides with the information-theoretic threshold for
correlated recovery. In particular, we observe the following intriguing “easy-hard-impossible” phase
transition diagram [DKMZ11, BMNN16, AS15]:

• If
(a− b)2

k (a+ (k − 1)b)
> 1,

correlated recovery is easy, in particular can be achieved via non-backtracking matrix;

• If
log k

k
≲

(a− b)2

k (a+ (k − 1)b)
≤ 1,

correlated recovery is information-theoretically possible, but conjectured to be computationally
hard;

• If
log k

k
≲

(a− b)2

k (a+ (k − 1)b)
≲

log k

k
,

correlated recovery is information-theoretically impossible.
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§ 10. Semidefinite programming II: general SBM

We consider a two-community SBM model in a very broad sense (cf. Lecture 7). Let σ =
{σ1, σ2, . . . , σn} ∈ {±1}n be the community labels of nodes. The weighted adjacency matrix
is A = (Aij), where {Aij : 1 ≤ i < j ≤ n} are independent conditioned on σ, such that

Aij ∼

{
P σi = σj

Q o.w.
.

Let dH(x, y) =
∑

i 1{xi ̸= yi} denote the Hamming distance . Consider the loss function

ℓ(σ, σ̂) = min{dH(σ, σ̂), dH(σ,−σ̂)},

which is the number of misclassified vertices (up to a global relabeling). We say

1. σ̂ achieves almost exact recovery if Eℓ(σ, σ̂) = o(n);

2. σ̂ achieves exact recovery if ℓ(σ, σ̂) = 0 w.h.p.

Under mild assumptions on the distributions P,Q, we will see that the requirements for these two
types of recovery are H2(P,Q) ≫ 1

n for almost exact recovery, and H2(P,Q) ≥ (2+ϵ) logn
n for some

ϵ > 0 for exact recovery. In this lecture, we will focus on the exact recovery.

10.1 MLE and SDP relaxation

The log-likelihood is

log p(A|σ) =
∑
i,j

log p(Aij |σi, σj)

=
∑
i,j

log p(Aij)1 {σi = σj}+ log q(Aij)1 {σi ̸= σj}

=
∑
i,j

log p(Aij) + log q(Aij)

2
+

log p(Aij)− log q(Aij)

2
σiσj ,

where p, q are the densities of P,Q w.r.t some dominating measure. And we assume P ≪ Q. Define
the likelihood ratio (LLR) matrix W with Wij = log p

q (Aij) for i ̸= j and Wii = 0 for convenience.
Then MLE is equivalently formulated as solving

max
σ∈{±1}n

⟨W,σσ⊤⟩. (10.1)
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This is closely related with the “min-cut” problem. For a weighted graph G = (V,E,W ), a cut is
a partition of V into two disjoint subsets S and Sc. The value of a cut (S, Sc) is the total edge
weights between the two subsets: ∑

i∈S,j∈Sc

Wij . (10.2)

We can define σi = 21{i ∈ S} − 1 ∈ {±1} to be the label of cut, then the cut value is∑
i,j

Wij

(
1− σiσj

2

)
.

So we can see that, solving for MLE of SBM (10.1) is equivalent to searching for the min-cut for
the complete graph weighted with the LLR matrix W .

Like what we did in the clique problem (Lecture 6), we can reformulate (10.1) as

max ⟨W,X⟩
s.t. X ⪰ 0

diag(X) = I

rank(X) = 1.

Dropping the rank-one constraint, we arrive at the following SDP relaxation:

max ⟨W,X⟩ (10.3)

s.t. X ⪰ 0

diag(X) = I.

For bisection (two equally sized communities), we have ⟨σ,1⟩ = 0 and we can further strengthen
the above min-cut SDP (10.3) by adding a hard constraint ⟨X,J⟩ = 0 and get that

max ⟨W,X⟩ (10.4)

s.t. X ⪰ 0

diag(X) = I

⟨X,J⟩ = 0.

Theorem 10.1 (Min-cut SDP). Assume that

H2(P,Q) ≥ 2(1 + ϵ) log n

n
, for a fixed constant ϵ > 0 (10.5)

∥W − EW∥op = op(log n) (10.6)

Var(Wij) = o

(
log2 n

n

)
(10.7)

D(P∥Q)−D(Q∥P ) = O
(
H2(P,Q) log n

)
. (10.8)

Then w.h.p., the unique solution to the min-cut SDP (10.3) is σσ⊤.

Theorem 10.2 (Min-bisection SDP). Consider bisection ⟨σ,1⟩ = 0. Suppose the conditions (10.5)
and (10.6) hold. Then w.h.p., the unique solution to the min-bisection SDP (10.4) is σσ⊤.
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Remark 10.1. The assumptions of the preceeding theorem may be interpreted as follows:

• The assumption (10.5) is fundamental since it is the information-theoretical limit that guaran-
tees the MLE to succeed, and it is also necessary under further regularity conditions on the
distributions P,Q, e.g., for Bernoulli and Gaussians.1

• The assumption (10.6) on the spectral deviation of the weight matrix is the main assumption
for SDP relaxation to succeed. To appreciate this assumption, let us compute a lower bound
to ∥E[W ]∥op. Specifically, E[W ] (plus multiples of diagonal) is a rank-two matrix, with

E[Wij ] =

{
D(P∥Q) σi = σj

−D(Q∥P ) σi ̸= σj .
(10.9)

Thus (E[W ]σ)i = kD(P∥Q) + (n− k)D(Q∥P ) if σi = +1 and −kD(Q∥P )− (n− k)D(P∥Q)
if σi = −1, where k is the number of +1’s in σ. Note that the KL divergence dominates the
Hellinger distance2:

min{D(P∥Q), D(Q∥P )} ≥ 2H2(P∥Q). (10.10)

Thus ∥E[W ]∥op ≥ nmin{D(P∥Q), D(Q∥P )} (10.5)
= Ω(log n). This means E[W ] is on the scale

of log n which dominates (W − E[W ]), thanks to (10.6).

• The assumptions (10.7) and (10.8) are for technical reasons. Note that (10.7) is consistent
with (10.6), because for Wigner matrix we expect the spectral norm is

√
n ·Var.

Remark 10.2 (Specialization to Gaussian weights). Suppose P = N (µ, 1) and Q = N (0, 1) with
µ > 0. Then

H2(P,Q) = 2− 2

∫ √
dPdQ = 2− 2 exp(−µ2/8).

For µ small, by Taylor’s expansion the above is approximately µ2/4. Hence assumption (10.5)
roughly translates to

µ2 ≥ 8(1 + ϵ) log n

n
.

On the other hand, we argue that µ2 ≥ 8 log n/n is necessary for the MLE to achieve exact
recovery (both for the min-cut MLE and the min-bisection MLE). Consider an assignment vector σ̃
that reverses the labels of i, j in σ for some σi = +1 and σj = −1. Then we have

⟨A, σσT ⟩ − ⟨A, σ̃σ̃T ⟩ ∼ N (4nµ, 32n).

There are Θ(n2) such pairs of i, j, which yield Θ(n2) random variables distributed N (4nµ, 32n) that
are almost mutually independent.3 For the MLE to achieve exact recovery, with high probability
all these r.v.’s must be nonnegative. Therefore we must have 4nµ −

√
32n

√
2 log(n2) ≥ 0, or

equivalently, µ2 ≥ 8 log n/n.

1Related calculations are carried out in [HWX17] for the single-community model with general distributions.
2To see this, note that

D(P∥Q) = −2EP

[
log

√
dQ

dP

]
≥ −2EP

[√
dQ−

√
dP√

dP

]
= 2

(
1−

∫ √
dPdQ

)
= 2H2(P,Q),

where the inequality holds due to log(1 + x) ≤ x.
3It is also easy to select Θ(n2) pairs of i, j for which the Gaussian random variables are exactly independent.
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Remark 10.3 (Specialization to SBM). For SBM(n, p, q), set p = α logn
n , q = β logn

n . Then

H2(P,Q) = (
√
p−√

q)2 + (
√
1− p−

√
1− q)2 = (

√
α−

√
β)2

log n

n
(1 + o(1)).

So the condition for Hellinger distance in Theorem 10.1 is
√
α−

√
β >

√
2.

For the LLR:

Wij = log
p

q
1{Aij = 1}+ log

1− p

1− q
1{Aij = 0}

= log
p(1− q)

q(1− p)
Aij + log

1− p

1− q
.

Thus

W = log
p(1− q)

q(1− p)
·A+ log

1− p

1− q
· J. (10.11)

where J is the all-ones matrix. Thus the SDP (10.3) is equivalent with the following penalized form:

max ⟨A,X⟩+ τ⟨J, X⟩
s.t. X ⪰ 0

diag(X) = I.

where τ =
log 1−p

1−q

log
p(1−q)
q(1−p)

. For bisection, the SDP (10.4) is equivalent to

max ⟨A,X⟩
s.t. X ⪰ 0

diag(X) = I

⟨X,J⟩ = 0.

Finally, from (10.11) assuming log p(1−q)
q(1−p) is bounded from above and away from 0, we have

∥W − EW∥op = o(log n) ⇔ ∥A− EA∥op = o(log n).

Indeed, p, q = O( lognn ), it can be shown (cf. e.g. [HWX16, Theorem 5]) that w.h.p,

∥A− EA∥op ≲
√
log n.

This is consistent with the Gaussian heuristic in Lecture 4 that ∥A− EA∥op ≲
√
n · variance.

10.2 Proof of Theorem 10.2

In this section, we give the proof of Theorem 10.2 for min-bisection SDP; Theorem 10.1 for min-cut
SDP is proved analogously but with a bit more detailed calculations in the next section.

The following deterministic lemma gives a sufficient condition for (10.4) to achieve the exact
recovery.

Lemma 10.1 (Duality). X∗ = σσ⊤ is the unique maximizer of (10.4) if ∃D = diag(di), S ⪰ 0,
λ ∈ R, s.t.

S = D −W + λJ, (10.12)

Sσ = 0, (10.13)

λn−1(S) > 0.
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Proof of Lemma 10.1. The proof follows the usual route of KKT conditions (cf. Section 6.2). Define
the following function as the Lagrangian form of (10.4) with specified parameters

L(X,D, S, λ) = ⟨W,X⟩+ ⟨S,X⟩+Tr(D)− ⟨D,X⟩ − λ⟨J, X⟩.

For any feasible X in (10.4), Tr(D)− ⟨D,X⟩ − λ⟨J, X⟩ = 0, ⟨S,X⟩ ≥ 0. So

⟨W,X⟩ ≤ L(X,D, S, λ)
(10.12)
= L(X∗, D, S, λ)

(10.13)
= ⟨W,X∗⟩.

Thus X∗ is an optimal solution to (10.4).
Finally, we prove the uniqueness. Note that if ⟨W,X⟩ = ⟨W,X∗⟩, then ⟨S,X⟩ = 0. But

λn−1(S) > 0, so the column space of X is spanned by σ, which means X = cX∗. Finally, c = 1
since diag(X) = I.

With Lemma 10.1, to prove Theorem 10.2, it suffices to construct (D,λ) and verify that the
conditions of Lemma 10.1 are satisfied with high probability.

Proof of Theorem 10.2. From (10.12) and (10.13) and ⟨σ,1⟩ = 0, we know Dσ =Wσ, which means

di =
∑
j

Wijσiσj .

It remains to show S as defined in (10.12) satisfies w.h.p. λn−1(S) > 0, that is

inf
x⊥σ,∥x∥2=1

x⊤(D −W + λJ)x > 0. (10.14)

Note that by the assumption (10.6), |x⊤(W − EW )x| ≤ ∥W − EW∥op = op(log n). Thus it suffices
to show

inf
x⊥σ,∥x∥2=1

x⊤(D − E[W ] + λJ)x = Ωp(log n). (10.15)

Write s = D(P∥Q), t = D(Q∥P ) as shorthand. By (10.9), we have

EW =
s− t

2
J+

s+ t

2
σσ⊤ − sI.

Thus to show (10.15), it suffices to show

inf
x⊥σ,∥x∥2=1

x⊤
(
D − s− t

2
J+ λJ

)
x = Ωp(log n). (10.16)

We finish the proof in two steps. First, we choose λ ≥ s−t
2 so that

(
− s−t

2 + λ
)
x⊤Jx ≥ 0. Then, we

show that under the information-theoretic condition (10.5), mini∈[n] di ≥ ϵ(1 + ϵ) log n with high
probability. This is where the condition (10.5) is from.

Lemma 10.2. Consider two-community SBM with possibly different community sizes. Assume that
(10.5) holds. Then w.h.p, mini∈[n] di ≥ 1

2ϵnH
2(P,Q) ≥ ϵ(1 + ϵ) log n.
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10.2.1 Proof of Lemma 10.2: Large deviation

This is a good exercise on the (information-theoretic flavored) large deviation analysis. Assume

that H2(P,Q) ≥ 2(1+ϵ) logn
n . By union bound, it suffices to show

P(di ≤ c log n) = o(1/n)

for each i ∈ [n] and c = ϵnH2(P,Q)
2 logn . Let us focus on di for a node i with σi = +1 and simply call it d;

the case for a node i with σi = −1 can be proved analogously.
Define X and Y be distributed as the law of log dP

dQ under P and Q, respectively. Then

d
D
=

k∑
i=1

Xi −
n−k∑
i=1

Yi, Ed = kD(P∥Q) + (n− k)D(Q∥P ),

where Xi are iid copies of X and Yi are iid copies of Y . To apply Chernoff bound, denote the log
moment generating function (log MGF) of X and Y as

ψP (θ) = logE[eθX ] = log

∫
p1+θq−θ, ψQ(θ) = logE[eθY ] = log

∫
pθq1−θ = ψP (θ − 1). (10.17)

For any θ > 0,

P (d ≤ c log n) =P

(
n−k∑
i=1

Yi −
k∑

i=1

Xi ≥ −c log n

)

=P

(
exp

{
θ
n−k∑
i=1

Yi − θ
k∑

i=1

Xi

}
≥ exp(−θc log n)

)

≤E exp

(
θ
n−k∑
i=1

Yi − θ
k∑

i=1

Xi + θc log n

)
=exp ((n− k)ψQ(θ) + kψP (−θ) + θc log n)

= exp ((n− k)ψP (θ − 1) + kψP (−θ) + θc log n) .

Choose θ = 1
2 ,

4 note that ψP (−1/2) = log
∫ √

PQ = log(1− H2(P,Q)
2 ), and recall that c = ϵnH2(P,Q)

2 logn .
Then we have as desired

P [d ≤ 0] ≤ exp

{
n log

(
1− H2(P,Q)

2

)
+
ϵnH2(P,Q)

4

}
(a)

≤ exp

{
−(1− ϵ/2)nH2(P,Q)

2

}
(b)

≤ n−(1−ϵ/2)(1+ϵ) = o(1/n),

where (a) follows from log(1− x) ≤ −x for x ∈ [0, 1] and (b) follows from the assumption (10.5).

Remark 10.4 (Optimality). We explain heuristically the sharp threshold expressed in terms of the
Hellinger distance:

4We chose θ = 1/2 independent of k. To see why, consider the special case of bisection where k = n/2. Due to the
convexity of the log MGF ψP , for any θ, ψP (θ − 1) + ψP (−θ) ≥ 2ψP (−1/2), with equality if θ = 1/2, which is the
optimal choice.
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• Exact recovery: Under further assumptions, the condition (10.5) on H2(P,Q) is necessary for
MLE (and hence any method) to achieve exact recovery. Indeed, consider another solution σ̃
that differs from σ only on a single coordinate. Then the potential increment of the likelihood

is ⟨W, σ̃σ̃⊤−σσ⊤⟩D=−4di defined above. We have showed that H2(P,Q) = 2(1+ϵ)
n log n ensures

that min di > 0. If the above large deviation analysis is tight, then in the opposite condition
H2(P,Q) = 2(1−ϵ)

n log n, we will have min di < 0, meaning MLE will make a mistake.

• Almost exact recovery: Consider the oracle situation when σ2, . . . , σn are observed, with
roughly half + and half −, and the only goal is to estimate σ1. This is equivalent to testing
the hypothesis of H0 : σ1 = + versus H1 : σ1 = −. In this case, only the first row of A is
useful. Hence σ1 cannot be tested with vanishing probability of error, if

TV (P⊗n
2 ⊗Q⊗n

2 , Q⊗n
2 ⊗P⊗n

2 ) ≤ 1−c⇔ H2(P ⊗Q,Q⊗P ) = O(1/n) ⇔ H2(P,Q) = O(1/n),

where the first equivalence follows from the following two generic facts: 1
2H

2(P,Q) ≤
TV (P,Q) ≤ H(P,Q)

√
1−H2(P,Q)/4 and H2(P⊗n, Q⊗n) = 2− 2

(
1−H2(P,Q)/2

)n
.

10.3 Proof of Theorem 10.1

The following deterministic lemma gives a sufficient condition for (10.3) to achieve the exact recovery.

Lemma 10.3 (Duality). X∗ = σσ⊤ is the unique maximizer of (10.3) if ∃D = diag(di) s.t.

S = D −W, (10.18)

Sσ = 0, (10.19)

λn−1(S) > 0.

The proof is identical to the proof of Lemma 10.1 with λ setting to be 0. With Lemma 10.3, to
prove Theorem 10.1, it suffices to construct D and verify that the conditions of Lemma 10.3 are
satisfied with high probability.

Proof of Theorem 10.1. The proof is almost identical to the proof of Theorem 10.2 with λ setting
to be 0. The only difference is in showing

inf
x⊥σ,∥x∥2=1

x⊤
(
D − s− t

2
J

)
x = Ω(log n). (10.20)

To evaluate this minimum, let us define a unit vector ξ such that

ξi =


√

n−k
nk if σi = +1,√

k
n(n−k) if σi = −1,

. (10.21)

Then it is straightforward to verify that span(σ,1) = span(σ, ξ), consisting of vectors which
takes constant values on each of the two communities. For any feasible x in (10.20), we have
x = cos θξ + sin θz for some unit vector z ∈ span(σ,1)⊥.

Expanding the quadratic form, we have

x⊤
(
D − s− t

2
J

)
x = cos2 θ · (I) + 2 cos θ sin θ · (II) + sin2 θ · (III),

where

89



•

(I) = ξ⊤
(
D − s− t

2
J

)
ξ ≥ ξ⊤

(
ED − s− t

2
J

)
ξ − ∥(D − ED)ξ∥2 = nt− ∥(D − ED)ξ∥2.

Here ξ⊤Jξ = ⟨ξ,1⟩2 = 4k(n−k)
n , ξ⊤EDξ =

∑
i E[di]ξ2i = [(n− k)d+ + kd−]/n = s+t

2 + t−s
2n (n−

2k)2, with E[di] = s+t
2 n+ σi

s−t
2 (2k − n), so that (by some miracle) ξ⊤

(
ED − s−t

2 J
)
ξ = nt.

•

|(II)| =
∣∣∣∣ξ⊤(D − s− t

2
J

)
z

∣∣∣∣ = ∣∣∣ξ⊤(D − ED)z
∣∣∣ ≤ ∥(D − ED)ξ∥2,

where we used z ⊥ 1 and ξ⊤EDz = ⟨z,EDξ⟩ = 0, since the entries of EDξ are constant in
each of the two communities.

•

(III) = z⊤
(
D − s− t

2
J

)
z = z⊤Dz ≥ min

i
di.

Overall, we have

inf
x⊥σ,∥x∥2=1

x⊤
(
D − s− t

2
J

)
x ≥ min{nt,min

i
di} − 3∥(D − ED)ξ∥2 = Ω(log n),

where nt = nD(Q∥P )
(10.10)

≥ 2nH2(P,Q)
(10.5)
= Ω(log n), mini di = Ω(log n) w.h.p by Lemma 10.2,

and the following lemma.

Lemma 10.4. Under (10.7), ∥(D − ED)ξ∥2 = op(log n).

This completes the proof of Theorem 10.1.

10.3.1 Proof of Lemma 10.4

Write

∥(D − ED)ξ∥22 = ξ⊤(D − ED)2ξ =
∑
i

ξ2i

∑
j

(Wij − EWij)σj

2

.

Take expected value:

E∥(D − ED)ξ∥22 =
∑
i

ξ2i
∑
j

Var(Wij) = o
(
log2 n

)
,

where the last equality is due to (10.7). It follows that

E∥(D − ED)ξ∥2 ≤
(
E∥(D − ED)ξ∥22

)1/2
= o(log n),

and by Chebyshev’s inequality,

∥(D − ED)ξ∥2 − E∥(D − ED)ξ∥2 = op(log n).

Therefore ∥(D − ED)ξ∥2 = E∥(D − ED)ξ∥2 + (∥(D − ED)ξ∥2 − E∥(D − ED)ξ∥2) = op(log n).
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§ 11. Ranking from Pairwise Comparisons (by Cheng Mao)

Ranking from comparisons arises in various applications, including recommender systems, social
choice and sports tournament. We consider the following setup. Suppose that there are items
1, . . . , n associated with unknown ranks π∗(1), . . . , π∗(n), where π∗ : [n] → [n] is a permutation.
Observing a set of pairwise comparisons, each of the form i ≻ j meaning that “item i beats item j”,
we aim to recover the ranking π∗.

11.1 Modeling pairwise comparisons

We first give an overview of common models for ranking from pairwise comparisons.

11.1.1 Models for probabilities of outcomes

Each pairwise comparison is a Bernoulli outcome. Let us denote the probability that the item at
rank k beats the item at rank ℓ by Mk,ℓ where M ∈ Rn×n, so that

I{i ≻ j} ∼ Ber(Mπ∗(i),π∗(j)).

In the sequel, we present several models on the matrix M of probabilities. It is vacuous to compare
an item to itself, so we assume without loss of generality that Mi,i = 1/2 for i ∈ [n]. Moreover, we
consider the case that there is one and only one winner in a pairwise comparison, so it always holds
that Mk,ℓ +Mℓ,k = 1.

Parametric models Parametric models assume that for i ∈ [n], item i is associated with a
strength parameter θi ∈ R, and

Mπ∗(i),π∗(j) = F (θi − θj)

where F : R → (0, 1) is a known, increasing link function. Two classical examples are the logistic
function F (x) = 1

1+e−x and the Gaussian cumulative density function, which correspond to the
Bradley-Terry model and the Thurstone model respectively.

Noisy sorting The noisy sorting model [BM08] assumes that

Mk,ℓ =

{
1/2 + λ if k > ℓ,

1/2− λ if k < ℓ.
(11.1)

This is the model we focus on later, as it is simple yet captures important concepts and tools.
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Strong stochastic transitivity Strong stochastic transitivity (SST) means that for any triplet
(k, ℓ,m) ∈ [n]3 such that k < ℓ < m, we have

Mk,m ≥Mk,ℓ ∨Mℓ,m.

In matrix terminology, this is saying that M is bivariate isotonic (bi-isotonic) in addition to the
constraint M +M = 11⊤. More precisely, all the columns of M are nonincreasing while all the
rows of M are nondecreasing. Note that any parametric model, as well as the noisy sorting model,
satisfies SST.

11.1.2 Sampling models

We consider uniform sampling. Namely, for m ∈ [N ] where N is the sample size, we observe
independent outcomes

ym ∼ Ber(Mπ∗(im),π∗(jm)), (11.2)

where the random pairs (im, jm) are sampled uniformly randomly with replacement from all possible
pairs {(i, j)}i ̸=j . Here ym = 1 means that im ≻ jm and ym = 0 means that jm ≻ im. We collect the
outcomes of comparisons in a matrix A ∈ Rn×n whose entry Ai,j is defined to be the number of
times item i beats item j.

Note that for parametric models, we have for m ∈ [N ],

E[ym] = F (θim − θjm) = F
(
x⊤m θ

)
,

where xm = eim − ejm is the design point. This is simply the setup of generalized linear regression.
Particularly, the Bradley-Terry model is essentially logistic regression with this special design.

11.2 Kendall’s tau and minimax rates for noisy sorting

In general, we would like to estimate both π∗ and M , but let us focus on estimating π∗ under the
noisy sorting model (11.1) for the rest of the notes. Full details of the discussion can be found in
the paper [MWR18].

Consider the Kendall tau distance, i.e., the number of inversions between permutations, defined
as

dKT(π, σ) =
∑

i,j∈[n]

I
(
π(i) > π(j), σ(i) < σ(j)

)
.

Note that dKT(π, σ) ∈ [0,
(
n
2

)
] and it is equal to the minimum number of adjacent transpositions

required to change from π to σ (think of bubble sort). A closely related distance is the ℓ1-distance,
also known as Spearman’s footrule, defined as

∥π − σ∥1 =
n∑

i=1

|π(i)− σ(i)|.

It is well known [DG77] that

dKT(π, σ) ≤ ∥π − σ∥1 ≤ 2dKT(π, σ). (11.3)

Theorem 11.1. Consider the noisy sorting model (11.1) with λ ∈ (0, 12 − c] where c is a positive
constant. Suppose N independent comparisons are given according to (11.2). Then it holds that

min
π̃

max
π∗

Eπ∗ [dKT(π̃, π
∗)] ≍ n3

Nλ2
∧ n2.
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11.2.1 Inversions and metric entropy

Before proving the theorem, we study the metric entropy of the set of permutations Sn with respect
to the Kendall tau distance dKT. Let B(π, r) = {σ ∈ Sn : dKT(π, σ) ≤ r}.

The inversion table b1, . . . , bn of a permutation π ∈ Sn is defined by

bi =
∑
j:i<j

I
(
π(i) > π(j)

)
.

Note that bi ∈ {0, 1, . . . , n− i} and dKT(π, id) =
∑n

i=1 bi. On can reconstruct a permutation using
its inversion table {bi}ni=1, so the set of inversion tables is bijective to Sn. (Try the permutation
(3 5 2 4 1) which has inversion table (4 2 0 1 0).)

Lemma 11.1. For 0 ≤ k ≤
(
n
2

)
, we have that

n log(k/n)− n ≤ log |B(id, k)| ≤ n log(1 + k/n) + n .

Proof. According to the discussion above, |B(id, k)| is equal to the number of inversion tables
b1, . . . , bn such that

∑n
i=1 bi ≤ k where bi ∈ {0, 1, . . . , n− i}. On the one hand, if bi ≤ ⌊k/n⌋ for all

i ∈ [n], then
∑n

i=1 bi ≤ k, so a lower bound is given by

|B(id, k)| ≥
n∏

i=1

(⌊k/n⌋+ 1) ∧ (n− i+ 1)

≥
n−⌊k/n⌋∏

i=1

(⌊k/n⌋+ 1)
n∏

i=n−⌊k/n⌋+1

(n− i+ 1)

≥ (k/n)n−k/n⌊k/n⌋! .

Using Stirling’s approximation, we see that

log |B(id, k)| ≥ n log(k/n)− (k/n) log(k/n) + ⌊k/n⌋ log⌊k/n⌋ − ⌊k/n⌋
≥ n log(k/n)− n .

On the other hand, if bi is only required to be a nonnegative integer for each i ∈ [n], then we can
use a standard “stars and bars” counting argument to get an upper bound

|B(id, k)| ≤
(
n+ k

n

)
≤ en(1 + k/n)n .

Taking the logarithm finishes the proof.

For ε > 0 and S ⊆ Sn, let N(S, ε) and D(S, ε) denote respectively the ε-covering number and
the ε-packing number of S with respect to dKT.

Proposition 11.1. We have that for ε ∈ (0, r),

n log
( r

n+ ε

)
− 2n ≤ logN(B(π, r), ε) ≤ logD(B(π, r), ε) ≤ n log

(2n+ 2r

ε

)
+ 2n .

For n ≲ ε < r ≤
(
n
2

)
, the ε-metric entropy of B(π, r) scales as n log r

ε . In other words, Sn

equipped with dKT is a doubling space1 with doubling dimension Θ(n).

1A metric space (X, d) is called a doubling space with doubling dimension log2M , if M is the smallest number
such that any ball of radius r in (X, d) can be covered with M balls of radius r/2.
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Proof. The relation between the covering and the packing number is standard. We employ a volume
argument for the bounds. Let P be a 2ε-packing of B(π, r) so that the balls B(σ, ε) are disjoint for
σ ∈ P. By the triangle inequality, B(σ, ε) ⊆ B(π, r + ε) for each σ ∈ P. By the invariance of the
Kendall tau distance under composition, Lemma 11.1 yields

logD(B(π, r), 2ε) ≤ n log(1 + r/n) + n− n log(ε/n) + n

= n log
(n+ r

ε

)
+ 2n .

In addition, if N is an ε-net of B(π, r), then the set of balls {B(σ, ε)}σ∈N covers B(π, r). By
Lemma 11.1, we obtain

logN(B(π, r), ε) ≥ log |B(π, r)| − log |B(σ, ε)|
≥ n log(r/n)− n− n log(1 + ε/n)− n

= n log
( r

n+ ε

)
− 2n ,

as claimed.

11.2.2 Proof of the minimax upper bound

We only present the proof of the upper bound in Theorem 11.1 with λ = 1/4 for simplicity. The
estimator we use is a sieve maximum likelihood estimator (MLE), meaning that it is the MLE over
a net (called a sieve). More precisely, define φ = n

N

(
n
2

)
. Let P be a maximal φ-packing (and thus a

φ-net) of Sn with respect to dKT. Consider the sieve MLE

π̂ ∈ argmax
π∈P

∑
π(i)<π(j)

Ai,j . (11.4)

Basic setup Since P is a φ-net, there exists σ ∈ P such that D ≜ dKT(σ, π
∗) ≤ φ. By definition

of π̂,
∑

π̂(i)<π̂(j)Ai,j ≥
∑

σ(i)<σ(j)Ai,j . Canceling concordant pairs (i, j) under π̂ and σ, we see that∑
π̂(i)<π̂(j), σ(i)>σ(j)

Ai,j ≥
∑

π̂(i)>π̂(j), σ(i)<σ(j)

Ai,j .

Splitting the summands according to π∗ yields that∑
π̂(i)<π̂(j),
σ(i)>σ(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̂(i)<π̂(j),
σ(i)>σ(j),

π∗(i)>π∗(j)

Ai,j ≥
∑

π̂(i)>π̂(j),
σ(i)<σ(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̂(i)>π̂(j),
σ(i)<σ(j),

π∗(i)>π∗(j)

Ai,j .

Since Ai,j ≥ 0, we may drop the rightmost term and drop the condition π̂(i) < π̂(j) in the leftmost
term to obtain that ∑

σ(i)>σ(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̂(i)<π̂(j),
σ(i)>σ(j),

π∗(i)>π∗(j)

Ai,j ≥
∑

π̂(i)>π̂(j),
σ(i)<σ(j),

π∗(i)<π∗(j)

Ai,j . (11.5)

To set up the rest of the proof, we define, for π ∈ P,

Lπ = |{(i, j) ∈ [n]2 : π(i) < π(j), σ(i) > σ(j), π∗(i) > π∗(j)}|
= |{(i, j) ∈ [n]2 : π(i) > π(j), σ(i) < σ(j), π∗(i) < π∗(j)}| .
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Moreover, define the random variables

Xπ =
∑

π(i)>π(j),
σ(i)<σ(j),

π∗(i)<π∗(j)

Ai,j , Yπ =
∑

π(i)<π(j),
σ(i)>σ(j),

π∗(i)>π∗(j)

Ai,j , and Z =
∑

σ(i)>σ(j),

π∗(i)<π∗(j)

Ai,j .

We show that the random process Xπ − Yπ −Z is positive with high probability if dKT(π, σ) is large.

Binomial tails For a single pairwise comparison sampled uniformly from the possible
(
n
2

)
pairs,

the probability that

1. the chosen pair (i, j) satisfies π(i) > π(j), σ(i) < σ(j) and π∗(i) < π∗(j), and

2. item i wins the comparison,

is equal to 3
4Lπ

(
n
2

)−1
. By definition, Xπ is the number of times the above event happens if N

independent pairwise comparisons take place, so Xπ ∼ Bin
(
N, 34Lπ

(
n
2

)−1)
. Similarly, we have

Yπ ∼ Bin
(
N, 14Lπ

(
n
2

)−1)
and Z ∼ Bin

(
N, 34D

(
n
2

)−1)
. The tails of a Binomial random variable can

be bounded by the following lemma.

Lemma 11.2. For 0 < r < p < s < 1 and X ∼ Bin(N, p), we have

P(X ≤ rN) ≤ exp
(
−N

(p− r)2

2p(1− r)

)
and P(X ≥ sN) ≤ exp

(
−N

(p− s)2

2s(1− p)

)
.

Therefore, we obtain

1. P
(
Xπ ≤ 5

8LπN
(
n
2

)−1) ≤ exp
(
− LπN

(
n
2

)−1
/128

)
,

2. P
(
Yπ ≥ 3

8LπN
(
n
2

)−1) ≤ exp
(
− LπN

(
n
2

)−1
/128

)
, and

3. P
(
Z ≥ 2φN

(
n
2

)−1) ≤ exp
(
− φN

(
n
2

)−1
/4
)
= exp(−n/4) .

Then we have that

P
(
Xπ − Yπ ≤ 1

4LπN
(
n
2

)−1) ≤ 2 exp
(
− LπN

(
n
2

)−1
/128

)
. (11.6)

Peeling and union bounds For an integer r ∈ [Cφ,
(
n
2

)
] where C is a sufficiently large constant

to be chosen, consider the slice Sr = {π ∈ P : Lπ = r}. Note that if π ∈ Sr, then

dKT(π, π
∗) = |{(i, j) : π̂(i) < π̂(j), π∗(i) > π∗(j)}|

≤ |{(i, j) : π̂(i) < π̂(j), σ(i) > σ(j), π∗(i) > π∗(j)}|
+ |{(i, j) : σ(i) < σ(j), π∗(i) > π∗(j)}|

= Lπ + dKT(σ, π
∗) ≤ r + φ , (11.7)

showing that Sr ⊆ B(π∗, r + φ). Therefore, Proposition 11.1 gives

log |Sr| ≤ n log
2n+ 2r + 2φ

φ
+ 2n ≤ n log

45r

φ
.
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By (11.6) and a union bound over Sr, we have minπ∈Sr(Xπ − Yπ) >
1
4rN

(
n
2

)−1
with probability

1− exp
(
n log

45r

φ
+ log 2− rN

128
(
n
2

)) ≥ 1− exp(−2n) ,

where the inequality holds by the definition of φ and the range of r. Then a union bound over
integers r ∈ [Cφ,

(
n
2

)
] yields that

Xπ − Yπ >
C

4
φN

(
n

2

)−1

for all π ∈ P such that Lπ ≥ Cφ with probability at least 1− e−n. This is larger than the above
high probability upper bound on Z, so we conclude that with probability at least 1− e−n/8,

Xπ − Yπ − Z > 0

for all π ∈ P with Lπ ≥ Cφ. However, (11.5) says that Xπ̂ − Yπ̂ −Z ≤ 0, so Lπ̂ ≤ Cφ on the above
event. By (11.7), dKT(π̂, π

∗) ≤ Lπ̂ + φ on the same event, which completes the proof.

11.3 An efficient algorithm for noisy sorting

Let us move on to present an efficient algorithm. We continue to assume λ = 1/4. To recover the
underlying order of items, it is equivalent to estimate the row sums

∑n
j=1Mπ∗(i),π∗(j) which we call

scores of the items. Initially, for each i ∈ [n], we estimate the score of item i by the number of wins
item i has. If item i has a much higher score than item j in the first stage, then we are confident
that item i is stronger than item j. Hence in the second stage, we know Mπ∗(i),π∗(j) = 3/4 with
high probability. For those pairs that we are not certain about, Mπ∗(i),π∗(j) is still estimated by its
empirical version. The variance of each score is thus greatly reduced in the second stage, thereby
yielding a more accurate order of the items. Then we iterate this process to obtain finer and finer
estimates of the scores and the underlying order.

To present the T -stage sorting algorithm formally, we split the sample into T subsamples each

containing N/T pairwise comparisons. For t ∈ [T ], we define a matrix A(t) ∈ Rn×n by setting A
(t)
i,j

to be the number of times item i beats item j in the t-th sample. The algorithm proceeds as follows:

1. For i ∈ [n], define I(0)(i) = [n], I
(0)
− (i) = ∅ and I

(0)
+ (i) = ∅. For 0 ≤ t ≤ T , we use I(t)(i) to

denote the set of items j whose ranking relative to i has not been determined by the algorithm
at stage t.

2. At stage t, compute the score S
(t)
i of item i:

S
(t)
i =

T
(
n
2

)
N

∑
j∈I(t−1)(i)

A
(t)
i,j +

3

4

∣∣I(t−1)
− (i)

∣∣+ 1

4

∣∣I(t−1)
+ (i)

∣∣ .
3. Set the threshold

τ
(t)
i ≍ n

√
|I(t−1)(i)|TN−1 log(nT ) ,

and define the sets

I
(t)
+ (i) = {j ∈ [n] : S

(t)
j − S

(t)
i < −τ (t)i },

I
(t)
− (i) = {j ∈ [n] : S

(t)
j − S

(t)
i > τ

(t)
i }, and

I(t)(i) = [n] \
(
I
(t)
− (i) ∪ I(t)+ (i)

)
.
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4. Repeat step 2 and 3 for t = 1, . . . , T . Output a permutation π̂MS by sorting the scores S
(T )
i in

nonincreasing order, i.e., S
(T )
i ≥ S

(T )
j if π̂MS(i) < π̂MS(j).

We take T = ⌊log log n⌋ so that the overall time complexity of the algorithm is only O(n2 log logn).

Theorem 11.2. With probability at least 1− n−7, the algorithm with T = ⌊log logn⌋ stages outputs
an estimator π̂MS that satisfies

∥π̂MS − π∗∥∞ ≲
n2

N
(log n) log log n

and

dKT(π̂
MS, π∗) ≲

n3

N
(log n) log log n .

The second statement follows from the first one together with (11.3).

11.3.1 Proof (sketch) of Theorem 11.2

Assume that π∗ = id without loss of generality. We define a score

s∗i =
∑

j∈[n]\{i}

Mi,j =
i

2
+
n

4
− 3

4

for each i ∈ [n], which is simply the i-th row sum of M minus 1/2.

Lemma 11.3. Fix t ∈ [T ], I ⊆ [n] and i ∈ I. Let us define

S =
T
(
n
2

)
N

∑
j∈I

A
(t)
i,j +

3

4

∣∣{j ∈ [n] \ I : j < i}
∣∣+ 1

4

∣∣{j ∈ [n] \ I : j > i}
∣∣ .

If |I| is not too small, then it holds with probability at least 1− (nT )−9 that

|S − s∗i | ≲ n
√
|I|TN−1 log(nT ) .

Proof. The probability that a uniform pair consists of item i and an item in I \ {i}, and that item i

wins the comparison, is equal to q ≜
(∑

j∈I\{i}Mi,j

)
/
(
n
2

)
. Thus the random variable X ≜

∑
j∈I A

(t)
i,j

has distribution Bin(N/T, q). In particular, we have E[X] = Nq/T = N
T(n2)

∑
j∈I\{i}Mi,j , so S is an

unbiased estimate of s∗i . Moreover, we have the tail bound

P
(∣∣X − E[X]

∣∣ ≳√qNT−1 log(nT )
)
≤ (nT )−9 ,

from which the conclusion follows.

We apply Lemma 11.3 inductively to each stage of the algorithm. By a union bound over all
i ∈ [n] and t ∈ [T ], all the events studied below hold with high probability. For t ∈ [T ], define

E(t−1) ≜
{
j < i for all j ∈ I

(t−1)
− (i) and j > i, for all j ∈ I

(t−1)
+ (i)

}
.

On the event E(t−1), the score S
(t)
i is exactly the quantity S in Lemma 11.3 with I = I(t−1)(i), so

|S(t)
i − s∗i | ≲ n

√
|I(t−1)(i)|TN−1 log(nT ) = τ

(t)
i /2. (11.8)
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For any j ∈ I
(t)
+ (i), by definition S

(t)
j − S

(t)
i < −τ (t)i , so we have s∗j < s∗i and thus j > i. Similarly,

j < i for any j ∈ I
(t)
− (i). Hence E(t) occurs with high probability. Moreover, if |s∗j − s∗i | > 2τ

(t)
i , then

|S(t)
j − S

(t)
i | > τ

(t)
i , so j /∈ I(t)(i). Hence if j ∈ I(t)(i), then |j − i| ≲ τ

(t)
i . Consequently,

|I(t)(i)| ≲ τ
(t)
i ≲ n

√
|I(t−1)(i)|TN−1 log(nT ) . (11.9)

Note that if we have α(0) = n and the iterative relation α(t) ≤ β
√
α(t−1) where α(t) > 0 and

β > 0, then it is easily seen that α(t) ≤ β2n2
−t
. Consequently, we obtain that

|I(T−1)(i)| ≲ n2T

N
log(nT )n2

−T+1
≲
n2

N
(log n)(log log n)

for T = ⌊log logn⌋. Taking T to be larger does not make |I(T−1)(i)| smaller, because Lemma 11.3
requires a lower bound on |I(T−1)(i)|. The details are left out. It follows from (11.8) that

|S(T )
i − s∗i | ≲

n2

N
(log n) log log n =: δ .

As the permutation π̂MS is defined by sorting the scores S
(T )
i in nonincreasing order, we see that

π̂MS(i) < π̂MS(j) for all pairs (i, j) with s∗i − s∗j > 2δ, i.e., j − i > δ.
Finally, suppose that π̂MS(i) − i > δ for some i ∈ [n]. Then there exists j > i + δ such that

π̂MS(j) < π̂MS(i), contradicting the guarantee we have just proved. A similar argument leads to a
contradiction if π̂MS(i)− i < −δ. Therefore, we obtain that |π̂MS(i)− i| ≤ δ, completing the proof.
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§ 12. Grothendieck Inequality and its Application in SBM

Previously in Lecture 10, we discussed the exact recovery of SBM. In this lecture, we turn to the
almost exact recovery. Let σ be the community labels of nodes. Recall that the loss to evaluate a
community estimate σ̂ is l(σ, σ̂) = 1

n mins∈{±} dH(σ, sσ̂), where dH(x, y) is the Hamming distance∑
i 1 {xi ̸= yi}. We call σ̂ an almost exact recovery if El(σ, σ̂) = o(1), and an Exact recovery if

l(σ, σ̂) = 0 w.h.p. We have seen that the requirement is H2(P,Q) ≥ (2+ϵ) logn
n for ∀ϵ > 0 for exact

recovery. Here we are going to show the necessary and sufficient condition for almost exact recovery
is H2(P,Q) ≫ 1

n , which can be achieved by SDP relaxation.
We first introduce the key technical tool: Grothendieck Inequality (Theorem 12.1). Then we

discuss its application to SBM following Guédon-Vershynin [GV16].

12.1 ∥ · ∥∞→1 norm

Consider A ∈ Rn×m. We look at the following optimization

max
xi,yj∈{±}

∑
1≤i≤n,1≤j≤m

aijxiyj = max
x∈{±}n,y∈{±}m

⟨A, xy⊤⟩. (12.1)

Remark 12.1. The objective above (12.1) is a norm of A, denoted as ∥A∥∞→1 = max∥x∥∞≤1 ∥Ax∥1.
This is easily seen by writing ∥ · ∥1 in the dual form.

Moreover, when A is PSD, A = U⊤U and hence ⟨A, xy⊤⟩ = ⟨Ux,Uy⟩ ≤ ∥Ux∥2∥Uy∥2, where
the inequality is met with equality when x = y. Thus, ∥A∥∞→1 = maxx∈{±}n,y∈{±}m⟨A, xy⊤⟩ =
maxx∈{±}n⟨A, xx⊤⟩.

Remark 12.2. ∥A∥∞→1 is closely related to the cut norm. The cut norm ∥A∥cut is defined as
(cf. the min cut in Lecture 10)

∥A∥cut = max
I⊂[n],J⊂[m]

∣∣∣∣∣∣
∑

i∈I,j∈J
aij

∣∣∣∣∣∣ .
The relation of the two norms is

∥A∥cut ≤ ∥A∥∞→1 ≤ 4∥A∥cut.

The left side inequality can be seen by

∥A∥cut = max
I⊂[n],J⊂[m]

∣∣∣∣∣∣
∑

i∈I,j∈J
aij

∣∣∣∣∣∣ ≤ max
I⊂[n],J⊂[m]

∑
i∈I

∣∣∣∣∣∣
∑
j∈J

aij

∣∣∣∣∣∣ ≤ max
J

∥AxJ∥1 ≤ ∥A∥∞→1.

xJ is the indicator vector of J . The right side inequality can be shown by writing x = xI − xIc ,
y = yJ − yJc in (12.1).
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We have the SDP relaxation of ∥A∥∞→1: for r ≥ n+m (otherwise it is nonconvex),

SDP(A) = max
ui,vj∈Rr,∥ui∥=∥vj∥=1

n∑
i=1

m∑
j=1

aij⟨ui, vj⟩. (12.2)

When A is PSD, since ∥A∥∞→1 = maxx∈{±}n⟨A, xx⊤⟩, we can just take ui = vi.

Remark 12.3. When r = 1, SDP(A) corresponds to ∥A∥∞→1. Thus it is indeed a “relaxation” of
the norm: ∥A∥∞→1 ≤ SDP(A).

Remark 12.4 (Dimension-free). SDP(A) is dimension-free in the sense that the value does not
depend on r as long as r ≥ n+m. In particular, if it helps construction, we are free to consider
the infinite-dimensional setting, e.g., the decision variables ui, vj take values in the Hilbert space of
random variables – and we will do so next.

Remark 12.5 (Standard Form). SDP(A) can be written into a standard SDP form

SDP(A) = max
X⪰0,Xii=1

⟨W,X⟩

where W =

(
0 A
A⊤ 0

)
. The correspondence is by writing

X =

(
U⊤

V ⊤

)(
U V

)
=

(
UTU UTV
V TU V TV

)
.

We can see the role of r in SDP(A) is rank(X) ≤ r. But X is n + m by n + m, so as long as
r ≥ n+m, this constrain disappears.

12.2 Grothendieck Inequality

Theorem 12.1 (Grothendieck Inequality).

∥A∥∞→1 ≤ SDP(A) ≤ k∥A∥∞→1.

Here the absolute constant k can be chosen as k = 1
4
π
−1

≈ 3.66 (with the world record ≈ 1.78).

Proof: following Rietz [Rie74]. The left side is obvious and stated in Remark 12.3. We focus on
the right side. The main idea is randomized rounding. Let ui, vj ∈ Sd−1 achieve the maximum in
SDP(A) (12.2) and d = n+m. We hope such ui, vj can match (not too far away from in objective)
the xi, yj in (12.1). If we take some random xi, yj , then we can have the lower bound

∥A∥∞→1 ≥ E
∑
i,j

aijxiyj =
∑
i,j

aijE(xiyj).

But aij can be positive or negative, so we cannot go further directly.

Consider xi = sgn(⟨g, ui⟩), and yj = sgn(⟨g, vj⟩), where g ∼ N(0, Id).

Fact 12.1. Note that g
∥g∥ ∼ unif (Sd−1), so

Exiyj =
2

π
arcsin⟨ui, vj⟩.
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Denote by gui = ⟨g, ui⟩ and gvj = ⟨g, vj⟩. We consider the generic setting xi = f(gui), yj = f(gvj )
for some f : R → [−1, 1]. We have the following facts.

Fact 12.2. 1. Egugv = ⟨u, v⟩.

2. Eguf(gv) = ⟨u, v⟩EZf(Z) ≜ ⟨u, v⟩K, Z ∼ N(0, 1).

3. E(gu − f(gu))
2 = 1− 2K + L, L ≜ Ef2(Z).

The facts hold noticing each gu ∼ N(0, 1). Then

∥A∥∞→1 ≥
∑

aijExiyj

=
∑

aijEf(gui)f(gvj )

=
∑

aijE(gui − f(gui))(gvj − f(gvj ))−
∑

aijEguigvj

+
∑

aijE
(
gvjf(gui) + guif(gvj )

)
(def of ui, vj) =

∑
aijE(gui − f(gui))(gvj − f(gvj ))︸ ︷︷ ︸

⋆

+(2K − 1)SDP(A).

The magical next step is observing (⋆) is a feasible representation (after normalizing) in (12.2).
More formally, consider the Hilbert space H consisting of L2(µ) square-integrable functions with

standard Gaussian measure µ on Rd and ⟨h, h̃⟩H ≜ E
[
h(g)h̃(g)

]
. Then

SDP(A) = max
hi,h̃j∈H:∥hi∥H=∥h̃j∥H=1

∑
i,j

aij⟨hi, h̃j⟩H

≥
∑
i,j

aij
−⟨⟨ui, ·⟩ − f(⟨ui, ·⟩), ⟨vj , ·⟩ − f(⟨vj , ·⟩)⟩H

∥⟨⟨ui, ·⟩ − f(⟨ui, ·⟩)∥H∥ ⟨vj , ·⟩ − f(⟨vj , ·⟩)∥H

=
∑
i,j

aij
−E

[
(gui − f(gui))

(
gvj − f(gvj )

)]√
E
[
(gui − f(gui))

2
]√

E
[(
gvj − f(gvj )

)2]
= − 1

1− 2K + L

∑
i,j

aijE
[
(gui − f(gui))

(
gvj − f(gvj )

)]
.

Thus
(⋆) ≥ −(1− 2K + L)SDP(A).

⇒ ∥A∥∞→1 ≥ (4K − L− 2)SDP(A).

Let f = sgn. Then L = 1, K = E|Z| =
√

2
π , and hence 4K − L − 2 = 4

√
2
π − 3 > 0.19. So we

proved that we can choose k = 5.27 > 1/0.19 in the theorem.
Moreover, there is a natural way to improve the constant. If we replace f by αf in the derivation

above, then

α2∥A∥∞→1 ≥
∑

aijEαf(gui) · αf(gvj )

=
∑

aijE(gui − αf(gui))(gvj − αf(gvj ))−
∑

aijEguigvj

+
∑

aijE
(
αgvjf(gui) + αguif(gvj )

)
=(⋆)(α) + (2αK − 1)SDP(A).
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And
(⋆)(α) ≥ −(1− 2αK + α2L)SDP(A).

Then the statement would be

∥A∥∞→1 ≥
(
4K

α
− 2

α2
− L

)
SDP(A).

The optimal α is 1
K , and the bound is

∥A∥∞→1 ≥
(
2K2 − L

)
SDP(A)

In the case f = sgn, 2K2 − L = 4
π − 1 > 0.273, as suggested in the theorem.

Remark 12.6 (Optimizing the choice of f). Clearly, the best strategy is to let

f = arg max
|f |≤1,EZf(Z)>0

2K2 − L.

It is shown in [Rie74] that the solution is given by the bounded linear function, that is,

f(x) =

{
2Kx |x| ≤ 1

2K

sgn(x) |x| > 1
2K

.

where K is chosen such that K = E [Zf(Z)] . Plugging in the above choice of f and using the
Gaussian integration by parts, we have E [Zf(Z)] = E [f ′(Z)] = 2KE [1 {|Z| ≤ 1/2K}] . Thus the
requirement K = E [Zf(Z)] is equivalent to 1 = 2P [|Z| ≤ 1/2K] . Moreover, the optimal value
2K2 − L = E [(2KZ − f(Z))f(Z)] = E [(2K|Z| − 1)1 {|Z| ≤ 1/2K}] = 2KE [|Z|1 {|Z| ≤ 1/2K}]−
P [|Z| ≤ 1/2K] = 2K

√
2
πe

−1/(8K2) − 1/2, which is bigger than 0.4423, by checking the table of

Gaussian integrals. Thus, by the above proof of Theorem 12.1, we get that the Grothendick’s
constant k < 2.261.

Remark 12.7 (PSD A). When A is psd, the optimal bound is

∥A∥∞→1 ≥
2

π
SDP(A).

In this case, we can lower bound (⋆) by 0 instead, since by design ui = vi and A is psd in this case.
Then

∥A∥∞→1

SDP(A)
≥ sup

α

2αK − 1

α2
= K2 =

2

π
.

To show the sharpness, we construct examples that (asymptotically) achieve the bound. Let

li
i.i.d∼ unif(Sd−1), Aij =

1
n2 ⟨li, lj⟩. Choose ui = vi = li in (12.2), we have

SDP(A) ≥ 1

n2

∑
i,j

⟨li, lj⟩2
LLN
≈ E⟨l, l′⟩2 = 1

d
(1 + o(1)).

But

∥A∥∞→1

w.h.p
≤ 1 + o(1)

d

√
2

π
.

This is because

∥A∥∞→1 = max
x∈{±}n

⟨A, xx⊤⟩ = max
x∈{±}n

1

n2

∑
i,j

xixj⟨li, lj⟩ ≤
1

n2

∑
i,j

|⟨li, lj⟩|
LLN
≈ E|⟨l, l′⟩| = 1 + o(1)

d

√
2

π
.
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Remark 12.8 (Connection to max-cut). Given a weighted graph with positive weight matrix W ,
similar to min-cut in (10.2), define:

maxcut(W ) ≜ max
I⊂[n]

∑
i∈I,j∈Ic

Wij .

Then on one hand,

2maxcut(W ) = max
σ∈{±}n

∑
Wij(1− σiσj)

= max
σ∈{±}n

⟨W,J − σσ⊤⟩

≤ max
X⪰0,Xii=1

⟨W,J −X⟩ ≜ GW (W ).

On the other hand, following similarly as the proof of Theorem 12.1, we have

2maxcut(W ) ≥
∑
ij

Wij

(
1− sgn (gui) sgn

(
guj

))
=
∑

Wij

(
1− 2

π
arccos⟨ui, uj⟩

)
≥ 0.878

∑
Wij (1− ⟨ui, uj⟩)

= 0.878×GW (W ),

where the last inequality holds because Wij ≥ 0 and 2
π arccos ρ ≥ 0.878(1− ρ) for all ρ ∈ [−1, 1].

12.3 Application to SBM

Consider SBM(n, p, q) with p = a
n , q =

b
n , and bisection ⟨σ,1⟩ = 0. Define d = a+b

2 , and s = a− b.
Recall in the bisection case (see Remark 10.2), the MLE has the following SDP relaxation

X̂ = argmax ⟨A,X⟩.
X ⪰ 0

Xii = 1

⟨X, J⟩ = 0

We claim that the necessary and sufficient condition is

(a− b)2

a+ b
→ ∞.

Here (a−b)2

a+b can be interpreted as the signal-to-noise ratio (snr). In the more general P/Q model,

the condition is H2(P,Q) ≫ 1
n , which recovers the above when P = Bern(p) and Q = Bern(q).

Theorem 12.2 ([GV16]). Let v̂ be the top eigenvector of X̂, and σ̂ = sgn(v̂). Then

El(σ̂, σ)
(also w.h.p)

≲
1√
snr

.
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Note: The above misclassification rate is later sharpened to exponential (optimal) by [FC18]:

El(σ̂, σ) ≤ exp(−Ω(snr)).

Proof. Unlike exact recovery, here we do not know too much about the behavior of the optimal
solution X̂ and hence it is not easy to apply the dual certificate argument. Instead, we will follow
the primal proof.

Define the population solution

X∗ = argmax ⟨EA,X⟩
X ⪰ 0

Xii = 1

⟨X, J⟩ = 0

We can calculate

EA =
p+ q

2
J +

p− q

2
σσ⊤ − pI,

and justify σσ⊤ = X∗.
At a high level, we expect that since A is “close” to E [A], it follows that the optimal solutions

X̂ and X∗ are also close. To capture this intuition, we decompose

⟨EA, X̂⟩ = ⟨A, X̂⟩ − ⟨A− EA, X̂⟩

≥ ⟨A,X∗⟩ − ⟨A− EA, X̂⟩

= ⟨EA,X∗⟩+ ⟨A− EA,X∗⟩ − ⟨A− EA, X̂⟩︸ ︷︷ ︸
≜−δ

,

where the first inequality follows from the optimality of X̂. If we can somehow say δ ≤ 0, in other
words ⟨A − EA,X∗⟩ − ⟨A − EA, X̂⟩ ≥ 0, then we can conclude ⟨EA, X̂⟩ ≥ ⟨EA,X∗⟩, and thus
X̂ = X∗. Though this is not possible in general, we can show δ is not too big to get the conclusion.
Let v̂ = v1(X̂), v = v1(X

∗) = σ√
n
, then by the Davis-Kahan sinθ theorem,

min ∥v̂ ± v∥2 ≲
∥X̂ −X∗∥op

λ1(X∗)− λ2(X̂)
≤ ∥X̂ −X∗∥F
n− ∥X̂ −X∗∥F

,

where the last inequality follows by Weyl’s theorem so that λ2(x̂) ≤ λ2(X
∗) + ∥X̂ − X∗∥op ≤

∥X̂ −X∗∥op ≤ ∥X̂ −X∗∥F . Also note that for every σi ̸= σ̂i, ∥v̂ ± v∥22 differs at least 1
n at this i.

Thus

l(σ̂, σ) ≤ 1

n
· nmin ∥v̂ ± v∥22 ≲

∥X̂ −X∗∥2F
n2

.

Suppose n
√
d

w.h.p

≳ δ ≥ ⟨EA,X∗⟩ − ⟨EA, X̂⟩ = p−q
2 (n2 − ⟨σσ⊤, X̂⟩). Then

∥X̂ −X∗∥2F = ∥X̂∥2F + ∥X∗∥2F − 2⟨X̂,X∗⟩

= ∥X̂∥2F + n2 − 2⟨X̂, σσ⊤⟩

≤ Tr(X̂)2 + n2 − 2⟨X̂, σσ⊤⟩

= 2(n2 − ⟨σσ⊤, X̂⟩) ≲ δ

p− q
=

nδ

a− b
≤ n2√

snr
.
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This completes the proof. So it remains only to show δ
w.h.p

≲ n
√
d. Denote W = A− EA. We want

to show
1

2
|δ| ≤ SDP(W ) = max

X⪰0,Xii=1
⟨W,X⟩

w.h.p

≲ n
√
d.

By Grothendieck Inequality,

SDP(W ) = max
∥ui∥=1

∑
i,j

Wij⟨ui, uj⟩

≤ max
∥ui∥=∥vj∥=1

∑
i,j

Wij⟨ui, vj⟩

G.I.

≲ ∥W∥∞→1

= max
x,y∈{±}n

⟨W,xy⊤⟩.

By Hoeffding’s inequality Lemma 2.2,

P(|⟨W,xy⊤⟩| ≥ t) ≤ exp(−c · t
2

n2
).

To apply union bound on x, y, which in total 4n, we need to choose t ∼ n3/2. We apply Bernstein’s
inequality instead,

P(|⟨W,xy⊤⟩| ≥ t) ≤ exp

(
− t2

2Var(⟨W,xy⊤⟩) + 2t/3

)
≤ exp

(
−c · t2

nd+ t

)
,

then we can choose t ∼ n
√
d.

Remark 12.9. Note that the constraint Xii = 1 is crucial. If such constraint were replaced
by Tr(X) = n instead, then we would have maxX⪰0,Tr(X)=n ⟨W,X⟩ = n∥W∥op. In the sparse

graphs where d = o(log n), we have ∥W∥op ≍
√
dmax ≍ n

√
log n/ log(log(n)/d) ≫ n

√
d ≍ ∥W∥∞→1.

Loosely speaking, the constraint Xii = 1 supresses the spiky eigenvectors ofW located on high-degree
vertices.
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§ 13. Statistical and Computational Limits

Initiated by [BR13], studying the computational limit of statistical problems is a broad topic.
Results of varying precision have been obtained for different problems. As a case study, let us
consider the problem of submatrix detection (biclustering):

Observe
X =M + Z

where X is a N ×N matrix, M is the signal amd Z is the noise. Z is i.i.d N(0, 1) and M = µ1S1
T
S

where S ⊂ [N ], |S| = K, and S is chosen uniformly at random. The problem is parametrized by
(N,K, µ). We consider the asymptotic regime where N → ∞ and it is convenient to look at the
exponents so let K = Nα where α ∈ [0, 1] and µ = N−β where β ∈ R. We consider the problem of
detection, i.e., testing between {

H0 : X = Z (µ = 0)

H1 : X =M + Z
.

The main result can be represented in an “easy-hard-impossible” phase transition diagram shown
below.

β = 2α− 1

β = α/2

impossible

easy

hard

1

1

β

α

Figure 13.1: Difficulty of the problem in different regimes

In ”impossible” regime, i.e., when β > max{α/2, 2α − 1}. we will show that for any test
ϕ : RN×N → {0, 1},

P0(ϕ = 1) + sup
S∈([N ]

k )
PS(ϕ = 0) → 1

by showing that TV(P0,
1

(Nk )

∑
S∈([N ]

k )
PS) → 0.

In ”easy” regime, i.e., when β < max{2α− 1, 0}, there exist efficient tests that runs in O(N2)
times. More specifically, we consider the following two test statistics
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1. Linear test statistic

TSUM =
∑
i,j

Xi,j ∼

{
N(0, N2) under H0

N(µkK2, N2) under H1

.

This test suceef if µK2 ≫ N , i.e., if β < 2α− 1.

2. Max test statistic

TMAX = max
i,j

Xi,j
µ≫

√
logN
≈

{
Θ(

√
logN) under H0

µ under H1

.

This test suceef if µ≫
√
logN , i.e., if β < 0.

Now we return to the proof of the impossibility regime. Let P0 = L(Z) denote the law under the
null and P1 = L(X) denote the law under the alternative if M is draw uniformly at random. We
will prove that TV(P0, P1) → 0 by proving that χ2(P1||P0) → 0. After some algebra we get

χ2(P1||P0) = E exp
(
⟨M, M̃⟩

)
− 1

where M = µ1S1
T
S and M̃ = µ1

S̃
1
T
S̃
are i.i.d copies. Observe that

⟨M,M̃⟩ = µ2|S ∩ S̃|2 = µ2H2

where H ≜ |S ∩ S̃| follows Hyp(N,K,K) from previous lectures . Putting things together, we get

χ2(P1||P0) = E exp
(
µ2H2

)
− 1

To characterize the behavior of E exp
(
µ2H2

)
, we make use of the following lemma.

Lemma 13.1. E exp
(
λH2

)
≤ C1 if λ ≤ C2

(
1
K log eN

K ∧ N2

K4

)
.Moreover, C1 → 1 if C2 → 0.

Therefore, Lemma 13.1 is suggesting µ2 ≪ 1
K log eN

K ∧ N2

K4 , which is equivalent to β > α/2 or
β > 2α− 1.

Sveral remarks on this Lemma is in order.

1. By Jensen inequality,

E exp
(
λH2

)
≥ exp(λ

N2

K4
).

Therefore, λ = O(N
2

K4 ) is necessary.

2.
E exp

(
λH2

)
≥ exp(λK2)P(H = K)

Note that P(H = K) = 1

(NK)
≥ (NK )−K . Therefore, λ = O( 1

K log eN
K ) is also necessary.

3. Sharp constant is known.
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In ”hard” regime, i.e., 2α− 1 < β < α/2, we first consider the scan test which is not computa-
tionally efficient, but works.

TSCAN = max
|T |=K

,
∑

i∈T,j∈T
Xij .

UnderH1, TSCAN ≥
∑

i∈S,j∈S Xi,j ∼ N(µK2,K2). UnderH0, TSCAN ⪅
√
K2 log

(
N
K

)
= K3/2

√
log eN

K .

Therefore, the test works if µK2 ≫ K3/2 ⇔ β < α/2.
Now we discuss why in the regime 2α− 1 < β < α/2 the problem is computatinally hard. But

first we have to discuss wht we mean by polynomial-time algorithm. Conventionally, polynomial-time
algorithm means that

running time = O (poly(# of bits to describe the input)) .

However, gaussian random variables are theoretical objects that are continuous and takes infinite
number of values so takes infinite number of bits to describe precisely. So how do we make sense of
the ”Gaussian” noise?
Idea: find a discrete model that is asymptotically equivalent to Gaussian. To define asymptotically
equivalent we first introduce the notion of LeCam deficiency of P w.r.t Q. Let P = {Pθ : θ ∈ Θ} on
X and Q = {Qθ : θ ∈ Θ} on Y . Let T : X → Y be a Markove kernel (conditional distribution) so
that TP (dy) =

∫
T (dy|x)P (dx). Define

δ(P,Q) ≜ inf
T

sup
θ∈Θ

TV(TPθ, Qθ).

Define the LeCam distance
∆(P,Q) ≜ max{δ(P,Q), δ(Q,P)}.

Then asymptotically equivalent simply means ∆(P,Q) → 0. Now let X =M +Z be P. We discretize

X into Xt, denoted Pt, by letting (Xt)ij =
[Xij2

t]
2t .

Lemma 13.2. ∆(P(N),P(N)
t ) ≤ c′N2 exp(−ct) → 0 as long as t ≥ C logN .

Proof sketch. δ(P,Pt) = 0 by definition since we can let kernel T to be the discretization procedure.
δ(Pt,P) ⪅ N2 exp(−ct) because the total variation between (Xt)ij + Unif(0, 2−t) and (Xt)ij is
roughly exp(−ct).

Therefore, the above discussion implies that it makes sense to talk about polynomial in the
dimension N instead of the number of bits to describe the inputs.

Reduction Informally, Problem A is at least as hard as Problem B if B can be reduced to A in
polynomial time.

We will show in the following sequel that the problem in ”hard” regime is at least as hard as
the planted clique problem. Recall that the planted clique problem is a testing problem where
H0 : G ∼ G(n, 12) and H1 : G ∼ G(n, 12 , k). We will turn a planted clique problem of size n into a
submatrix detection problem of size N = nl where l → ∞. The reduction consists of three steps.

1. We find a kernel T : 0, 1 → R such that Ber(12) 7→ N(0, 1
l2
) and Ber(1) 7→ N(µ, 1

l2
). Let

1

2
(P0 + P1) = N(0,

1

l2
) = Q P1 = N(µ,

1

l2
) = P.
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Then we get P0 = 2Q− P. Indeed, we can choose P0 and P1 such that

1

2
(P0 + P1) = N(0,

1

l2
) P1 ≈ N(µ,

1

l2
).

Here the approximation denotes that the total variation distance is small.

2. Randomize the block.

3. Reduction scheme. For any s, t ∈ [n], generate a l × l block T by

T =

{
P0 if Ast = 0

P1 if Ast=1

.

This is possible because if X1, . . . , Xn i.i.d N(µ, 1), then X is sufficient statistic. In other
words, we can simulate X1, . . . , Xn given X.

Observe that under H0, X
d
= Z. Under H1, TV(L(X),L(M + Z)) → 0. The approximation

error comes from two places. a) P1 ̸= N(µ, 1
l2
) and b) diagonal l× l blocks are always N(0, 1).

So the reduction scheme works for N = nl,K = kl, l ≪ 1
µ . Pick l = 1

µ
1

logN , we see that

k ≪
√
n⇔ µ≪ N

K2 ⇔ β > 2α− 1.
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§ A. Preliminary on binary hypothesis testing

Consider a binary hypothesis testing problem:

H0 : X ∼ Q vs. H1 : X ∼ P.

The goal is to tell whether X is generated from Q or P based on observation of X. Given a test
ϕ : X → {0, 1}, where ϕ(X) = 0 means “deciding on H0 is true” and ϕ(X) = 1 means “deciding on
H1 is true”, its Type-I error (a.k.a. false positive) is Q({ϕ(X) = 1}) and Type-II error (a.k.a. false
negative) is P ({ϕ(X) = 0}).

Lemma A.1. The minimum of Type-I + Type-II errors is 1− TV(P,Q), that is

min
ϕ

{Q({ϕ(X) = 1}) + P ({ϕ(X) = 0})} = 1− TV(P,Q),

where TV(P,Q) ≜ 1
2EQ [|P/Q− 1|] = 1

2

∫
|P − Q| = supE {P (E)−Q(E)} stands for the total

variation distance.

Proof. Exercise. Hint. Let E = {ϕ(X) = 1} in the definition of TV.

Remark A.1. • TV(P,Q) = 1 ⇔ P ⊥ Q, minimum Type I+II errors is 0;

• TV(P,Q) = 0 ⇔ P = Q, minimum Type I+II errors is 1.

In many high-dimensional statistical inference problem, TV(P,Q) is difficult to compute. Instead,
we resort to bound TV(P,Q) in terms of other distances that are easier to compute. One such
distance is the χ2-divergence, which is the variance of the likelihood ratio.

Definition A.1. The χ2-divergence between P and Q is given by1

χ2(P∥Q) ≜ EQ

[(
P

Q
− 1

)2
]
=

∫
P 2

Q
− 1.

In general, χ2(P∥Q) ̸= χ2(Q∥P ). The usefulness of χ2 in proving negative results for hypothesis
testing lies in the following observation:

Lemma A.2. For any P,Q, TV(P,Q) ≤ 1
2

√
χ2(P∥Q). Thus if χ2(P∥Q) = o(1), then TV(P,Q) =

o(1).

Proof.

2TV(P,Q) = EQ

[∣∣∣∣PQ − 1

∣∣∣∣] ≤
√√√√EQ

[(
P

Q
− 1

)2
]
=
√
χ2(P∥Q). (A.1)

1Hereafter we assume P is absolutely continuous to Q and let P/Q denote the Radon-Nikodym derivative of P
relative to Q.
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Remark A.2 (Contiguity). Recall the notion of contiguity (of two sequences of probability
measures (Pn) and (Qn)). We say (Pn) is contiguous to (Qn) if for any sequence of events En,
Qn(En) → 0 =⇒ P (En) → 0. Contiguity implies non-detection, because for any sequence of tests:

Qn(failure) → 0 =⇒ Pn(success) → 0,

which further implies that the minimum sum of Type-I+II errors is at least Ω(1), i.e., TV(Pn, Qn) ≤
1− Ω(1).

A sufficient condition of contiguity is bounded second moment of likelihood, i.e., χ2(Pn∥Qn) =
O(1). Indeed, by Cauchy-Schwarz,

Pn(En) = EQn

[
Pn

Qn
1 {En}

]
≤

√√√√EQn

[(
Pn

Qn

)2
]

︸ ︷︷ ︸√
χ2+1

Qn(En) → 0.

In many planted problems, Pn is a mixture distribution and Qn is a simple distribution. The
following lemma is very useful for computing χ2(mixture distribution||simple distribution). The
introduction of two iid copies of randomness is typical in second moment calculation (cf. Section 1.2.2).

Lemma A.3 (Second moment trick). Suppose we have a parametric family of distributions {Pθ :
θ ∈ Θ}. Given a prior on the parameter space Θ, define the mixture distribution:

Pπ ≜
∫
Pθπ(dθ).

Then we have χ2(Pπ||Q) = EG(θ, θ̃)− 1, where θ, θ̃
iid∼ π and G(θ, θ̃) is defined by

G(θ, θ̃) ≜
∫
PθPθ̃

Q
.

.

Proof. The proof is just by Fubini:∫
P 2
π

Q
=

∫
(
∫
Pθ(x)π(dθ))(

∫
P
θ̃
(x)π(dθ̃))

Q(x)
µ(dx)

=

∫
π(dθ)π(dθ̃)

(∫
Pθ(x)Pθ̃

(x)

Q(x)
µ(dx)

)
︸ ︷︷ ︸

G(θ,θ̃)

.

Example A.1 (Gaussian). Consider Pθ = N(θ, Id) and Q = N(0, Id), and let π be some distribution

on Rd. Then χ2(Pπ∥Q) = E[e⟨θ,θ̃⟩]− 1, where θ, θ̃
i.i.d.∼ π. To see this, by Lemma A.3, it suffices to

compute G(θ, θ̃):

G(θ, θ̃) = EX∼Q

[
Pθ(X)P

θ̃
(X)

Q(X)2

]
= EQ

[
e−

∥X−θ∥22
2

− ∥X−θ̃∥22
2

+∥X∥22
]
= e−

∥θ∥22+∥θ̃∥22
2 EQ

[
e⟨X,θ+θ̃⟩

]
= e⟨θ,θ̃⟩.
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