
EIGENVALUES IN MULTIVARIATE RANDOM EFFECTS MODELS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF STATISTICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Zhou Fan

June 2018



Preface

We study principal component analyses in multivariate random and mixed effects linear models.

These models are commonly used in quantitative genetics to decompose the variation of phenotypic

traits into consistuent variance components. Applications arising in evolutionary biology require

understanding the eigenvalues and eigenvectors of these components in high-dimensional multivariate

settings. However, these quantities may be difficult to estimate from limited samples when the

number of traits is large.

We describe several phenomena concerning sample eigenvalues and eigenvectors of classical

MANOVA estimators in the presence of high-dimensional noise, including dispersion of the bulk

eigenvalue distribution, bias and aliasing of outlier eigenvalues and eigenvectors, and Tracy-Widom

fluctuations at the spectral edges. A common theme is that the spectral properties of the MANOVA

estimate for one component may be influenced by the other components. In the setting of a sim-

ple spiked covariance model, we introduce alternative estimators for the leading eigenvalues and

eigenvectors that correct for this problem in a high-dimensional asymptotic regime.

The contents of this thesis are drawn from three manuscripts. Section 2.2, Chapter 3, and Ap-

pendix A are drawn, with minor modification, from the manuscript “Tracy-Widom at each edge of

real covariance estimators,” jointly authored with Iain M. Johnstone [FJ17]. Sections 2.1, 2.3, 2.4,

(parts of) 2.6, and Chapter 4 are drawn, with minor modification, from a manuscript “Spiked covari-

ances and principal components analysis in high-dimensional random effects models,” in preparation

and jointly authored with Iain M. Johnstone and Yi Sun. Sections 2.5, (parts of) 2.6, Chapter 5, and

Appendix B are drawn, with minor modification, from a manuscript “Eigenvalue distributions of

variance components estimators in high-dimensional random effects models,” jointly authored with

Iain M. Johnstone [FJ16].
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Chapter 1

Introduction

We study multivariate random and mixed effects linear models. As a simple example, consider a

twin study measuring p quantitative traits in n individuals, consisting of n/2 pairs of identical twins.

We may model the observed traits of the jth individual in the ith pair as

yi,j = µ+αi + εi,j ∈ Rp. (1.1)

Here, µ is a deterministic vector of mean trait values in the population, and

αi
iid∼ (0,Σ1), εi,j

iid∼ (0,Σ2)

are unobserved, independent random vectors modeling trait variation at the pair and individual

levels. Assuming the absence of shared environment, the covariance matrices Σ1,Σ2 ∈ Rp×p may be

interpreted as the genetic and environmental components of variance.

Since the pioneering work of R. A. Fisher [Fis18], such models have been widely used to de-

compose the variation of quantitative traits into constituent variance components. The genetic

variance is commonly further decomposed into that of additive effects from individual alleles, domi-

nance effects between alleles at the same locus, and epistatic effects between alleles at different loci

[Wri35]. Environmental components of variance may be individual-specific, as above, or potentially

also shared within families or batches of an experimental protocol. In many applications, for exam-

ple measuring the heritability of traits, predicting evolutionary response to selection, and correcting

for confounding variation from experimental procedures, it is of interest to estimate the individual

variance components [FM96, LW98, VHW08].

Classically, variance components may be estimated by examining the resemblance between rela-

tives [Fis18]. In plant and animal populations, this is commonly performed using breeding designs.

For example, the additive genetic variance may be estimated via a “half-sib” design corresponding

1



CHAPTER 1. INTRODUCTION 2

to the one-way model (1.1). Each group i consists of individuals j bearing a half-sibling relation-

ship, and 4 Σ1 corresponds to the additive genetic variance in the absence of shared environment

and epistatis [LW98]. Additional variance due to dominance may be estimated using more complex

designs: In the North Carolina I design corresponding to the two-way nested model

yi,j,k = µ+αi + βi,j + εi,j,k, αi
iid∼ (0,Σ1), βi,j

iid∼ (0,Σ2), εi,j,k
iid∼ (0,Σ3), (1.2)

groups i consist of half-siblings (sharing the father) which are further divided into sub-groups j of

full-siblings (sharing also the mother). Comparing Σ1 and Σ2 provides a measure of variance due

to dominance plus shared maternal environment. Variance due to these two effects may, in turn, be

disentangled using the North Carolina II design corresponding to the crossed model

yj,k,l = µ+ βj + γk + δj,k + εj,k,l, (1.3)

where fathers j are cross-bred to mothers k, and yj,k,l are the traits in the lth offspring of the mating

pair (j, k) [CR48].

The modern era of genome-wide association studies has witnessed a resurgence of mixed effects

modeling, where contributions of single-nucleotide polymorphisms (SNPs) to highly polygenic traits

are modeled as independent and unobserved random effects [YLGV11, ZCS13, MLH+15, LTBS+15].

Letting yi denote the observed traits of individual i with genotypes (ui1, . . . , uim) at m measured

SNPs, the basic infinitesimal model represents yi as

yi = µ+

m∑

j=1

uijαj + εi, αj
iid∼ (0,Σ1), εi

iid∼ (0,Σ2), (1.4)

where Σ1 determines the genetic contribution to trait variation from the measured SNPs. Extensions

of this model may divide the SNPs into functional categories, for example corresponding to coding

regions or various histone methylation states, and attribute a different covariance Σr to the effects

of SNPs in each category [FBSG+15].

These types of mixed effects models are often applied in univariate contexts, p = 1, to study

variation and heritability of individual traits. However, certain questions arising in evolutionary

biology require an understanding of the joint variation of multiple, and oftentimes many, phenotypic

traits. For example, the evolutionary response of a population to selection is predicted by the

breeder’s equation [Lus37, Lan79, LA83]

∆µ = G(Σ−1s). (1.5)

Here, s ∈ Rp is the selection differential quantifying the effect of selection on each trait in the current

generation, ∆µ ∈ Rp is the change in mean trait values inherited in the next generation, Σ is the
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total population trait covariance, and G is its additive genetic component. Correlation between

traits is common at both the genetic and environmental levels [Bar90, WB09], indicating that G

and Σ are often not diagonal. Hence selection on one trait may cause a response in a correlated

trait, and a full understanding of the evolutionary process will likely require an understanding of the

variation of high-dimensional multivariate phenotypes [Blo07, Hou10, HGO10]. For studies involving

gene-expression phenotypes, trait dimensionality in the several thousands is common [MCM+14,

CMA+18].

In settings of large p, important properties of the variance component matrices Σr in the above

models are dictated by their spectral structure, and it is often natural to interpret these matrices

in terms of their principal component decompositions [Blo07, BM15]. For example, the largest

eigenvalues and effective rank of the additive genetic component of covariance indicate the extent

to which evolutionary response to natural selection is genetically constrained to a lower dimensional

phenotypic subspace, and the principal eigenvectors indicate likely directions of phenotypic response

[MH05, HB06, WB09, HMB14, BAC+15]. Similar interpretations apply to the spectral structure of

variance components that capture variation due to genetic mutation [MAB15, CMA+18].

Contributions

We study a general multivariate mixed effects linear model with k variance components Σ1, . . . ,Σk.

Classical procedures for estimating these components may be unbiased and asymptotically consistent

entrywise as an estimate for the variance of each trait and covariance of each trait pair. However,

this does not imply desirable properties for the estimated eigenvalues and eigenvectors when p is

large.

To illustrate the problems that may arise, Figure 1.1 depicts the eigenvalues and principal eigen-

vector of the multivariate analysis of variance (MANOVA) [SR74, SCM09] and multivariate restricted

maximum likelihood (REML) [KP69, Mey91] estimates of Σ1 in the balanced one-way model (1.1).

REML estimates were computed by the post-processing procedure described in [Ame85]. In this

example, the true group covariance Σ1 has rank one, representing a single direction of variation.

The true error covariance Σ2 also represents a single true direction of variation which is partially

aligned with that of Σ1, plus additional isotropic noise. Partial alignment of eigenvectors of Σ2 with

those of Σ1 may be common, for example, in sibling designs where the additive genetic covariance

contributes both to Σ1 and Σ2. We observe in this setting several problematic phenomena concern-

ing either the MANOVA or REML estimate Σ̂1:

Eigenvalue dispersion. The eigenvalues of Σ̂1 are widely dispersed, even though all but one true

eigenvalue of Σ1 is non-zero. In particular, this dispersion causes the MANOVA estimate Σ̂1 to not

be positive semi-definite.
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MANOVA eigenvalues

Eigenvalue

F
re

qu
en

cy

−4 −2 0 2 4 6

0
20

40
60

80

REML eigenvalues

Eigenvalue
F

re
qu

en
cy

0 2 4 6 8 10 12

0
20

40
60

80

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Eigenvector projections

●

●

●

●

Figure 1.1: Eigenvalues and principal eigenvector of the MANOVA and REML estimates of Σ1 in a
one-way design with I = 300 groups of size J = 2 and p = 300 traits. The true group covariance is

Σ1 = 6e1e
′
1 (rank one), and the true error covariance is Σ2 = 29vv′ + Id where v = 1

2e1 +
√

3
2 e2.

Histograms display eigenvalues averaged across 100 simulations. The rightmost plot displays the
empirical mean and 90% ellipsoids for the first two coordinates of the unit-norm principal eigenvector
(MANOVA in red and REML in blue), with e1 and v shown in black.

Eigenvalue aliasing. The estimate Σ̂1 exhibits multiple outlier eigenvalues which indicate signifi-

cant directions of variation, even though the true matrix Σ1 has rank one.

Eigenvalue bias. The largest eigenvalue of Σ̂1 is biased upwards from the true eigenvalue of Σ1.

Eigenvector aliasing. The principal eigenvector of Σ̂1 is not aligned with the true eigenvector of

Σ1, but rather is biased in the direction of the eigenvector of Σ2.

Several eigenvalue shrinkage and rank-reduced estimation procedures have been proposed to

address some of these shortcomings, with associated simulation studies of their performance in

low-to-moderate dimensions [HH81, KM04, MK05, MK08, MK10]. In this thesis, we focus on

higher-dimensional applications and study these phenomena theoretically and from an asymptotic

viewpoint.

We restrict attention to MANOVA-type estimators, and do not further address REML estimation

in this work. We impose throughout an assumption of Gaussianity. As a model for the high-

dimensional applications of interest, we study the asymptotic regime where n, p→∞ proportionally.

Motivated by the specific models (1.1–1.4), we assume also that the number of realizations of each

random effect increases proportionally with n and p. Our results are summarized in Chapter 2, and

the remaining three chapters are dedicated to the mathematical proofs.

We show that in the presense of high-dimensional noise, the eigenvalues of a MANOVA estimator
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Σ̂ exhibit a dispersion pattern that is well-approximated by a non-degenerate spectral law µ0. When

the noise represented by each variance component is isotropic, a simple reduction to the Marcenko-

Pastur model [MP67] shows that µ0 is characterized by the Marcenko-Pastur equation (cf. Section

2.2). When the noise is non-isotropic, µ0 may be characterized by the solution of a more general

system of fixed-point equations, which we describe in Section 2.5. In both cases, this law µ0 may

depend on variance components other than the one estimated by Σ̂.

Assuming isotropic noise, we study in greater detail the spiked covariance model of [Joh01] that

encapsulates the example of Figure 1.1. In this model, each true variance component Σr may have

a small number of spike eigenvalues representing signal directions of variation beyond the isotropic

noise. In Section 2.2, we verify that outlier eigenvalues of Σ̂ should not appear under the null

hypothesis when such signal eigenvalues are absent, and we establish Tracy-Widom asymptotics for

the eigenvalues of Σ̂ at the edges of the support of µ0 as a means of testing this null hypothesis.

When signal eigenvalues are present, we show in Section 2.3 that the outlier eigenvalues of the

estimate Σ̂ may represent a combination of signal eigenvalues and eigenvectors in different variance

components. More specifically, each outlier eigenvalue λ̂ of Σ̂ is close to an eigenvalue of a surrogate

linear combination of Σ1, . . . ,Σk, and the corresponding eigenvector is partially aligned with the

eigenvector of the surrogate. We use this insight in Section 2.4 to develop a novel procedure for

estimating the spike eigenvalues and eigenvectors of any component Σr, by identifying alternative

matrices Σ̂ where the surrogate depends only on the single component Σr. We prove that the

resulting eigenvalue estimates are asymptotically consistent, while the eigenvector estimates are

asymptotically void of aliasing effects.

Our results pertain to general mixed effects models, although we focus special attention on the

classical setting of balanced classification designs. This encompasses the models (1.1), (1.2), and

(1.3) when group sizes are equal. In such designs, MANOVA estimators are canonically defined,

and they coincide with REML estimators if the likelihood is maximized over symmetric matrices

Σ1, . . . ,Σk without positive definite constraints. Our results and assumptions are more explicit in

this setting, and we discuss these specializations in Section 2.6.

Proof techniques and related literature

Chapters 3, 4, and 5 are devoted to the mathematical proofs of these results, and each may be read

independently. Our analyses use techniques of asymptotic random matrix theory, and we provide a

necessarily partial summary of related literature here.

In the setting of a global sphericity null hypothesis, Section 2.2 and Chapter 3, our model

is closely related to the sample covariance model with a general population covariance matrix Σ.

The eigenvalue distribution of this matrix model in the regime n, p → ∞ has been studied by

many authors, including [MP67, Yin86, Sil95, SB95]. When Σ = Id, the limiting eigenvalue law is
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commonly called the Marcenko-Pastur distribution. For purposes of hypothesis testing, we focus

attention on the extreme eigenvalues at the edges of the spectrum, which were shown to converge to

the endpoints of the limiting spectral support for Σ = Id in [Gem80, YBK88, BY93] and for general

positive semi-definite Σ in [BS98]. For Σ = Id and complex and real Gaussian data, respectively,

[Joh00] and [Joh01] showed that the largest eigenvalue exhibits fluctuations described by the GUE

and GOE Tracy-Widom laws of [TW94, TW96]. Generalizations to non-Gaussian data and to

the smallest eigenvalue were established in [Sos02, Péc09, FS10, PY14]. For Σ 6= Id, the works

[Kar07, Ona08] established GUE Tracy-Widom fluctuations of the largest eigenvalue in the complex

Gaussian case, under a regularity condition for the rightmost edge introduced in [Kar07]. This was

extended to each regular edge of the support in [HHN16]. GOE Tracy-Widom fluctuations for the

largest eigenvalue in the real Gaussian setting was proven in [LS16], using techniques different from

those of [Kar07, Ona08, HHN16] and based on earlier work for the deformed Wigner model in [LS15].

Universality of these results with respect to the Gaussian assumptions was proven in [BPZ15, KY17].

We generalize the result of [LS16] to establish GOE Tracy-Widom fluctuations at each regular edge

of the spectral support, extending the proof to use a discrete Lindeberg swapping argument in place

of a continuous flow. We also extend the notion of edge regularity and associated analysis to a model

where the analogue of Σ may not be positive semi-definite.

In settings where variance components have a spiked structure, Sections 2.3, 2.4, and Chapter

4, our probabilistic results are analogous to those regarding outlier eigenvalues and eigenvectors

for the spiked sample covariance model, studied in [BBP05, BS06, Pau07, Nad08, BY08], and our

proofs use the matrix perturbation approach of [Pau07] which is related also to the approaches of

[BGN11, BGGM11, BY12]. An extra ingredient needed in our proof is a deterministic approximation

for arbitrary linear and quadratic functions of entries of the resolvent in the Marcenko-Pastur model.

We establish this for spectral arguments separated from the limiting support, building on the local

laws for this setting in [BEK+14, KY17] and using a fluctuation averaging idea inspired by [EYY11,

EYY12, EKYY13a, EKYY13b]. We note that new qualitative phenomena emerge in our model

which are not present in the setting of spiked sample covariance matrices—outliers may depend on

the alignments between population spike eigenvectors in different variance components, and a single

spike may generate multiple outliers. This latter phenomenon was observed in a different context in

[BBC+17], which studied sums and products of independent unitarily invariant matrices in spiked

settings. Our predictions for outlier eigenvalue locations and eigenvector alignments may be shown

to coincide with those of [BBC+17] in certain scenarios where the spike eigenvectors of Σ1, . . . ,Σk

are asymptotically unaligned.

Finally, for general variance components Σ1, . . . ,Σk, our matrix model is similar to the model of

MIMO channels studied in [MS07, DL11] and also has some points of contact with the models studied

in [Lix06, CDS11]. We extend the convergence in mean of the empirical spectral measure in [DL11]

to almost-sure convergence, and the fixed-point equations which we derive may be shown to coincide
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with those of [Lix06, MS07, CDS11, DL11] in common special cases. We formulate our result in terms

of a deterministic equivalent spectral law, following [HLN07, CDS11]. However, our proof deviates

from the analytical proofs in these works and instead employs a free probability argument inspired

by [SV12], which separates the asymptotic approximation from the computation of the fixed-point

equations. The approximation argument follows a long line of work establishing asymptotic freeness

of large random matrices [Voi91, Dyk95, Voi98, HP00, Col03, CŚ06], in particular in a context of

conditional freeness for rectangular matrix models [BG09]. We extend the results of [BG09, SV12]

to an asymptotic freeness theorem required for the study of our model. Our computation of the

fixed-point equations uses relations between conditional moments, free cumulants, and Cauchy and

R-transforms over various sub-algebras, developed in [Spe98, NSS02, SV12].

Notational conventions

For a square matrix X, spec(X) is its multiset of eigenvalues (counting multiplicity). For a law µ0

on R, we denote its closed support

supp(µ0) = {x ∈ R : µ0([x− ε, x+ ε]) > 0 for all ε > 0}.

ei is the ith standard basis vector, Id is the identity matrix, and 1 is the all-1’s column vector,

where dimensions are understood from context. We use Idn and 1n to explicitly emphasize the

dimension n.

‖·‖ is the Euclidean norm for vectors and the Euclidean operator norm for matrices. ‖·‖HS is the

matrix Hilbert-Schmidt norm. X ′ and X∗ are the transpose and conjugate-transpose of X. col(X)

is the column span of X, and ker(X) is its kernel or null space.

A⊗B is the matrix tensor product. When Y and M are matrices, Y ∼ N (M,A⊗B) is shorthand

for vec(Y ′) ∼ N (vec(M ′), A⊗B), where vec(Y ′) and vec(M ′) are the row-wise vectorizations of Y

and M . diag(A1, . . . , Ak) is the block-diagonal matrix with diagonal blocks A1, . . . , Ak.

For subspaces U and V , dim(U) is the dimension of U , U ⊕ V is the orthogonal direct sum, and

V 	 U is the orthogonal complement of U in V .

C+ and C+ are the open and closed upper-half complex planes. For z ∈ C, Im z and Re z are

the real and imaginary parts of z. We typically write z = E + iη where E = Re z and η = Im z. For

A ⊂ C, dist(z,A) = inf{|y − z|: y ∈ A} is the distance from z to A.



Chapter 2

Main results

2.1 Model

We consider observations Y ∈ Rn×p of p traits in n individuals, modeled by a Gaussian mixed effects

linear model

Y = Xβ + U1α1 + . . .+ Ukαk, αr ∼ N (0, Idmr ⊗Σr) for r = 1, . . . , k. (2.1)

The matrices α1, . . . , αk are independent, with each matrix αr ∈ Rmr×p having independent rows,

representingmr (unobserved) realizations of a p-dimensional random effect with distributionN (0,Σr).

The incidence matrix Ur ∈ Rn×mr , which is known from the experimental protocol, determines how

the random effect contributes to the observations Y . The first term Xβ models possible additional

fixed effects, where X ∈ Rn×q is a known design matrix of q regressors and β ∈ Rq×p contains the

corresponding regression coefficients.

This model is usually written with an additional residual error term ε ∈ Rn×p. We incorporate

this by allowing the last random effect to be αk = ε and Uk = Idn. For example, the one-way model

(1.1) corresponds to (2.1) where k = 2. Supposing there are I groups of equal size J , we set m1 = I,

m2 = n = IJ , stack the vectors yi,j , αi, and εi,j as the rows of Y , α1, and α2, and identify

X = 1n, β = µ′, U1 = IdI ⊗1J =




1J
. . .

1J


 , U2 = Idn . (2.2)

Here, X is a single all-1’s regressor, and U1 has I columns indicating the I groups. Similarly, the

SNP model (1.4) is an example where k = 2 and U1 ∈ Rn×m contains the genotype values. The

models (1.2) and (1.3), and extensions of (1.4) to different functional categories for SNPs, correspond

8
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to examples where k ≥ 3.

Under the general model (2.1), Y has the multivariate normal distribution

Y ∼ N (Xβ, U1U
′
1 ⊗ Σ1 + . . .+ UkU

′
k ⊗ Σk). (2.3)

The unknown parameters of the model are (β,Σ1, . . . ,Σk). We study estimators of Σ1, . . . ,Σk which

are invariant to β and take the form

Σ̂ = Y ′BY, (2.4)

where the estimation matrix B ∈ Rn×n is symmetric and satisfies BX = 0. To obtain an estimate

of Σr, observe that E[α′rMαr] = (TrM)Σr for any matrix M . Then, as α1, . . . , αk are independent

with mean 0,

E[Y ′BY ] =

k∑

r=1

E[α′rU
′
rBUrαr] =

k∑

r=1

Tr(U ′rBUr)Σr. (2.5)

So Σ̂ is an unbiased estimate of Σr when B satisfies TrU ′rBUr = 1 and TrU ′sBUs = 0 for all s 6= r.

In balanced classification designs, discussed in greater detail in Section 2.6, the classical MANOVA

estimators are obtained by setting B to be combinations of projections onto subspaces of Rn. For

example, in the one-way model corresponding to (2.2), defining π1, π2 ∈ Rn×n as the orthogonal

projections onto col(U1) 	 col(1n) and Rn 	 col(U1), the MANOVA estimators of Σ1 and Σ2 are

given by

Σ̂1 = Y ′
(

1

J
· π1

I − 1
− 1

J
· π2

n− I

)
Y, Σ̂2 = Y ′

π2

n− I Y. (2.6)

In unbalanced designs and more general models, various alternative choices of B lead to estimators

in the generalized MANOVA [SCM09] and MINQUE/MIVQUE families [Rao72, LaM73, SS78].

Motivated by the applications discussed in the introduction, we study spectral properties of the

matrix (2.4) in a high-dimensional asymptotic regime.

Assumption 2.1. The number of effects k is fixed while n, p,m1, . . . ,mk →∞. There are constants

C, c > 0 such that

(a) (Number of traits) c < p/n < C.

(b) (Model design) c < mr/n < C and ‖Ur‖< C for each r = 1, . . . , k.

(c) (Estimation matrix) B = B′, BX = 0, and ‖B‖< C/n.

(d) (Covariance) 0 ≤ ‖Σr‖< C for each r = 1, . . . , k.

Assumption 2.1(a) models the high-dimensional setting of interest. In classification designs,

Assumption 2.1(b) holds when the number of outer-most groups is proportional to n, and groups

(and sub-groups) are bounded in size. This encompasses usual implementations of (1.1) and (1.2)
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for reasons of optimal experimental design [Rob59a, Rob59b], as well as usual implementations of

the crossed design (1.3) where the numbers of fathers, mothers, and offspring in each cross are kept

small and n is increased by performing independent replicates (see Example 2.23). In models such

as (1.4) where Ur is a matrix of genotype values at mr SNPs, Assumption 2.1(b) holds if mr � n

and Ur is entrywise bounded by C/
√
n. This latter condition is satisfied if genotypes at each SNP

are normalized to mean 0 and variance 1/n, and SNPs with minor allele frequency below a constant

threshold are removed. Under Assumption 2.1(b), the scaling ‖B‖< 1/n in Assumption 2.1(c) is

then natural to ensure TrU ′rBUr is bounded for each r = 1, . . . , k, and hence E[Y ′BY ] is on the

same scale as Σ1, . . . ,Σk. Assumption 2.1(d) fixes the global scaling of the model.

In Sections 2.2–2.5, we discuss results under various further structural assumptions for Σ1, . . . ,Σk.

2.2 Edge fluctuations under sphericity

Consider first the following null hypothesis of “global sphericity”, in which each random effect is

distributed as isotropic Gaussian noise.

Assumption 2.2. There is a constant C > 0 such that for each r = 1, . . . , k,

Σr = σ2
r Id, 0 ≤ σ2

r < C.

In this setting, by a simple observation, the eigenvalue distribution of Σ̂ is well-approximated

by a law µ0 satisfying the Marcenko-Pastur equation. We show that, under a regularity condition

which guarantees uniform square-root density decay at an edge of µ0, the extremal eigenvalue of

Σ̂ near that edge exhibits real Tracy-Widom fluctuations. This is depicted for an example of the

one-way design in Figure 2.1.

The observed eigenvalue near a regular edge may be compared with the quantiles of the Tracy-

Widom law to yield a significance test of the above null hypothesis of global sphericity. Such a test

may be performed either for the simple null hypothesis where σ2
1 , . . . , σ

2
k are fixed and known, or for

a composite hypothesis by substituting a 1/n-consistent estimate σ̂2
r for any unknown σ2

r . To yield

power against non-isotropic alternatives for a particular covariance Σr, we suggest performing the

test based on the largest eigenvalue (at the rightmost edge) of the MANOVA estimator for Σr.

The study of Σ̂ under Assumption 2.2 is simplified by the following observation. Set N = p and

M = m1 + . . .+mk, and define

Frs = NσrσsU
′
rBUs ∈ Rmr×ms , F =




F11 · · · F1k

...
. . .

...

Fk1 · · · Fkk


 ∈ RM×M . (2.7)
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Figure 2.1: Eigenvalue fluctuations at the edges of the spectrum for a one-way design. Left: Empiri-
cal non-zero eigenvalues of the MANOVA estimate Σ̂1, overlaid with the density of the law µ0 (with
the point mass at 0 removed). Right: Fluctuations of the largest eigenvalue and smallest positive

eigenvalue of Σ̂1 across 10000 simulations, compared with the density function and quantiles of the
Tracy-Widom law. Center and scale for the Tracy-Widom law are computed as in Theorem 2.6.
The setting is I = 150 groups of size J = 2 and p = 600 traits, with Σ1 = 0 and Σ2 = Id.

Proposition 2.3. Under Assumption 2.2, Σ̂
L
= X ′FX where X ∈ RM×N has i.i.d. N (0, 1/N)

entries.

Proof. We may represent αr =
√
NσrXr, where Xr ∈ Rmr×N has i.i.d. N (0, 1/N) entries. Then,

applying BX = 0,

Σ̂ = Y ′BY =

k∑

r,s=1

α′rU
′
rBUsαs =

k∑

r,s=1

X ′r(NσrσsU
′
rBUs)Xs =

k∑

r,s=1

X ′rFrsXs.

The result follows upon stacking X1, . . . , Xk row-wise as X ∈ RM×N .

Let us call Σ̂ = X ′FX the “Marcenko-Pastur model” [MP67]. If F were positive semi-definite,

then Σ̂ would have the same non-zero eigenvalues as the sample covariance matrix F 1/2XX ′F 1/2,

where F represents the population covariance. The matrices B and F in (2.7) may not be positive



CHAPTER 2. MAIN RESULTS 12

semi-definite. However, many spectral properties of this model are nonetheless well-understood—we

review this in greater detail in Chapter 3.

It is known that the asymptotic spectrum of Σ̂ is described by the Marcenko-Pastur equation:

Theorem 2.4. Let F ∈ RM×M be symmetric, and suppose there are constants C, c > 0 such that

c < M/N < C and ‖F‖< C. Let Σ̂ = X ′FX where X ∈ RM×N has i.i.d. N (0, 1/N) entries. Let

µΣ̂ = N−1
∑N
i=1 δλi(Σ̂) be its empirical spectral distribution.

Then for each z ∈ C+, there is a unique value m0(z) ∈ C+ which satisfies

z = − 1

m0(z)
+

1

N
Tr
(
F [Id +m0(z)F ]−1

)
. (2.8)

This function m0 : C+ → C+ defines the Stieltjes transform of a probability distribution µ0 on R.

As N,M →∞, µΣ̂ − µ0 → 0 weakly almost surely.

Proof. See [MP67, Sil95, SB95] in the setting where M/N converges to a positive constant and the

spectral distribution of F converges to a limit distribution. The above formulation follows from

Prohorov’s theorem and a subsequence argument.

Denote the δ-neighborhood of the support of µ0 by

supp(µ0)δ = {x ∈ R : dist(x, supp(µ0)) < δ}.

(Let us emphasize that µ0 and its support depend on N,M,F , although we suppress this dependence

notationally.) Then all eigenvalues of Σ̂ fall within supp(µ0)δ with high probability:

Theorem 2.5. Fix any constants δ,D > 0. Under the assumptions of Theorem 2.4, for a constant

N0(δ,D) > 0 and all N ≥ N0(δ,D),

P[ spec(Σ̂) ⊂ supp(µ0)δ ] > 1−N−D.

Proof. See [BS98, KY17] for positive definite F , and Appendix A for an extension of the proof to

general F .

Call E∗ ∈ R a (left or right) edge of µ0 if it is a (left or right) boundary point of supp(µ0). Under

a certain regularity condition, quantified by a constant τ > 0 and stated precisely in Definition 3.5,

E∗ has uniform separation from other edges of µ0, and µ0 admits a density f0(x) in a neighborhood

of E∗ which exhibits uniform square-root decay. For such an edge E∗, there is a value γ > 0 such

that f0(x) ∼ (γ/π)
√

(E∗ − x)+ as x→ E∗ if E∗ is a right edge, or f0(x) ∼ (γ/π)
√

(x− E∗)+ if E∗

is a left edge. We call γ the associated scale of E∗. In this setting, we prove the following result,

where µTW is the GOE Tracy-Widom law [TW96].
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Theorem 2.6. Under the assumptions of Theorem 2.4, suppose E∗ is an edge of µ0 that is τ -regular

in the sense of Definition 3.5 for a constant τ > 0. Let γ be the scale of E∗. Then there exists a

(τ -dependent) constant δ such that as N,M →∞,

(a) If E∗ is a right edge and λmax is the largest eigenvalue of Σ̂ in [E∗ − δ, E∗ + δ], then

(γN)2/3(λmax − E∗) L→ µTW .

(b) If E∗ is a left edge and λmin is the smallest eigenvalue of Σ̂ in [E∗ − δ, E∗ + δ], then

(γN)2/3(E∗ − λmin)
L→ µTW .

Chapter 3 is devoted to the proof of this result. Convergence in law here is interpreted as follows:

Let F1 denote the cumulative distribution function of µTW , and fix x ∈ R. Then

∣∣∣P[(γN)2/3(λmax − E∗) ≤ x]− F1(x)
∣∣∣ ≤ o(1),

where o(1) denotes an (x, τ)-dependent error term which vanishes to 0 as N,M →∞.

Theorem 2.6 provides a method of testing the global sphericity null hypothesis in Assumption

2.2 using the observed eigenvalues of Σ̂ = Y ′BY , for any fixed estimation matrix B. In detail, a

test based on the largest eigenvalue of Σ̂ may be performed as follows:

1. Construct the matrix F in (2.7), where N = p.

2. Plot the function

z0(m) = − 1

m
+

1

N
Tr
(
F [Id +mF ]−1

)
(2.9)

over m ∈ R, and locate the value m∗ closest to 0 such that z′0(m∗) = 0 and m∗ < 0.

3. Compute E∗ and γ as E∗ = z0(m∗) and γ =
√

2/z′′0 (m∗).

4. Reject the sphericity null hypothesis at level α if (γN)2/3(λmax −E∗) exceeds the 1− α quantile

of the real Tracy-Widom law µTW .

Proposition 3.3 in Chapter 3 verifies that E∗ and γ are the rightmost edge of µ0 and its associated

scale. Regularity of this edge is a mild assumption, which holds, for example, under the following

condition.

Proposition 2.7. Under the assumptions of Theorem 2.4, suppose there exists a constant c > 0

such that the largest eigenvalue of F is at least c and has multiplicity at least cM . Then the

rightmost edge E∗ of µ0 is τ -regular for a constant τ > 0.
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We will verify this condition for balanced classification designs in Section 2.6. In more general

settings, a diagnostic check of edge regularity may be performed by visual inspection of the plot of

z0(m), and we refer to Definition 3.5 for details.

Example 2.8. The below table displays the accuracy of the Tracy-Widom approximation for sev-

eral instances of the one-way design with n = IJ individuals and J individuals per group, in the

setting σ2
1 = 0 and σ2

2 = 1.

F1

n = p n = 4× p
J = 2 J = 5 J = 10 J = 2 J = 5 J = 10 2× SE

p = 20

0.90 0.941 0.949 0.959 0.931 0.934 0.940 (0.005)

0.95 0.973 0.977 0.983 0.968 0.969 0.971 (0.003)

0.99 0.995 0.997 0.997 0.994 0.994 0.993 (0.002)

p = 100

0.90 0.926 0.928 0.934 0.920 0.916 0.919 (0.005)

0.95 0.964 0.967 0.968 0.960 0.958 0.961 (0.004)

0.99 0.993 0.995 0.995 0.992 0.991 0.992 (0.002)

p = 500

0.90 0.914 0.920 0.919 0.916 0.915 0.921 (0.006)

0.95 0.958 0.961 0.960 0.957 0.957 0.962 (0.004)

0.99 0.992 0.993 0.993 0.992 0.992 0.993 (0.002)

Displayed are the empirical cumulative probabilities for (γN)2/3(λmax − E∗) at the theoretical

90th, 95th, and 99th percentiles of the Tracy-Widom law, estimated across 10000 simulations. Here,

λmax is the largest eigenvalue of the MANOVA estimate Σ̂1, and E∗ and γ are the center and scale

for the rightmost edge of µ0. The final column gives approximate standard errors based on binomial

sampling. We observe a conservative bias, particularly at small values of n and p.

Constructing F and computing z0(m) requires knowledge of σ2
1 , . . . , σ

2
k. To test a composite

hypothesis in which any σ2
r is unknown, it may be replaced by a 1/n-consistent estimate σ̂2

r :

Proposition 2.9. Fix r ∈ {1, . . . , k} and let Σ̂ = Y ′BY be an unbiased estimator for Σr. Let

σ̂2 = p−1 Tr Σ̂. Then under Assumptions 2.1 and 2.2, for any ε,D > 0 and all n ≥ n0(ε,D),

P[|σ̂2 − σ2
r |> n−1+ε] < n−D.

Proof. Note that E[σ̂2] = σ2
r . Writing Σ̂ = X ′FX where X has N (0, 1/N) entries and F is defined

by (2.7), we have

σ̂2 = N−1 TrX ′FX = vec(X)′A vec(X)

where A = N−1 IdN ⊗F and vec(X) is the column-wise vectorization of X. The condition E[σ̂2] = σ2
r

implies N−1 TrA = σ2
r . We have ‖A‖2HS= N−1‖F‖2HS< C for a constant C > 0, so the result follows
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from the Hanson-Wright inequality (see Lemma 4.6).

Consequently, letting Ê∗ and γ̂ be the rightmost edge and associated scale of the law µ̂0 defined

by replacing any of σ2
1 , . . . , σ

2
k by σ̂2

1 , . . . , σ̂
2
k, one may check that when E∗ is regular,

P[|Ê∗ − E∗|> n−1+ε] < n−D, P[|γ̂ − γ|> n−1+ε] < n−D.

Then the conclusion of Theorem 2.6 remains asymptotically valid using Ê∗ and γ̂.

2.3 Outliers in the spiked model

We next consider spiked perturbations of the sphericity null hypothesis in Assumption 2.2.

Assumption 2.10. There are constants C, C̄ > 0 such that for each r = 1, . . . , k,

Σr = σ2
r Id +VrΘrV

′
r ,

where Vr ∈ Rp×lr has orthonormal columns, Θr ∈ Rlr×lr is diagonal, 0 ≤ σ2
r < C, 0 ≤ lr < C, and

‖Θr‖< C̄. (We set VrΘrV
′
r = 0 when lr = 0.)

Hence each Σr has an isotropic noise level σ2
r (possibly 0 if Σr is low-rank) and a bounded number

of signal eigenvalues greater than this noise level. We allow σ2
r , lr, Vr, and Θr to vary with n and p.

We will be primarily interested in scenarios where at least one variance σ2
1 , . . . , σ

2
k is of size O(1),

although let us remark that setting σ2
1 = . . . = σ2

k = 0 also recovers the classical low-dimensional

asymptotic regime where the true dimension of the data is bounded as n→∞.

In this setting, Theorem 2.5 implies that only a constant number of eigenvalues of Σ̂ should fall

far from supp(µ0). Let us call these eigenvalues the outliers. We show that there is a family of

matrices

t(λ) · Σ = t1(λ)Σ1 + . . .+ tk(λ)Σk (2.10)

such that each outlier eigenvalue λ̂ ∈ spec(Σ̂) is close to a value λ that is an eigenvalue of t(λ) · Σ.

When Σ̂ is the MANOVA estimator of a variance component Σr, we may interpret this matrix as

a “surrogate” for the true matrix Σr of interest. If λ̂ is separated from other eigenvalues of Σ̂, we

show furthermore that its eigenvector v̂ is partially aligned with the eigenvector of t(λ) · Σ, and λ̂

has asymptotic Gaussian fluctuations on the scale n−1/2. Proofs of these results are contained in

Chapter 4.

Let S ⊂ Rp be the combined column span of V1, . . . , Vk, where S = ∅ if l1 = . . . = lk = 0. Set

L = dimS, N = p− L, M = m1 + . . .+mk,
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and define F as in (2.7) with the above values N and M . Let m0(z) be the Stieltjes transform of

the law µ0 in Theorem 2.4, defined for all z ∈ C \ supp(µ0) via

m0(z) =

∫

R

1

x− z µ0(dx). (2.11)

Let Trr denote the trace of the (r, r) block in the k×k block decomposition of CM×M corresponding

to M = m1 + . . .+mk. For z ∈ C \ supp(µ0), define

T (z) = z Id−
k∑

r=1

tr(z)Σr, tr(z) =
1

Nσ2
r

Trr

(
F [Id +m0(z)F ]−1

)
. (2.12)

Here, if σ2
r = 0, then tr(z) remains well-defined by the identity

F [Id +m0(z)F ]−1 = −m0(z)F [Id +m0(z)F ]−1F + F (2.13)

and the definition of F in (2.7). Let

Λ0 = [ λ ∈ R \ supp(µ0) : 0 = det(T (λ)) ] (2.14)

be the multiset of real roots of the function z 7→ det(T (z)), counted with their analytic multiplicities.

We record here the following alternative definition of T (z), and properties of T (z) and Λ0.

Proposition 2.11 (Properties of T (z)).

(a) The matrix T (z) is equivalently defined as

T (z) = − 1

m0(z)
Id−

k∑

r=1

tr(z)VrΘrV
′
r . (2.15)

(b) For each z ∈ C \ supp(µ0), kerT (z) ⊆ S.

(c) For λ ∈ R \ supp(µ0), ∂λT (λ)− Id is positive semi-definite.

(d) For λ ∈ Λ0, its multiplicity as a root of 0 = det(T (λ)) is equal to dim kerT (λ).

Proof. By conjugation symmetry and continuity, the Marcenko-Pastur identity (2.8) holds for each

z ∈ C \ supp(µ0). Part (a) then follows from substituting Σr = σ2
r Id +VrΘrV

′
r and applying (2.8).

Part (b) follows from (a), as T (z) is the direct sum of an operator on S and a non-zero multiple of Id

on the orthogonal complement S⊥. Differentiating (2.11), ∂λm0(λ) > 0 for each λ ∈ R \ supp(µ0),

so ∂λtr = −(Nσ2
r)−1(∂λm0) Trr F (Id +m0F )−2F ≤ 0. Then part (c) follows from (2.12). For

λ ∈ Λ0, this implies each eigenvalue µi(λ) of T (λ) satisfies µi(λ) − µi(λ′) � (λ − λ′) as λ′ → λ, so

|detT (λ′)|� |λ− λ′|d for d = dim kerT (λ). This yields (d).
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Mean eigenvalue locations
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Figure 2.2: Outlier predictions for the MANOVA estimate Σ̂1 in a one-way design. The population

covariances are Σ1 = 6e1e
′
1 and Σ2 = 29vv′ + Id, where v = 1

2e1 +
√

3
2 e2. Left: Mean eigenvalue

locations of Σ̂1 across 10000 simulations, with black dots on the axis indicating the predicted values
λ ∈ Λ0. Right: Means and 90% ellipsoids for the projections of the three outlier eigenvectors onto
S = col(e1, e2), with black dots indicating the predictions of Theorem 2.13. The simulated setting
is I = 300 groups of size J = 2, and p = 300 traits.

For two finite multisets A,B ⊂ R, define

ordered-dist(A,B) =




∞ if |A|6= |B|
maxi(|a(i) − b(i)|) if |A|= |B|,

where a(i) and b(i) are the ordered values of A and B counting multiplicity. The following shows

that the outlier eigenvalues of Σ̂ are close to the elements of Λ0. Note that by (2.12), each λ ∈ Λ0

is an eigenvalue of the surrogate matrix t1(λ)Σ1 + . . .+ tk(λ)Σk.

Theorem 2.12 (Outlier locations). Fix constants δ, ε,D > 0. Then under Assumptions 2.1 and

2.10, for a constant n0(δ, ε,D) > 0 and all n ≥ n0(δ, ε,D), with probability at least 1 − n−D there

exist Λδ ⊆ Λ0 and Λ̂δ ⊆ spec(Σ̂), containing all elements of these multisets outside supp(µ0)δ, such

that

ordered-dist(Λδ, Λ̂δ) < n−1/2+ε.

The multiset Λ0 represents a theoretical prediction for the locations of the outlier eigenvalues

of Σ̂—this is depicted in Figure 2.2 for an example of the one-way design. We clarify that Λ0 is

deterministic but n-dependent, and it may contain values arbitrarily close to supp(µ0). Hence we

state the result as a matching between two sets Λδ and Λ̂δ rather than the convergence of outlier

eigenvalues of Σ̂ to a fixed set Λ0. We allow Λδ and Λ̂δ to contain values within supp(µ0)δ so as to

match values of the other set close to the boundaries of supp(µ0)δ.

Remark. In the setting of sample covariance matrices Σ̂ for i.i.d. multivariate samples, there is a

phase transition phenomenon in which spike values greater than a certain threshold yield outlier
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eigenvalues in Σ̂, while spike values less than this threshold do not [BBP05, BS06, Pau07]. This

phenomenon occurs also in our setting and is implicitly captured by the cardinality |Λ0|, which

represents the number of predicted outlier eigenvalues of Σ̂. In particular, Λ0 will be empty if the

spike values of Θ1, . . . ,Θk are sufficiently small. However, the phase transition thresholds and pre-

dicted outlier eigenvalue locations in our setting are defined jointly by Θ1, . . . ,Θk and the alignments

between V1, . . . , Vk, rather than by the individual spectra of Σ1, . . . ,Σk.

We next describe eigenvector alignments and eigenvalue fluctuations for isolated outliers λ̂ ∈
spec(Σ̂). Let PS and PS⊥ denote the orthogonal projections onto S and its orthogonal complement.

Theorem 2.13 (Eigenvector alignments). Fix constants δ, ε,D > 0. Suppose λ ∈ Λ0 \ supp(µ0)δ

has multiplicity one, and |λ− λ′|≥ δ for all other λ′ ∈ Λ0. Let v be the unit vector in kerT (λ), and

let v̂ be the unit eigenvector of the eigenvalue λ̂ of Σ̂ closest to λ. Then, under Assumptions 2.1

and 2.10,

(a) For all n ≥ n0(δ, ε,D) and some choice of sign for v, with probability at least 1− n−D,

‖PS v̂ − (v′∂λT (λ)v)−1/2v‖ < n−1/2+ε.

(b) PS⊥ v̂/‖PS⊥ v̂‖ is uniformly distributed over unit vectors in S⊥ and is independent of PS v̂.

Thus (v′∂λT (λ)v)−1/2v represents a theoretical prediction for the projection of the sample eigen-

vector v̂ onto the subspace S—this is also displayed in Figure 2.2 for the one-way design. Here,

(v′∂λT (λ)v)−1/2 is the predicted inner-product alignment between v and v̂, which by Proposition

2.11(c) is at most 1.

Next, let ‖·‖rs denote the Hilbert-Schmidt norm of the (r, s) block in the k×k block decomposition

of CM×M . Define

wrs(z) =
‖F (Id +m0(z)F )−1‖2rs

Nσ2
rσ

2
s

, (2.16)

where this is again well-defined by (2.13) even if σ2
r = 0 and/or σ2

s = 0.

Theorem 2.14 (Gaussian fluctuations). Fix δ > 0. Suppose λ ∈ Λ0 \ supp(µ0)δ has multiplicity

one, and |λ − λ′|≥ δ for all other λ′ ∈ Λ0. Let v be the unit vector in kerT (λ), and let λ̂ be the

eigenvalue of Σ̂ closest to λ. Then under Assumptions 2.1 and 2.10,

ν(λ)−1/2(λ̂− λ)→ N (0, 1)

where

ν(λ) =
2

N(v′∂λT (λ)v)2

(
(v′∂λT (λ)v − 1)2

∂λm0(λ)
+

k∑

r,s=1

wrs(λ)(v′Σrv)(v′Σsv)

)
.

Furthermore, ν(λ) > c/n for a constant c > 0.



CHAPTER 2. MAIN RESULTS 19

Fluctuations of largest eigenvalue
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Figure 2.3: Outlier eigenvalue fluctuations in a one-way design. Displayed are fluctuations of the
largest outlier eigenvalue of Σ̂1 across 10000 simulations, compared with the density function and
quantiles of the Gaussian distribution with mean and variance given in Theorem 2.14. The simulated
setting is I = 300 groups of size J = 2, p = 300 traits, and (top) Σ1 = 6e1e

′
1 and Σ2 = 29vv′ + Id

where v = 1
2e1 +

√
3

2 e2, or (bottom) Σ1 = 6e1e
′
1 and Σ2 = Id.

Figure 2.3 illustrates the accuracy of this Gaussian approximation for two settings of the one-way

design. We observe that the approximation is fairly accurate in a setting with a single outlier, but

(in the simulated sample sizes n = 600 and p = 300) does not adequately capture a skew in the

outlier distribution in a setting with an additional positive outlier produced by a large spike in Σ2.

This skew is reduced in examples where there is increased separation between these two positive

outliers.

Example 2.15. In the setting of large population spike eigenvalues, it is illustrative to understand

the predictions of Theorem 2.12 using a Taylor expansion. Let us carry this out for the MANOVA

estimator Σ̂1 for a balanced one-way design (1.1) with I groups of J individuals.

Recalling the form (2.6) for Σ̂1, the computation in Proposition 2.24(b) for general balanced

designs will yield, in this setting, the explicit expressions

t1(λ) =
(I − 1)J

(I − 1)J +N(Jσ2
1 + σ2

2)m0(λ)
,
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t2(λ) =
I − 1

(I − 1)J +N(Jσ2
1 + σ2

2)m0(λ)
− n− I

(n− I)J −Nσ2
2m0(λ)

.

Suppose first that there is a single large spike eigenvalue µ = θ+ σ2
1 in Σ1, and no spike eigenvalues

in Σ2. Theorem 2.12 and the form (2.15) for T (λ) indicate that outlier eigenvalues should appear

near the locations

Λ0 = [ λ ∈ R \ supp(µ0) : m0(λ)t1(λ) = −1/θ ].

Proposition A.2 verifies that m0 is injective on R \ supp(µ0). Hence m0(λ)t1(λ) is also injective, so

|Λ0|≤ 1. Applying a Taylor expansion around λ =∞, we obtain from (2.8)

m0(λ) = − 1

λ
− 1

λ2
· 1

N
TrF +O(1/λ3) = − 1

λ
− σ2

1

λ2
+O(1/λ3),

m0(λ)t1(λ) = − 1

λ
− 1

λ2

(
σ2

1 +
N

(I − 1)J
(Jσ2

1 + σ2
2)

)
+O(1/λ3),

where N = p− 1. For large θ and µ, solving m0(λ)t1(λ) = −1/θ yields

λ ≈ θ + σ2
1 + c1 = µ+ c1, c1 =

N

(I − 1)J
(Jσ2

1 + σ2
2).

So we expect to observe one outlier with an approximate upward bias of c1.

Next, suppose there is a single large spike eigenvalue µ = θ+ σ2
2 in Σ2, and no spike eigenvalues

in Σ1. Then we expect outlier eigenvalues near the locations

Λ0 = [ λ ∈ R \ supp(µ0) : m0(λ)t2(λ) = −1/θ ].

Since m0(λ) is injective and the condition m0(λ)t2(λ) = −1/θ is quadratic in m0(λ), we obtain

|Λ0|≤ 2. Taylor expanding around |λ|=∞, we have after some simplification

m0(λ)t2(λ) = − 1

λ2
· N

(I − 1)J

(
σ2

1 +
n− 1

n(J − 1)
σ2

2

)
+O(1/|λ|3).

Then for large θ, solving m0(λ)t2(λ) = −1/θ yields two predicted outlier eigenvalues near

λ ≈ ±
√
c2θ, c2 =

N

(I − 1)J

(
σ2

1 +
n− 1

n(J − 1)
σ2

2

)
.

Let us emphasize that these predictions are in the asymptotic regime where n,N → ∞ and λ is a

large but fixed constant, rather than λ→∞ jointly with n,N .

Finally, consider a single spike µ1 = θ1 + σ2
1 in Σ1 and a single spike µ2 = θ2 + σ2

2 in Σ2. Letting
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the corresponding spike eigenvectors have inner-product ρ, we expect outliers near

Λ0 =

[
λ : 0 = det

(
− 1

m0(λ)
Id2−t1(λ)θ1

(
1 0

0 0

)
− t2(λ)θ2

(
ρ2 ρ

√
1− ρ2

ρ
√

1− ρ2 1− ρ2

))]

=
[
λ : 0 = 1 +m0(λ)

(
t1(λ)θ1 + t2(λ)θ2

)
+m0(λ)2t1(λ)t2(λ)θ1θ2(1− ρ2)

]
.

This is a cubic condition in m0(λ), so |Λ0|≤ 3. Applying the above Taylor expansions around λ =∞,

this condition becomes

0 = 1− θ1

λ
− θ1(σ2

1 + c1)

λ2
− θ2c2

λ2
+
θ1θ2(1− ρ2)c2

λ3
+O

(
θ1 + θ2

λ3
+
θ1θ2

λ4

)
.

In a setting where θ1 and θ2 are large and of comparable size, there is a predicted outlier λ near θ1.

More precisely, expanding the above around λ = θ1, the location of this outlier is

λ ≈ θ1 + σ2
1 + c1 + (θ2/θ1)ρ2c2 = µ1 + c1 + (θ2/θ1)ρ2c2.

Thus the upward bias of this outlier is increased from c1, when there are no spikes in Σ2, to

c1 + (θ2/θ1)ρ2c2.

2.4 Estimation in the spiked model

The results of the preceding section indicate that under Assumption 2.10, each outlier eigen-

value/eigenvector of Σ̂ may be interpreted as estimating an eigenvalue/eigenvector of a surrogate

matrix (2.10). When there is no high-dimensional noise, σ2
1 = . . . = σ2

k = 0, we may verify that

tr(λ) = TrU ′rBUr for each r = 1, . . . , k and any λ. In this setting, if Σ̂ is an unbiased MANOVA

estimate of a single component Σr, then (2.5) implies that the surrogate matrix is also simply Σr.

In the presence of high-dimensional noise, this is no longer true. Even for the MANOVA esti-

mate Σ̂ of Σr, the surrogate matrix may depend on multiple variance components Σ1, . . . ,Σk, so

the MANOVA eigenvalues and eigenvectors may exhibit aliasing effects from the other components.

We propose an alternative algorithm based on the idea of searching for matrices Σ̂ = Y ′BY where

this surrogate depends only on Σr. We show that in our high-dimensional asymptotic setting, this

can yield n−1/2-consistent estimates of sufficiently large signal eigenvalues, as well as eigenvector

estimates which asymptotically do not exhibit this aliasing phenomenon. Figure 2.4 depicts differ-

ences between the MANOVA eigenvector and our estimated eigenvector in several examples for the

one-way model.

We implement this algorithmic idea as follows: Fix k symmetric matrices B1, . . . , Bk ∈ Rn×n
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Figure 2.4: Estimates of the principal eigenvector of Σ1 in a one-way design. The population

covariances are Σ1 = µe1e
′
1 and Σ2 = 29vv′ + Id, where v = 1

2e1 +
√

3
2 e2 and (left) µ = 6, (middle)

µ = 8, or (right) µ = 10. Means and 90% ellipsoids across 100 simulations are shown for the first
two coordinates of the unit-norm leading MANOVA eigenvector (red) and of the unit-norm estimate
of Algorithm 1 (black). The design is I = 150 groups of size J = 2 with p = 600 traits.

satisfying Assumption 2.1(c). For a = (a1, . . . , ak) ∈ Rk, denote

B(a) =

k∑

r=1

arBr.

Let F (a) be the matrix defined in (2.7) for B = B(a), let Σ̂(a) = Y ′B(a)Y , and let µ0(a), m0(z,a),

and tr(z,a) be the law µ0 and the functions m0(z) and tr(z) defined with F = F (a). We search

for coefficients a ∈ Rk where Σ̂(a) has an outlier eigenvalue λ̂ satisfying ts(λ̂,a) = 0 for all s 6= r.

At any such pair (λ̂,a), the surrogate matrix t(λ̂) · Σ depends only on Σr, and we have T (λ̂,a) =

λ̂ Id−tr(λ̂,a)Σr by (2.12). By Theorem 2.12, we expect λ̂ to be close to a value λ where

0 = detT (λ,a) ≈ det(λ̂ Id−tr(λ̂,a)Σr). (2.17)

Thus, we estimate an eigenvalue µ of Σr by µ̂ = λ̂/tr(λ̂,a). Furthermore, by Theorem 2.13, we

expect the eigenvector v̂ of Σ̂(a) corresponding to λ̂ to satisfy

PS v̂ ≈ (w′∂λT (λ,a)w)−1/2w,

where w is the null vector of T (λ,a). By (2.17), we expect w ≈ v where v is the eigenvector of Σr

corresponding to µ. Thus, we estimate v by v̂.

The procedure is summarized in Algorithm 1. We note that the combinations a where ts(λ,a) ≈ 0

for s 6= r are not known a priori—in particular, they depend on the unknown spike eigenvalues and

eigenvectors to be estimated. Hence we search for such values a ∈ Rk. By scale invariance, we
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Algorithm 1 Algorithm for estimating eigenvalues and eigenvectors of Σr
Initialize M = ∅. Fix δ > 0 a small constant.
for each a ∈ Sk−1 and each λ̂ ∈ spec(Σ̂(a)) ∩ Iδ(a) do

if ts(λ̂,a) = 0 for all s ∈ {1, . . . , k} \ {r} then

Add (µ̂, v̂) to M, where µ̂ = λ̂/tr(λ̂,a) and v̂ is the unit eigenvector such that Σ̂(a)v̂ = λ̂v̂.
end if

end for
Return M
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Figure 2.5: Illustration of Algorithm 1 for the one-way design, where k = 2. The setting is the
same as in Figure 2.2. The red curve depicts the locus L from (2.19) on the (s1, s2) plane, which

has one s1-intercept at (−1/6, 0) and one s2-intercept at (0,−1/29). Black points show values of L̂
corresponding to (a1, a2) in a grid of 100 equispaced points on the unit circle, from a single data

simulation. The three points of L̂ corresponding to the three outliers of the MANOVA estimate Σ̂1,
where (a1, a2) = ±(1/J,−1/J), are depicted in red.

restrict to a on the unit sphere

Sk−1 = {a ∈ Rk : ‖a‖= 1}.

We further restrict to outlier eigenvalues λ̂ ∈ spec(Σ̂(a)) which fall above supp(µ0), belonging to

Iδ(a) = {x ∈ R : x ≥ y + δ for all y ∈ supp(µ0(a))}.

We note that outliers falling below supp(µ0) will be identified as corresponding to −a ∈ Sk−1, and

for simplicity of the procedure, we ignore any outliers that fall between intervals of supp(µ0(a)).

One may understand the behavior of Algorithm 1 by plotting the values

L̂ =
{
m0(λ̂,a) · (t1(λ̂,a), . . . , tk(λ̂,a)) : a ∈ Sk−1, λ̂ ∈ spec(Σ̂(a)) ∩ Iδ(a)

}
. (2.18)
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This is illustrated for an example of the one-way design in Figure 2.5. By Theorem 2.12, we expect

these values to fall close to

m0(λ,a) · (t1(λ,a), . . . , tk(λ,a)),

where λ is the deterministic prediction for the location of λ̂, satisfying 0 = detT (λ,a). By this

condition and the form (2.15) for T , these values belong to the locus

L =

{
(s1, . . . , sk) ∈ Rk : 0 = det

(
Id +

k∑

r=1

srVrΘrV
′
r

)}
, (2.19)

which does not depend on a and is defined solely by the spike parameters Θ1, . . . ,Θk and V1, . . . , Vk.

This is depicted also in Figure 2.5. (We have picked a simulation to display in Figure 2.5 where

L̂ and L are particularly close, for purposes of illustration.) The spike values θ on the diagonal of

Θr are in 1-to-1 correspondence with the points (0, . . . , 0,−1/θ, 0, . . . , 0) ∈ L which fall on the rth

coordinate axis. Algorithm 1 may be understood as estimating these intercepts by the intercepts of

the observed locus L̂.

We have written Algorithm 1 in the idealized setting where we search over all a ∈ Sk−1. In

practice, we discretize Sk−1 as in Figure 2.5 and search over this discretization for pairs (λ̂,a) where

ts(λ̂,a) ≈ 0 for all s 6= r. We then numerically refine each located pair (λ̂,a). Computing the

values tr(λ̂,a) and the lower endpoint of Iδ(a) requires knowledge of the noise variances σ2
1 , . . . , σ

2
k.

These computations are particularly simple in balanced classification designs, and we discuss this

in Section 2.6. If σ2
1 , . . . , σ

2
k are unknown, they may be replaced by 1/n-consistent estimates as in

Proposition 2.9. (In practice, large outliers of Σ̂1, . . . , Σ̂k may be removed before computing the

trace.) The unknown quantity N = p− L may be replaced by the dimension p.

We prove the following theoretical guarantee for this procedure, for simplicity in the setting

where Σr has separated eigenvalues. Define s : Rk → Rk by

s(a) = (s1(a), . . . , sk(a)), sr(a) =
1

Nσ2
r

Trr

(
F (a)[Id +F (a)]−1

)
. (2.20)

As F (m0 ·a) = m0 ·F (a), this function satisfies s(m0(λ,a) ·a) = m0(λ,a) ·(t1(λ,a), . . . , tk(λ,a)). To

guarantee that the algorithm does not make duplicate estimates for each individual spike eigenvalue

of Σr, we require B1, . . . , Bk to be chosen such that s is injective in the following quantitative sense.

Assumption 2.16. There exists a constant c > 0 such that for any a1,a2 ∈ Rk where Id +F (a1)

and Id +F (a2) are invertible,

‖s(a1)− s(a2)‖≥ c ‖a1 − a2‖
(1 + ‖a1‖)(1 + ‖a2‖)

.

We will verify in Section 2.6 that this condition holds for balanced classification designs, where

B1, . . . , Bk are the projections corresponding to the canonical mean-squares.
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Theorem 2.17 (Spike estimation). Fix δ, τ > 0 and r ∈ {1, . . . , k}. Suppose Assumptions 2.1 and

2.16 hold for B1, . . . , Bk. Suppose furthermore that the diagonal values θi of Θr satisfy θi ≥ τ and

|θi − θj |≥ τ for all 1 ≤ i 6= j ≤ lr. Then there exists a constant c0 > 0 (not depending on C̄ in

Assumption 2.1) such that the following holds:

Let M be the output of Algorithm 1 with parameter δ for estimating the spikes of Σr. Let

Ê = [µ̂ : (µ̂, v̂) ∈M] and V̂ = [v̂ : (µ̂, v̂) ∈M] be the estimated eigenvalues and eigenvectors. Then,

for any ε,D > 0 and all n ≥ n0(δ, τ, ε,D),

(a) With probability at least 1 − n−D, there is a subset E ⊂ spec(Σr) containing all eigenvalues

greater than c0 such that

ordered-dist(Ê , E) < n−1/2+ε.

(b) On the event of part (a), for any µ ∈ E , let v be the unit eigenvector where Σrv = µv, and let

(µ̂, v̂) ∈ M be such that |µ̂− µ|< n−1/2+ε. Then for some scalar value α ∈ (0, 1] and choice of

sign for v,

‖PS v̂ − αv‖< n−1/2+ε.

(c) For each v̂ ∈ V̂, PS⊥ v̂/‖PS⊥ v̂‖ is independent of PS v̂ and uniformly distributed over unit

vectors in S⊥.

In the presence of high-dimensional noise, the eigenvector estimate v̂ remains inconsistent for v.

However, asymptotically as n, p→∞, parts (b) and (c) indicate that v̂ is not biased in a particular

direction away from v. Note that in part (a), some lower bound c0 for the size of the population

spike eigenvalue is necessary to guarantee estimation of this spike, as otherwise it might not produce

an outlier in any matrix Σ̂(a). (In this case, a portion of the true locus L in (2.19) may not be

tracked by the observed locus L̂.)

Example 2.18. We explore in simulations the accuracy of this procedure for estimating eigenvalues

and eigenvectors of Σ1 in two finite-sample settings of the one-way model (1.1), corresponding to

the designs

D1 : n = 600, p = 300, I = 300, J = 2

D2 : n = 300, p = 600, I = 150, J = 2

In all simulations, we take σ2
1 = 0 and σ2

2 = 1. In particular, Σ1 is low-rank, as hypothesized for

genetic covariances of high-dimensional trait sets [WB09, BAC+15]. For both designs, we fix the

tuning parameter δ = 0.5.

We first consider a rank-one matrix Σ1 = µe1e
′
1 for various settings of µ between 2 and 10, and

Σ2 = Id with no spike. The following tables display the mean and standard error of µ̂ estimated

by Algorithm 1, and of the alignment v̂′e1 of the estimated eigenvector. Displayed also are the
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corresponding quantities for the leading eigenvalue/eigenvector of the MANOVA estimate Σ̂1. We

observe in all cases that Algorithm 1 corrects a bias in the MANOVA eigenvalue, and the alignment

v̂′e1 is approximately the same as for the MANOVA eigenvector. Algorithm 1 never estimates more

than one spike for Σ1 in this setting; however, if µ is small, it may sometimes estimate 0 spikes. We

display also the percentage of simulations in which a spike was estimated. For µ = 2 under Design

D2, the predicted outlier is less than δ = 0.5 away from the edge of the spectrum, and Algorithm 1

never estimated this spike.

Design D1

µ = 2 µ = 4 µ = 6 µ = 8 µ = 10

Eigenvalue, MANOVA 2.70 (0.19) 4.60 (0.36) 6.56 (0.52) 8.53 (0.69) 10.51 (0.85)

Alignment e1, MANOVA 0.85 (0.02) 0.93 (0.01) 0.96 (0.01) 0.97 (0.00) 0.97 (0.00)

Eigenvalue, estimated 2.00 (0.20) 3.98 (0.37) 5.98 (0.53) 7.97 (0.69) 9.96 (0.85)

Alignment e1, estimated 0.84 (0.02) 0.93 (0.01) 0.95 (0.01) 0.97 (0.00) 0.97 (0.00)

Percent estimated 98 100 100 100 100

Design D2

µ = 2 µ = 4 µ = 6 µ = 8 µ = 10

Eigenvalue, MANOVA 4.65 (0.23) 6.31 (0.49) 8.18 (0.72) 10.10 (0.95) 12.04 (1.19)

Alignment e1, MANOVA 0.58 (0.07) 0.78 (0.03) 0.85 (0.02) 0.88 (0.02) 0.90 (0.01)

Eigenvalue, estimated NA 4.02 (0.46) 5.89 (0.75) 7.87 (0.98) 9.84 (1.20)

Alignment e1, estimated NA 0.76 (0.03) 0.84 (0.02) 0.88 (0.02) 0.90 (0.01)

Percent estimated 0 87 100 100 100

Next, we consider Σ1 = 0 and Σ2 = θvv′+Id for a unit vector v and for µ = θ+1 ∈ {10, 20, 30}.
In both designs D1 and D2, this produces one positive and one negative outlier eigenvalue in the

MANOVA estimate Σ̂1. The tables below show the percentages of simulations in which a spurious

spike eigenvalue is estimated by Algorithm 1 for Σ1. In such cases, there is enough deviation of

the observed locus L̂ from the true locus L (which is the horizontal line s2 = −1/θ) to produce a

spurious intercept where t2(λ̂,a) = 0, and the algorithm interprets this as an alignment of the spike

in Σ2 with a small spike in Σ1. We find that the spurious points (λ̂,a) where t2(λ̂,a) = 0 occur for

λ̂ close to the edges of supp(µ0(a)), and this error percentage may be reduced in finite samples by

setting a more conservative choice of δ, if desired.

Design D1

µ = 10 µ = 20 µ = 30

Percent spurious 2 8 18

Design D2

µ = 10 µ = 20 µ = 30

Percent spurious 0 8 15



CHAPTER 2. MAIN RESULTS 27

Next, we consider Σ1 = µe1e
′
1 and Σ2 = 29vv′+Id for v = 1

2e1 +
√

3
2 e2, which forms a 60-degree

alignment angle with e1. Displayed are the statistics for the largest estimated eigenvalue/eigenvector

and largest MANOVA eigenvalue/eigenvector. Displayed also are the inner-product alignments

with the direction e2 (where signs are chosen so that the estimated eigenvectors have positive e1

coordinate). The spike in Σ2 causes the MANOVA eigenvector to be biased towards v, and it also

increases the bias and standard error of the MANOVA eigenvalue. In settings of small µ when

Algorithm 1 does not always estimate a spike, the values µ̂ and v̂′e2 have a selection bias among the

simulations where estimation occurs. For the remaining settings, µ̂ and v̂′e2 are nearly unbiased for

the true values µ and 0, and the alignments v̂′e1 are similar to those of the MANOVA eigenvectors.

Design D1

µ = 2 µ = 4 µ = 6 µ = 8 µ = 10

Eigenvalue, MANOVA 4.59 (1.14) 5.70 (1.14) 7.28 (1.15) 9.07 (1.22) 10.93 (1.33)

Alignment e1, MANOVA 0.57 (0.07) 0.80 (0.06) 0.89 (0.04) 0.93 (0.02) 0.95 (0.01)

Alignment e2, MANOVA 0.47 (0.11) 0.26 (0.16) 0.14 (0.15) 0.09 (0.12) 0.06 (0.10)

Eigenvalue, estimated 2.67 (1.09) 4.18 (1.01) 6.11 (1.07) 8.06 (1.17) 10.03 (1.30)

Alignment e1, estimated 0.63 (0.10) 0.83 (0.04) 0.90 (0.02) 0.93 (0.02) 0.95 (0.01)

Alignment e2, estimated 0.10 (0.25) 0.01 (0.19) 0.01 (0.15) 0.00 (0.12) 0.00 (0.10)

Percent estimated 70 100 100 100 100

Design D2

µ = 2 µ = 4 µ = 6 µ = 8 µ = 10

Eigenvalue, MANOVA 8.79 (1.52) 9.49 (1.64) 10.57 (1.74) 11.98 (1.85) 13.59 (1.99)

Alignment e1, MANOVA 0.44 (0.06) 0.58 (0.06) 0.71 (0.05) 0.79 (0.04) 0.84 (0.03)

Alignment e2, MANOVA 0.53 (0.07) 0.44 (0.10) 0.33 (0.12) 0.24 (0.12) 0.18 (0.12)

Eigenvalue, estimated 5.15 (1.37) 4.84 (1.41) 6.28 (1.56) 8.21 (1.72) 10.15 (1.91)

Alignment e1, estimated 0.39 (0.05) 0.60 (0.06) 0.72 (0.04) 0.80 (0.03) 0.84 (0.03)

Alignment e2, estimated 0.34 (0.11) 0.09 (0.17) 0.02 (0.16) 0.02 (0.14) 0.01 (0.13)

Percent estimated 22 77 100 100 100

Finally, we consider a setting with multiple spikes. We set Σ1 to be of rank 5, with eigenvalues

(10, 8, 6, 4, 2). We set Σ2 to have 5 eigenvalues equal to 30 and remaining eigenvalues equal to 1, with

the former 5-dimensional subspace having a 60-degree alignment angle with each spike eigenvector

of Σ1. The tables below display statistics for the five largest estimated and MANOVA eigenvalues in

this setting. We observe that Algorithm 1 reduces the bias of the MANOVA eigenvalues, although

a positive bias persists at these sample sizes.
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Design D1

µ = 10 µ = 8 µ = 6 µ = 4 µ = 2

Eigenvalue, MANOVA 12.06 (1.10) 9.70 (1.01) 7.60 (0.96) 5.87 (0.74) 4.53 (0.55)

Eigenvalue, estimated 11.08 (1.12) 8.65 (1.01) 6.38 (0.95) 4.36 (0.76) 2.80 (0.57)

Percent estimated 100 100 100 100 97

Design D2

µ = 10 µ = 8 µ = 6 µ = 4 µ = 2

Eigenvalue, MANOVA 15.79 (1.61) 12.94 (1.15) 11.06 (1.00) 9.21 (0.82) 7.80 (0.73)

Eigenvalue, estimated 12.07 (1.68) 8.95 (1.19) 6.77 (1.03) 4.74 (0.86) 3.94 (0.53)

Percent estimated 100 100 100 98 37

2.5 General bulk eigenvalue law

Finally, we consider the general setting of Assumption 2.1 without any additional structure on

Σ1, . . . ,Σk. We establish an analogue of Theorem 2.4, showing that the empirical eigenvalue distri-

bution of Σ̂ remains well-approximated by a deterministic law µ0. This law µ0 is no longer described

by the Marcenko-Pastur equation, but it may be analogously described by a more general system

of fixed point equations. We show that this system of equations admits a unique fixed point in the

appropriate complex domains, and this fixed point may be computed by a simple iterative algorithm.

With a small abuse of previous notation, let us define in this context

Frs =
√
mrmsU

′
rBUs ∈ Rmr×ms , F =




F11 · · · F1k

...
. . .

...

Fk1 · · · Fkk


 ∈ RM×M . (2.21)

For x = (x1, . . . , xk) and y = (y1, . . . , yk), define

D(x) = diag(x1 Idm1
, . . . , xk Idmk) ∈ CM×M , y · Σ = y1Σ1 + . . .+ ykΣk. (2.22)

Theorem 2.19. Suppose Assumption 2.1 holds. For each z ∈ C+, there exist unique z-dependent

values x1, . . . , xk ∈ C+ ∪ {0} and y1, . . . , yk ∈ C+ that satisfy, for r = 1, . . . , k, the equations

xr = − 1

mr
Tr
(
(z Idp +y · Σ)−1Σr

)
, (2.23)

yr = − 1

mr
Trr

(
[IdM +FD(x)]−1F

)
. (2.24)

The function m0 : C+ → C+ defined by

m0(z) = −1

p
Tr
(
(z Idp +y · Σ)−1

)
(2.25)
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Figure 2.6: Eigenvalues of the MANOVA estimate Σ̂1 in a one-way design with full-rank, non-
isotropic Σ1. The group covariance Σ1 has uniform eigenvalues between 0 and 1, and the error
covariance is Σ2 = Id. Histograms show average eigenvalue locations across 100 simulations, super-
imposed with the density of the convolution measure µ0 ?Cauchy(0, 10−4) computed by the iterative
procedure of Theorem 2.20. The left shows I = 300 groups of size J = 2 and p = 300 traits; the
right shows I = 150 groups of size J = 2 and p = 600 traits, with eigenvalues of Σ̂ equal to 0 and
the point mass of µ0 at 0 both removed.

is the Stieltjes transform of a probability distribution µ0 on R. Letting µΣ̂ be the empirical eigenvalue

distribution of Σ̂, µΣ̂ − µ0 → 0 weakly almost surely.

In most cases, (2.23–2.25) do not admit a closed-form solution in x1, . . . , xk, y1, . . . , yk, and

m0(z). However, these equations may be solved numerically:

Theorem 2.20. For each z ∈ C+, the values xr and yr in Theorem 2.19 are the limits, as t→∞,

of the iterative procedure which arbitrarily initializes y
(0)
1 , . . . , y

(0)
k ∈ C+ and iteratively computes

(for t = 0, 1, 2, . . .) x
(t)
r from y

(t)
r using (2.23) and y

(t+1)
r from x

(t)
r using (2.24).

These results are proven in Chapter 5. Note that by (2.11), the value π−1 Imm0(E + iη) is

the density of the convolution µ0 ? Cauchy(0, η) at E. This iterative procedure may be used to

numerically compute this density over E ∈ R, which approximates the law µ0 for small η. This is

depicted in Figure 2.6 for two examples of the one-way design.

2.6 Balanced classification designs

We consider the special example of model (2.1) corresponding to balanced classification designs. In

these designs, by considerations of sufficiency, there is a canonical family of matrices B to use in (2.4),

and also a canonical choice of matrices B1, . . . , Bk for Algorithm 1 corresponding to the classical

mean-squares. For such B, quantities such as z0(m) and tr(z) in (2.9) and (2.12) have explicit

forms, which we record here to facilitate numerical implementations of the preceding procedures.
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The technical conditions of edge regularity and injectivity of the map s in (2.20) may also be explicitly

checked.

To motivate the general discussion, we first give several examples.

Example 2.21. Consider the one-way model (1.1) in the balanced setting with I groups of equal

size J . We assume J ≥ 2 is a fixed constant. The canonical mean-square matrices of this model are

defined by

MS1 =
1

I − 1

I∑

i=1

J∑

j=1

(ȳi − ȳ)(ȳi − ȳ)′, MS2 =
1

n− I
I∑

i=1

J∑

j=1

(yi,j − ȳi)(yi,j − ȳi)
′,

where ȳi ∈ Rp and ȳ ∈ Rp denote the sample means in group i and across all groups. The MANOVA

estimators are [SCM09]

Σ̂1 =
1

J
MS1 −

1

J
MS2, Σ̂2 = MS2.

Recall that the one-way model may be written in the matrix form

Y = 1nµ
′ + U1α1 + α2,

where U1 is defined in (2.2). Defining orthogonal projections π1 and π2 onto col(U1)	 col(1n) and

Rn 	 col(U1), the above mean-squares may be written as

MS1 = Y ′
π1

I − 1
Y, MS2 = Y ′

π2

n− I Y.

The MANOVA estimators then take the equivalent form of (2.6).

Example 2.22. Consider the nested two-way model (1.2) with I groups, each group consisting of J

subgroups, and each subgroup consisting of K individuals. We assume J,K ≥ 2 are fixed constants.

This model may be written in the matrix form

Y = 1nµ
′ + U1α1 + U2α2 + α3,

where yi,j,k, αi, βi,j , and εi,j,k are stacked as the rows of Y , α1, α2, and α3, and the incidence

matrices are given by

U1 = IdI ⊗1JK , U2 = IdIJ ⊗1K .

Defining orthogonal projections π1, π2, and π3 onto col(U1)	 col(1n), col(U2)	 col(U1), and Rn 	
col(U2), the canonical mean-squares are given by

MS1 = Y ′
π1

I − 1
Y, MS2 = Y ′

π2

IJ − I Y, MS3 = Y ′
π3

n− IJ Y.
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The MANOVA estimators are defined as [SCM09]

Σ̂1 =
1

JK
MS1 −

1

JK
MS2, Σ̂2 =

1

K
MS2 −

1

K
MS3, Σ̂3 = MS3.

Example 2.23. Consider the crossed two-way model (1.3) in a replicated setting,

yi,j,k,l = µ+αi + βi,j + γi,k + δi,j,k + εi,j,k,l.

The entire cross-breeding experiment is replicated I times, with each cross involving J distinct

fathers and K distinct mothers. Traits are measured in L different offspring for each (i, j, k). We

assume J,K,L ≥ 2 are fixed constants. This model may be written in the matrix form

Y = 1nµ
′ +

4∑

r=1

Urαr + α5,

where the incidence matrices are

U1 = IdI ⊗1JKL, U2 = IdIJ ⊗1KL, U3 = IdI ⊗1J ⊗ IdK ⊗1L, U4 = IdIJK ⊗1L.

Defining orthogonal projections π1, π2, π3, π4, π5 onto S̊1 = col(U1)	col(1n), S̊2 = col(U2)	col(U1),

S̊3 = col(U3) 	 col(U1), S̊4 = col(U4) 	 (col(U1) ⊕ S̊2 ⊕ S̊3), and S̊5 = Rn 	 col(U4), the canonical

mean-squares are

MSr = Y ′
πr
dr
Y for r = 1, . . . , 5,

where dr = dim(S̊r). The forms of the classical MANOVA estimators may be deduced from the

general discussion below.

To encompass these examples, we consider a general balanced classification design defined by the

following properties:

1. For each r, let cr = n/mr. Then U ′rUr = cr Idmr , and Πr = c−1
r UrU

′
r is an orthogonal

projection onto a subspace Sr ⊂ Rn of dimension mr.

2. Define S0 = col(X). Then S0 ⊂ Sr ⊂ Sk = Rn for each r = 1, . . . , k − 1.

3. Partially order the subspaces Sr by inclusion: s � r if Ss ⊆ Sr. Let S̊0 = S0, and for

r = 1, . . . , k let S̊r denote the orthogonal complement in Sr of all Ss properly contained in Sr.

Then for each r,

Sr =
⊕

s�r

S̊s. (2.26)

In particular, Rn = Sk = ⊕kr=0S̊r.
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Sk

.....

S0

S1

S2 S3

S4

S5

Figure 1: Inclusion lattices for the subspaces {Sr} determined by the nested (left) and
crossed (right) examples.

and, in particular, Rn = �k
r=0S̊r. This follows by construction in those cases where Sr ⇢

Sr+1. In the crossed example, we also have that S̊2 = S2 S1 is orthogonal to S̊3 = S3 S1.
Now let dr = dim(S̊r) and ⇡r denote orthogonal projection on S̊r. From (2), we have

⇧r =
P

r0�r ⇡r0 . The sum of squares and mean square corresponding to S̊r are respectively
defined as

SSr = Y T⇡rY, MSr = SSr/dr. (3)

To evaluate the expected mean squares, recall that for ↵r ⇠ Np(0, IdIr ⌦⌃r), we have
E↵T

r M↵r = (Tr M)⌃r. For t � 1, we have ⇡tµ = 0 and so from model (1) [in the paper]
and the mutual independence of {↵r}, we obtain

E SSt =

kX

r=1

E↵T
r UT

r ⇡tUr↵r =

kX

r=1

Tr(UT
r ⇡tUr)⌃r.

From the definitions, Tr(UT
r ⇡tUr) = I 0r Tr(⇡t⇧r) = I 0rdtI{t � r}, which yields

E MSt =
X

r⌫t

I 0r⌃r =
X

r

⇣(t, r)I 0r⌃r (4)

where ⇣(t, r) = I{t � r} is the ‘zeta function’ associated with the partial order. We can
then use Möbius inversion to write ⌃r in terms of the expected mean squares

I 0r⌃r =
X

u

µ(r, u) EMSu,

where µ(r, u) is the associated ‘Möbius function’. General discussions may be found in
Speed [1983], Aigner [1979], but it is perhaps easier to solve for µ(t, u) directly in our
examples, see below.

From the previous display and (3) we obtain unbiased MANOVA estimators

⌃̂t = Y T BtY, Bt =
rX

u=1

�tu⇡u, �tu =
µ(t, u)

I 0tdu
. (5)

We compute M = UT BtU by changing to a new basis for RI+ . Let Vr be an n ⇥ dr

matrix whose columns form an orthonormal basis for S̊r. Let V̌r be the n ⇥ Ir matrix

2

Figure 2.7: Inclusion lattices for the subspaces {Sr} determined by the nested (left) and crossed
(right) examples.

The subspace inclusion lattices for the nested designs of Examples 2.21 and 2.22 and the crossed

design of Example 2.23 are depicted in Figure 2.7.

For each r = 0, . . . , k, let dr = dim(S̊r), let Vr ∈ Rn×dr have orthonormal columns spanning

S̊r, and let πr = VrV
′
r be the orthogonal projection onto S̊r. (In particular, d0 = dim col(X) is the

dimensionality of fixed effects.) Then π0, . . . , πk are mutually orthogonal projections summing to

Idn. Note that the condition (2.26) implies

UrU
′
r = crΠr =

∑

s�r

crπs.

Then the likelihood of Y in (2.3) may be written in the form

f(Y ) ∝ exp


−1

2

k∑

s=0

Tr





 ∑

r≥1: r�s

crΣr



−1

(Y −Xβ)′πs(Y −Xβ)







where πsX = 0 for s ≥ 1. Hence the quantities

π0Y, MS1 = Y ′(π1/d1)Y, . . . , MSk = Y ′(πk/dk)Y

form sufficient statistics for this model.

In this setting, we restrict attention to matrices of the form

Σ̂ = a1MS1 + . . .+ akMSk = Y ′BY, B = B(a) = a1
π1

d1
+ . . .+ ak

πk
dk
, (2.27)

and we suggest the choices Br = πr/dr for use in Algorithm 1. In particular, the classical MANOVA
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estimators are of this form: From (2.5), we have

E[MSs] =

k∑

r=1

d−1
s Tr(U ′rπsUr)Σr =

∑

r�s

crΣr, E[Σ̂] =

k∑

s=1

∑

r�s

ascrΣr.

The MANOVA estimate of Σr is obtained by choosing a = (a1, . . . , ak) so that E[Σ̂] = Σr. Denoting

Hrs = 1{s � r}cr, H = (Hrs)
k
r,s=1 ∈ Rk×k, (2.28)

this is satisfied by letting a be the rth column of H−1. (This corresponds to the procedure of Möbius

inversion over the subspace inclusion lattice, discussed in greater detail in [Spe83].)

We record the following calculations and properties for this class of models. In particular, part

(a) implies that m0(z) may be computed by solving a polynomial equation of degree k+ 1 in m0(z).

For z ∈ C+, the correct root is the unique root m0(z) ∈ C+, while for z ∈ R \ supp(µ0), the correct

root satisfies z′0(m0(z)) > 0. From this, the quantities tr(z) and wrs(z) are easily computed in part

(b). The edges of supp(µ0) may be found by solving the equation 0 = z′0(m∗), which may be written

as a polynomial equation of degree 2k in m∗.

Proposition 2.24. Let (2.1) correspond to a balanced classification design, as defined above. Sup-

pose Assumption 2.1(a,b,d) holds for this design, and in addition, dr > cn for each r = 1, . . . , k and

a constant c > 0. Let Σ̂ and B be defined by (2.27), where a = (a1, . . . , ak) ∈ Rk satisfies ‖a‖< C

for a constant C > 0.

(a) Under Assumption 2.2, the Marcenko-Pastur equation (2.8) corresponding to Σ̂ takes the form

z = − 1

m0(z)
+

k∑

s=1

Csbs(z), bs(z) =
as

1 + (N/ds)asCsm0(z)
, Cs =

∑

r�s

crσ
2
r . (2.29)

If there exist a constant c > 0 and indices s, r ∈ {1, . . . , k} such that s � r, as > c, and σ2
r > c,

then the rightmost edge E∗ of µ0 is τ -regular for a constant τ > 0.

(b) Under Assumption 2.10, the functions tr(z) and wrs(z) from (2.12) and (2.16) take the forms

tr(z) = cr
∑

s≥1: s�r

bs(z), wrs(z) = crcs
∑

t≥1: t�r, t�s

(N/dt)bt(z)
2.

Furthermore, Assumption 2.16 holds for the estimation matrices Br = πr/dr.

(c) In the fixed point equations (2.23–2.25), the equation (2.24) takes the explicit form

yr = −cr
∑

s≥1: s�r

as
1 + (n/ds)asxs+

, xs+ =
∑

r�s

xr. (2.30)
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Proof. We rotate coordinates. Fix r ∈ {1, . . . , k} and write {s : s � r} = {s0, . . . , sj} where s0 = 0.

We may write the singular value decomposition of Ur as

Ur =
√
cr
∑

s�r

VsW
′
r,s,

where the columns of Vs form an orthonormal basis for S̊s and where Wr = [Wr,s0 | . . . | Wr,sj ] is

orthogonal mr ×mr. Denote ň = n− d0, m̌r = mr − d0, V = [V1 | . . . | Vk] ∈ Rn×ň, and

α̌r =




W ′r,s1αr
...

W ′r,sjαr


 ∈ Rm̌r×p, Ǔr =

√
crV

′
(
Vs1 · · · Vsj

)
∈ Rň×m̌r .

By rotational invariance, α̌r still has independent rows with distribution N (0,Σr). Also, Ǔr has a

simple form—each V ′Vsi ∈ Rň×dsi has a single block equal to Iddsi and remaining blocks 0. Defining

Y̌ = V ′Y ∈ Rň×p, B̌ = V ′BV =




(a1/d1) Idd1
. . .

(ak/dk) Iddk


 ∈ Rň×ň

and applying V ′ to (2.1), we obtain the rotated model

Y̌ =

k∑

r=1

Ǔrα̌r, Σ̂ = Y̌ ′B̌Y̌ . (2.31)

For parts (a) and (b), let F be the matrix (2.7) in the model (2.1). Let M̌ = m̌1 + . . . + m̌k,

and denote by F̌ ∈ RM̌×M̌ this matrix in the rotated model (2.31), with (r, s) block NσrσsǓ
′
rB̌Ǔs.

Let Q = diag(W1, . . . ,Wk), where Wr is the matrix of right singular vectors of Ur as above. Then

observe that F̌ is the matrix Q′FQ with d0 rows and d0 columns of 0’s removed from each block.

Thus, the law µ0 and the functions m0(z), sr(a), tr(z), and wrs(z) do not change upon replacing F

by F̌ in their definitions.

For (a), let us further decompose m̌r =
∑
s≥1: s�r ds, and consider F̌ in the expanded block

decomposition corresponding to

M̌ =

k∑

r=1

∑

s≥1: s�r

ds.

Index a row or column of this decomposition by the pair (r, s) where s � r. Then from the forms of

Ǔr and B̌, we have

F̌(r,s),(r′,s′) = 1{s = s′}N√crcr′σrσr′
as
ds

Idds .
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For each s ∈ {1, . . . , k}, let Es be the submatrix formed by the blocks ((r, s), (r′, s)) where r � s and

r′ � s. Note that F̌ is (upon permuting rows and columns) block-diagonal with blocks E1, . . . , Ek.

We may write Es = N(as/ds)R
′
sRs where Rs = (

√
crσr Idds : r � s). Then Es has rank ds, with ds

identical non-zero eigenvalues equal to N(as/ds)Cs where Cs is defined in (2.29). As the eigenvalues

of F̌ are the union of those of E1, . . . , Ek, writing (2.8) in spectral form establishes (2.29). Under

the stated conditions in (a), the largest eigenvalue of F̌ is positive and bounded away from 0, with

multiplicity proportional to n. Then the rightmost edge E∗ is regular by Proposition 2.7.

For (b), noting that RsR
′
s = Cs Idds , the Woodbury identity yields

Es(Id +Es)
−1 =

Nas
ds

R′sRs

(
Id− Nas

ds(1 +N(as/ds)Cs)
R′sRs

)
=

N(as/ds)

1 +N(as/ds)Cs
R′sRs.

Then for all s � r and s′ � r′,
(
F (Id +F )−1

)
(r,s),(r′,s′)

= 1{s = s′}
√
crc′rσrσr′

N(as/ds)

1 +N(as/ds)Cs
Idds . (2.32)

The rth diagonal block trace in the collapsed decomposition M̌ = m̌1 + . . . + m̌k is the sum of the

trace of the above over s � r, s = s′, and r = r′. Thus

sr(a) = cr
∑

s�r

as
1 + (N/ds)asCs

= Hf(a),

where H is defined in (2.28) and

f(a) =

(
a1

1 + (N/d1)a1C1
, . . . ,

ak
1 + (N/dk)akCk

)
.

As C1, . . . , Ck and N/d1, . . . , N/dk are bounded above by a constant, we have

‖f(a1)− f(a2)‖≥ c ‖a1 − a2‖
(1 + ‖a1‖)(1 + ‖a2‖)

for a constant c > 0. Under a suitable permutation of 1, . . . , k, the matrix H is lower-triangular,

with all entries bounded above, and with all diagonal entries cr bounded away from 0. Thus the

least singular value of H is bounded away from 0, so Assumption 2.16 holds. Substituting m0as for

as in (2.32), we also have

(
F (Id +m0F )−1

)
(r,s),(r′,s′)

= 1{s = s′}
√
crc′rσrσr′

N(as/ds)

1 +N(as/ds)Csm0
Idds .

Taking block traces and Hilbert-Schmidt norms yields the expressions for tr and wrs.
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Finally, for part (c), observe likewise that for F as defined in (2.21),

Trr ([IdM +FD(x)]−1F ) = Trr ([IdM̌ +F̌ Ď(x)]−1F̌ )

where Ď(x) = diag(x1 Idm̌1
, . . . , xk Idm̌k) and F̌ has blocks

√
mrmsǓ

′
rB̌Ǔs. Applying again the

forms of Ǔr and B̌ and the identity crmr = n, we obtain

F̌(r,s),(r′,s′) = 1{s = s′}nas
ds

Idds .

Fix s ∈ {1, . . . , k} and consider the submatrix Es formed by the blocks ((r, s), (r′, s)) where r � s

and r′ � s. Then Es = n(as/ds)R
′
sRs where Rs = (Idds | · · · | Idds). The corresponding submatrix

of Ď(x) is given by Ds = diag(xr Idds : r � s). Defining xs+ by (2.30) and applying the Woodbury

identity, we have

(Id +EsDs)
−1Es =

(
Id− nas

ds(1 + (n/ds)asxs+)
R′sRsDs

)
nas
ds

R′sRs =
nas

ds(1 + (n/ds)asxs+)
R′sRs.

Then for all s � r and s′ � r′,
(

(Id +FD(x))−1F
)

(r,s),(r′,s′)
= 1{s = s′} nas

ds(1 + (n/ds)asxs+)
Idds .

Taking the diagonal block trace in the collapsed decomposition M̌ = m̌1 + . . . + m̌k and applying

n/mr = cr, we obtain from (2.24) the explicit form (2.30).



Chapter 3

Edge fluctuations under sphericity

In this chapter, we discuss in greater detail the edges of the support of the law µ0 from Theorem 2.4.

We then prove Theorem 2.6, which establishes Tracy-Widom fluctuations of the extremal eigenvalue

of Σ̂ at each regular edge of µ0 under global sphericity of Σ1, . . . ,Σk.

Our proof generalizes an argument of Lee and Schnelli [LS16], which showed under a similar edge

regularity condition that the largest eigenvalue of Σ̂ = X ′FX exhibits real Tracy-Widom fluctuations

for positive definite F . We extend this result in two directions:

1. We show that this holds also for matrices F with negative eigenvalues.

2. The spectrum of the law µ0 in Theorem 2.4 may have multiple disjoint intervals of support. We

establish a Tracy-Widom limit for the extremal eigenvalue at each regular edge of the support,

including the internal edges.

When F is positive definite and X has complex Gaussian entries, convergence of the largest

eigenvalue of Σ̂ to the complex Tracy-Widom law was established in [Kar07], and this was extended

to each regular edge in [HHN16]. These analyses use the determinantal form of the HCIZ integral

over the complex unitary group, which has no known real analogue. The proof of [LS16] in the real

setting is different and relies on a universality argument, which we first summarize.

By rotational invariance in law of X, it suffices to consider the case where F = T is diagonal.

Let E∗ be the rightmost edge of µ0. The proof of [LS16] considers

Σ̂(L) = X ′T (L)X

for a different matrix T (L), and compares the eigenvalue behavior of Σ̂ near E∗ with that of Σ̂(L) near

its rightmost edge E
(L)
∗ . Concretely, the comparison between T and T (L) is achieved by a continuous

interpolation over l ∈ [0, L], where T (0) = T and each T (l) has diagonal entries {t(l)α : α = 1, . . . ,M}

37
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given by
1

t
(l)
α

= e−l
1

t
(0)
α

+ (1− e−l). (3.1)

(See [LS16, Eq. (6.1)].) For simplicity, each T (l) is then rescaled so that the largest eigenvalue of

Σ̂(l) ≡ X ′T (l)X fluctuates with identical scale (of order N−2/3) for every l. Taking L =∞, T (∞) is a

multiple of the identity, so Σ̂(∞) is a white Wishart matrix for which the Tracy-Widom distributional

limit is known from [Joh01]. Along this interpolation, the upper edge E
(l)
∗ traces a continuous path

between E
(0)
∗ and E

(∞)
∗ . Defining

#(E
(l)
∗ + s1, E

(l)
∗ + s2) = number of eigenvalues of Σ̂(l) in [E

(l)
∗ + s1, E

(l)
∗ + s2],

a resolvent approximation idea from [EYY12] establishes the smooth approximation

P
[
#(E

(l)
∗ + s1, E

(l)
∗ + s2) = 0

]
≈ E

[
K(X(l)(s1, s2))

]
, (3.2)

where K(X(l)(s1, s2)) is a smoothed indicator of the integrated Stieltjes transform of Σ̂(l) along an

interval in C+ at height η = N−2/3−ε above the corresponding interval on the real axis. The crux

of the proof in [LS16] is then to show

∣∣∣∣
d

dl
E
[
K(X(l)(s1, s2))

]∣∣∣∣ ≤ N−1/3+ε (3.3)

for a small constant ε > 0 and s1, s2 on the N−2/3 scale. This is applied to compare the probability in

(3.2) for l = 0 and l = 2 logN . A simple direct argument compares these probabilities for l = 2 logN

and l =∞, concluding the proof.

We extend this argument by showing that the continuous interpolation in (3.1) may be replaced

by a discrete interpolating sequence. The resulting extra flexibility permits the extension of this

result in the two directions mentioned earlier. Indeed, we note that (3.1) is not well-defined for

negative t
(0)
α , as the right side passes through 0 along the interpolation. More importantly, (3.1)

does not allow us to study interior edges of Σ̂ when there are multiple disjoint intervals of support,

as the support intervals merge and these edges vanish along the interpolation. We instead consider

a discrete interpolating sequence T (0), T (1), . . . , T (L) for an integer L ≤ O(N), where the diagonal

entries t
(l)
α satisfy

M∑

α=1

|t(l+1)
α − t(l)α |≤ O(1) (3.4)

for all l = 0, . . . , L− 1. Letting E∗ be any regular edge of Σ̂, each matrix Σ̂(l) ≡ X ′T (l)X will have

a corresponding edge E
(l)
∗ such that

|E(l+1)
∗ − E(l)

∗ |≤ O(1/N). (3.5)
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Each of these L discrete steps may be thought of as corresponding to a time interval ∆l = O(N−1)

in the continuous interpolation (3.1). We show that the above conditions are sufficient to establish

a discrete analogue of (3.3),

∣∣∣E
[
K(X(l+1)(s1, s2))

]
− E

[
K(X(l)(s1, s2))

]∣∣∣ ≤ N−4/3+ε. (3.6)

As L ≤ O(N), summing over l = 0, . . . , L− 1 establishes the desired comparison between T (0) and

T (L). Importantly, the requirement (3.4) is sufficiently weak to allow a Lindeberg swapping scheme,

where each T (l+1) makes a single O(1) perturbation to a single entry of T (l). Hence we may move

the diagonal entries of T from one interval of support to another, without continuously evolving

them between such intervals. This allows us to preserve the edge E∗ as in (3.5) along the entire

interpolating sequence, even as the other intervals of support disappear.

Section 3.1 discusses properties of the matrix model Σ̂ = X ′TX and the law µ0, including a

detailed characterization of its support and edge locations, and introduces our definition of edge

regularity. Section 3.2 reviews prerequisite proof ingredients, which are similar to those in [LS16].

These include properties of the limiting Stieltjes transform near regular edges, Schur-complement

identities for the resolvent, a local Marcenko-Pastur law as in [BPZ13, KY17], and the resolvent

approximation from [EYY12] that formalizes (3.2). The material in these sections are either drawn

from existing literature or represent extensions from the positive definite setting. We defer proofs

or proof sketches of these extensions to Appendix A.

Section 3.3 constructs an interpolating sequence T (0), . . . , T (L) for any starting matrix T (0) = T .

As in [LS16], we rescale each T (l) so that the eigenvalue of interest fluctuates with identical scale

for each l. Consequently, the interpolating sequence will not be exactly Lindeberg, but rather will

satisfy |t(l+1)
α − t(l)α |≤ O(1) for a single entry α and |t(l+1)

β − t(l)β |≤ O(1/N) for all remaining entries

β 6= α. The final edge E
(L)
∗ may be either a left or right edge of Σ̂(L), and we conclude the proof by

applying either the result of [Joh01] for a positive right edge or [FS10] for a positive left edge of a

(real) white Wishart matrix. To ensure that a left edge is not a hard edge at 0, we allow T (L) to

have two distinct diagonal entries {0, t}. Thus, Σ̂(L) may have a different dimensionality ratio from

the starting Σ̂.

In Section 3.4, we conclude the proof by establishing (3.6). To achieve this, we generalize the

“decoupling lemma” of [LS16, Lemma 6.2] to a setting involving two different resolvents G and

Ǧ, corresponding to T ≡ T (l) and Ť ≡ T (l+1). Fortunately, we do not need to perform the same

generalization for the “optical theorems” of [LS16, Lemma B.1], as we may apply (3.4) to reduce the

higher-order terms arising in the decoupling lemma to involve only G and not Ǧ. We will explain

this later in the proof.
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3.1 Matrix model and edge regularity

By rotational invariance in law of X, it suffices to prove Theorem 2.6 in the case where F = T is

diagonal. We record here the assumption of Theorems 2.4, 2.5, and 2.6 in the diagonal case.

Assumption 3.1. Σ̂ = X ′TX, where T = diag(t1, . . . , tM ) ∈ RM×M and X ∈ RM×N has i.i.d.

N (0, 1/N) entries. For a constant C > 0, we have C−1 < N/M < C and ‖T‖< C.

As described in Theorem 2.4, in the limit N,M → ∞, the empirical spectrum of Σ̂ is well-

approximated by a deterministic law µ0. We note that if T is the identity matrix, then µ0 is the

Marcenko-Pastur law [MP67]. Under our scaling for X, this has density

f0(x) =
1

2π

√
(E+ − x)(x− E−)

x
1(E−,E+)(x), E± = (1±

√
M/N)2 (3.7)

on the positive real line, and an additional point mass at 0 when M < N . More generally, µ0 is

defined by the fixed-point equation (2.8) in its Stieltjes transform, which we may write for diagonal

T as

z = − 1

m0(z)
+

1

N

M∑

α=1

tα
1 + tαm0(z)

. (3.8)

This law µ0 admits a continuous density f0 at each x ∈ R∗, given by

f0(x) = lim
z∈C+→x

1

π
Imm0(z), (3.9)

where

R∗ =




R if rank(T ) > N

R \ {0} if rank(T ) ≤ N.
(3.10)

For x 6= 0, this is shown in [SC95]; we extend this to x = 0 when rank(T ) > N in Appendix A.1.

The law µ0 is called the free multiplicative convolution of the empirical distribution of t1, . . . , tM

with the Marcenko-Pastur law (3.7). In contrast to the case T = Id, if t1, . . . , tM take more than one

distinct value, then µ0 may have multiple disjoint intervals of support. Two such cases are depicted

in Figures 3.1 and 3.2. For each support interval [E−, E+] of µ0, we will call each endpoint E− and

E+ an edge. More formally:

Definition 3.2. E∗ ∈ R is a right edge of µ0 if (E∗ − δ, E∗) ⊂ supp(µ0) and (E∗, E∗ + δ) ⊂
R \ supp(µ0) for some δ > 0. E∗ is a left edge of µ0 if this holds with (E∗− δ, E∗) and (E∗, E∗+ δ)

exchanged. When 0 is a point mass of µ0, we do not consider it an edge.

The support intervals and edge locations of µ0 are described in a simple way by (3.8): Define
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Figure 3.1: Left: Density f0(x) of µ0 and simulated eigenvalues of Σ̂, for N = 500, M = 700, and
T having 350 eigenvalues at -2, 300 at 0.5, and 50 at 6. The four soft edges of µ0 are indicated by
E1, . . . , E4. Right: The function z0(m), with two local minima and two local maxima corresponding
to the four edges of µ0.

Figure 3.2: Left: Density f0(x) of µ0 and simulated eigenvalues of Σ̂, for N = M = 500, and T
having 400 eigenvalues at -1 and 100 at 4. Here, µ0 has three soft edges E1, E2, E4 and one hard edge
E3 = 0. Right: The function z0(m), with three indicated local extrema, and also a local minimum
at m =∞ corresponding to the hard right edge E3 = 0.
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P = {0} ∪ {−t−1
α : tα 6= 0}, and consider R̄ = R ∪ {∞}. Consider the formal inverse of m0(z),

z0(m) = − 1

m
+

1

N

M∑

α=1

tα
1 + tαm

, (3.11)

as a real-valued function on R̄ \ P with the convention z0(∞) = 0. Then z0 is a rational function

with poles P—two examples are plotted in Figures 3.1 and 3.2. The following proposition relates

the edges of µ0 to the local extrema of z0. We indicate its proof in Appendix A.1. (Parts (a), (b),

and (d) follow from [SC95], and part (c) was established for positive definite T in [KY17].)

Proposition 3.3. Let m1, . . . ,mn ∈ R̄\P denote the local minima and local maxima1 of z0, ordered

such that 0 > m1 > . . . > mk > −∞ and ∞ ≥ mk+1 > . . . > mn > 0. Let Ej = z0(mj) for each

j = 1, . . . , n. Then:

(a) µ0 has exactly n/2 support intervals and n edges, which are given by E1, . . . , En.

(b) Ej is a right edge if mj is a local minimum, and a left edge if mj is a local maximum.

(c) The edges are ordered as

E1 > . . . > Ek > Ek+1 > . . . > En.

(d) For each Ej where mj 6=∞, we have Ej ∈ R∗ and z′′0 (mj) 6= 0. Defining γj =
√

2/|z′′0 (mj)|, the

density of µ0 satisfies f0(x) ∼ (γj/π)
√
|Ej − x| as x→ Ej with x ∈ supp(µ0).

Definition 3.4. For each edge E∗ of µ0, the local minimum or maximum m∗ of z0 such that

z0(m∗) = E∗ is its mmm-value. The edge is soft if m∗ 6= ∞ and hard if m∗ = ∞. For a soft edge,

γ =
√

2/|z′′0 (m∗)| is its associated scale.

Hence the local extrema of z0 are in 1-to-1 correspondence with the edges of µ0. Excluding the

point mass at 0 when rank(T ) < N , supp(µ0) is exactly [En, En−1] ∪ [En−2, En−3] ∪ . . . ∪ [E2, E1],

where these intervals are disjoint and in increasing order. The density f0 exhibits square-root decay

at each soft edge E∗, with scale inversely related to the curvature of z0 at m∗.

When T is positive semi-definite, supp(µ0) is nonnegative. In this setting, an edge at 0 is usually

called hard and all other edges soft. The above definition generalizes this to non-positive-definite T :

A hard edge is always 0 and can occur when rank(T ) = N . One example is depicted in Figure 3.2.

However, if T has negative eigenvalues, then a soft edge may also be 0 when rank(T ) > N .

We now introduce the notion of a “regular” edge of µ0. For positive definite T , a similar notion

was introduced for the rightmost edge in [Kar07] and generalized to all soft edges in [HHN16, KY17].

1m∗ ∈ R̄ \P is a local minimum of z0 if z0(m) ≥ z0(m∗) for all m in a sufficiently small neighborhood of m∗, with
the convention that m∗ = ∞ is a local minimum if z0 is positive over (C,∞) ∪ (−∞,−C) for some C > 0. Local
maxima are defined similarly.
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Definition 3.5. Let E∗ ∈ R be a soft edge of µ0 with m-value m∗ and scale γ. E∗ is regular if all

of the following hold for a constant τ ∈ (0, 1):

• |m∗|< τ−1.

• γ < τ−1.

• For all α ∈ {1, . . . ,M} such that tα 6= 0, |m∗ + t−1
α |> τ .

A smaller constant τ indicates a weaker regularity assumption. We will say E∗ is τ -regular if we

wish to emphasize the role of τ . All subsequent constants may depend on τ above; we will usually

not explicitly state this dependence.

Let us state here, for clarity, that the existence of any regular edge implies T is non-degenerate,

in the sense

(number of eigenvalues tα such that |tα|> c) > cM (3.12)

for a constant c > 0. (See Proposition 3.11.) Thus the largest and average values of |tα| are both of

constant order.

We discuss implications of edge regularity in Section 3.2.2. One interpretation of this condition

is the following, whose proof we defer to Appendix A.2.

Proposition 3.6. Suppose Assumption 3.1 holds and the edge E∗ is regular. Then there exist

constants C, c, δ > 0 such that

(a) (Separation) The interval (E∗ − δ, E∗ + δ) belongs to R∗ and contains no edge other than E∗.

(b) (Square-root decay) For all x ∈ supp(µ0) ∩ (E∗ − δ, E∗ + δ), the density f0 of µ0 satisfies

c
√
|E∗ − x| ≤ f0(x) ≤ C

√
|E∗ − x|.

Whereas Definition 3.2 and Proposition 3.3(d) imply the above for C, c, δ depending on N , edge

regularity ensures that the above properties hold uniformly in N .

One may check, via Proposition 3.11 below, that Definition 3.5 is equivalent to the definition of

a regular edge in [KY17] when T is positive definite. The condition |m∗|< τ−1 quantifies softness

of E∗, so E∗ cannot converge to a hard edge at 0. The condition γ < τ−1 guarantees non-vanishing

curvature of z0 at m∗, so E∗ cannot approach a neighboring interval of support. The condition

|m∗ + t−1
α |> τ guarantees separation of m∗ from the poles P of z0; this implies, in particular, that

E∗ cannot be the edge of a support interval for an outlier eigenvalue of Σ̂. This last condition was

introduced for the rightmost edge in [Kar07]. In the setting of a simple spiked model [Joh01] where

(t1, . . . , tM ) = (θ, 1, 1, . . . , 1) for fixed θ > 1, if E∗ is the rightmost edge, then it is easily verified that

this condition is equivalent to θ falling below the phase transition threshold 1 +
√
M/N studied in

[BBP05, BS06, Pau07].
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Theorem 2.5 guarantees that all eigenvalues of Σ̂ fall within a δ-neighborhood of supp(µ0), for

any constant δ > 0. Near a regular edge E∗, we have the following strengthening of this guarantee,

which shows that the extremal eigenvalue of Σ̂ near E∗ is typically only at a distance N−2/3 from

E∗.

Theorem 3.7 (N−2/3 concentration at regular edges). Suppose Assumption 3.1 holds, and E∗

is a regular right edge. Then there exists a constant δ > 0 such that for any ε,D > 0 and all

N ≥ N0(ε,D),

P
[

spec(Σ̂) ∩ [E∗ +N−2/3+ε, E∗ + δ] = ∅
]
> 1−N−D. (3.13)

The analogous statement holds if E∗ is a regular left edge, with no eigenvalue of Σ̂ belonging to

[E∗ − δ, E∗ −N−2/3+ε].

This result was established in [KY17] for positive definite T , and we prove in Appendix A.3 its

generalization to any T satisfying Assumption 3.1.

3.2 Preliminaries

We collect in this section the requisite ingredients and tools for the proof of Theorem 2.6.

Notation

We denote IM = {1, . . . ,M} and IN = {1, . . . , N}. Considering the elements of these index sets as

distinct, we define the disjoint union I ≡ IN t IM . For a matrix in C(N+M)×(N+M), we identify

{1, 2, . . . , N + M} ' I and index its rows and columns by I, where IN corresponds to the upper

left block and IM to the lower right block. We consistently use lower-case Roman letters i, j, p, q for

indices in IN , Greek letters α, β, γ, ρ for indices in IM , and upper-case Roman letters A,B,C for

general indices in I.

Throughout, C, c > 0 denote constants that may change from instance to instance. We write

aN � bN for deterministic non-negative quantities aN , bN when cbN ≤ aN ≤ CaN . The constants

C, c may depend on τ in the context of a regular edge.

3.2.1 Stochastic domination

For a non-negative scalar Ψ (either random or deterministic), we write

ξ ≺ Ψ and ξ = O≺(Ψ)

if, for any constants ε,D > 0 and all N ≥ N0(ε,D),

P [|ξ|> NεΨ] < N−D. (3.14)
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The constant N0(ε,D) may depend only on ε,D, the constant in Assumption 3.1, and τ in the

context of a τ -regular edge. If we wish to let N0(ε,D) depend on another constant a, we will denote

this explicitly by writing ≺a.

We review several properties of this definition from [EKY13].

Lemma 3.8. Let U be any index set, and suppose ξ(u) ≺ Ψ(u) for all u ∈ U . Let C be any constant

(depending only on Assumption 3.1 and τ).

(a) If |U |≤ NC , then supu∈U |ξ(u)|/Ψ(u) ≺ 1.

(b) If |U |≤ NC , then
∑
u∈U ξ(u) ≺∑u∈U Ψ(u).

(c) If u1, u2 ∈ U , then ξ(u1)ξ(u2) ≺ Ψ(u1)Ψ(u2).

Proof. All three parts follow from a union bound, as ε,D > 0 in (3.14) are arbitrary.

Lemma 3.9. Suppose ξ ≺ Ψ and Ψ is deterministic. Suppose furthermore that there are constants

C,C1, C2, . . . > 0 (depending only on Assumption 3.1 and τ) such that Ψ > N−C and E[|ξ|`] < NC`

for each integer ` > 0. Then E[ξ|G] ≺ Ψ for any sub-σ-field G.

Proof. If G is trivial so E[ξ|G] = E[ξ], then this follows from Cauchy-Schwarz: For any ε > 0 and all

N ≥ N0(ε),

|Eξ|≤ E
[
|ξ|1{|ξ|≤ Nε/2Ψ}

]
+E

[
|ξ|1{|ξ|> Nε/2Ψ}

]
≤ Nε/2Ψ +E[|ξ|2]1/2P[|ξ|> Nε/2Ψ]1/2 < NεΨ,

where the last inequality applies ξ ≺ Ψ. For general G, consider any ε,D > 0 and fix an integer

k > (D + ε)/ε. Then the above argument yields E[|ξ|k] < NεΨk for all N ≥ N0(ε,D), so

P
[
|E[ξ|G]|> NεΨ

]
≤ E[|E[ξ|G]|k]

NkεΨk
≤ E[|ξ|k]

NkεΨk
< Nε−kε < N−D.

When U is a bounded domain of C, part (a) of Lemma 3.8 does not directly apply, but we may

oftentimes take the union bound by Lipschitz continuity:

Lemma 3.10. Suppose ξ(z) ≺ Ψ(z) for all z ∈ U , where U ⊂ C is uniformly bounded in N .

Suppose that for any D > 0, there exists C ≡ C(D) > 0 and an event of probability 1 − N−D on

which

• Ψ(z) > N−C for all z ∈ U .

• |ξ(z1)− ξ(z2)|≤ NC |z1 − z2| and |Ψ(z1)−Ψ(z2)|≤ NC |z1 − z2| for all z1, z2 ∈ U .

Then supz∈U |ξ(z)|/Ψ(z) ≺ 1.
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Proof. For any ε,D > 0, set C = C(D) and ∆ = N−3C . Take a net N ⊂ U with |N |≤ N6C+1 such

that for every z ∈ U , there exists z′ ∈ N with |z − z′|< ∆. By Lemma 3.8(a), |ξ(z′)|< NεΨ(z′) for

all z′ ∈ N with probability 1−N−D. Then with probability 1− 2N−D, for all z ∈ U ,

|ξ(z)|≤ |ξ(z′)|+∆NC < NεΨ(z′) + ∆NC ≤ NεΨ(z) + 2∆Nε+C < 3NεΨ(z).

3.2.2 Edge regularity

Let us prove here the sufficient condition of Proposition 2.7 for regularity of the rightmost edge.

Proof of Proposition 2.7. Let t1 be the maximum eigenvalue of T , and let K be its multiplicity. The

m-value m∗ for the rightmost edge satisfies m∗ ∈ (−t−1
1 , 0). As t1 > c for a constant c > 0, this

implies |m∗|< 1/c. Furthermore, we have

0 = z′0(m∗) =
1

m2
∗
− 1

N

∑

α:tα 6=0

1

(m∗ + t−1
α )2

. (3.15)

As |t−1
α |> c for a constant c > 0 and each α, this implies |m∗|> c for a constant c > 0. The condition

(3.15) also implies

0 ≤ 1

m2
∗
− K

N

1

(m∗ + t−1
1 )2

.

As K is proportional to N , this yields |m∗ + t−1
1 |> c for a constant c > 0. Then by the condition

m∗ ∈ (−t−1
1 , 0), we obtain |m∗ + t−1

α |> τ for all non-zero α and some constant τ > 0. Finally, we

have

z′′0 (m∗) = − 2

m3
∗

+
2

N

∑

α:tα 6=0

1

(m∗ + t−1
α )3

=
∑

α:tα 6=0

− 2

m∗N
· t−1

α

(m∗ + t−1
α )3

,

where the second equality applies (3.15). Note that m∗ < 0, and m∗ + t−1
α > 0 if tα > 0 and

m∗ + t−1
α < 0 if tα < 0. Thus each summand on the right side above is positive, and in particular

z′′0 (m∗) ≥ −
2K

m∗N
· t−1

1

(m∗ + t−1
1 )3

.

Thus γ < τ−1 for a constant τ > 0.

We next record a simple consequence of edge regularity.

Proposition 3.11. Suppose Assumption 3.1 holds, and E∗ is a regular edge with m-value m∗ and

scale γ. Then there exist constants C, c > 0 such that

c < |m∗|< C, c < γ < C, |E∗|< C,
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and for all α = 1, . . . ,M ,

|1 + tαm∗|> c.

Furthermore, if any regular edge E∗ exists, then T satisfies (3.12), and if T is positive semi-definite,

then also E∗ > c > 0.

Proof. The bounds |m∗|< τ−1 and γ < τ−1 are assumed in Definition 3.5. From (3.15) and the

condition |m∗+ t−1
α |> τ for each α, the bound |m∗|> c follows. The bounds |E∗|< C and γ > c then

follow from the definitions E∗ = z0(m∗) and γ−2 = |z′′0 (m∗)|/2. For |1 + tαm∗|, take C > 0 such

that |m∗|< C. If |tα|> 1/(2C), then |1 + tαm∗|> τ/(2C) by the condition |m∗ + t−1
α |> τ , whereas

if |tα|≤ 1/(2C), then |1 + tαm∗|> 1/2.

From (3.15) and the conditions |m∗|< C and |1 + tαm∗|> c, we have M−1
∑
α t

2
α > c. Together

with the assumption |tα|< C for all α, this implies (3.12). Finally, note that 0 = z′0(m∗) implies

m−1
∗ = N−1

∑
α t

2
αm∗/(1 + tαm∗)

2, and hence

E∗ = z0(m∗) =
1

N

M∑

α=1

tα
(1 + tαm∗)2

.

If T is positive semi-definite, then E∗ > c follows from |1 + tαm∗|< C and (3.12).

The remaining implications of edge regularity heuristically follow from the Taylor expansion

z0(m)− E∗ = z0(m)− z0(m∗) =
z′′0 (m∗)

2
(m−m∗)2 +O((m−m∗)3),

where there is no first-order term because 0 = z′0(m∗). Consequently,

m0(z) ≈ m∗ +

√
2

z′′0 (m∗)
(z − E∗)

for z ∈ C+ near E∗ and an appropriate choice of square-root. Edge regularity implies uniform

control of the above Taylor expansion; we defer detailed proofs to Appendix A.2. Similar properties

were established for positive definite T in [BPZ13, KY17].

Proposition 3.12. Suppose Assumption 3.1 holds and E∗ is a regular edge with m-value m∗. Then

there exist constants c, δ > 0 such that for all m ∈ (m∗ − δ,m∗ + δ), if E∗ is a right edge then

z′′0 (m) > c,

and if E∗ is a left edge then z′′0 (m) < −c.

Proposition 3.13. Suppose Assumption 3.1 holds and E∗ is a regular edge. Then there exist
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constants C, c, δ > 0 such that the following hold: Define

D0 = {z ∈ C+ : Re z ∈ (E∗ − δ, E∗ + δ), Im z ∈ (0, 1]}.

Then for all z ∈ D0 and α ∈ {1, . . . ,M},

c < |m0(z)|< C, c < |1 + tαm0(z)|< C.

Furthermore, for all z ∈ D0, denoting z = E + iη and κ = |E − E∗|,

c
√
κ+ η ≤ |m0(z)−m∗|≤ C

√
κ+ η, cf(z) ≤ Imm0(z) ≤ Cf(z)

where

f(z) =





√
κ+ η if E ∈ supp(ρ)

η√
κ+η

if E /∈ supp(ρ).

3.2.3 Resolvent bounds and identities

For z ∈ C+, denote the resolvent and Stieltjes transform of Σ̂ by

GN (z) = (Σ̂− z Id)−1 ∈ CN×N , mN (z) = N−1 TrGN (z). (3.16)

Lemma 3.14. For any η > 0 and z, z′ ∈ C+ with Im z ≥ η and Im z′ ≥ η, and for any i, j ∈ IN ,

|mN (z)|≤ 1

η
, |Gij(z)|≤

1

η
,

|mN (z)−mN (z′)|≤ |z − z
′|

η2
, |Gij(z)−Gij(z′)|≤

|z − z′|
η2

.

Proof. Let Σ̂ =
∑
i λiviv

′
i be the spectral decomposition of Σ̂. Then GN (z) =

∑
i(λi− z)−1viv

′
i, so

‖GN (z)‖≤ 1/η and ‖∂zGN (z)‖≤ 1/η2. All four statements follow.

As in [LS16, KY17], define the linearized resolvent G(z) by

H(z) =

(
−z Id X ′

X −T−1

)
∈ C(N+M)×(N+M), G(z) = H(z)−1.

We index rows and columns of G(z) by I ≡ IN t IM . The Schur-complement formula for block

matrix inversion yields the alternative form

G(z) =

(
GN (z) GN (z)X ′T

TXGN (z) TXGN (z)X ′T − T

)
, (3.17)
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which is understood as the definition of G(z) when T is not invertible. We will omit the argument

z in m0,mN , GN , G when the meaning is clear.

For any A ∈ I, define H(A) as the submatrix of H with row and column A removed, and define

G(A) = (H(A))−1.

When T is not invertible, G(A) is defined by the alternative form analogous to (3.17). We index

G(A) by I \ {A}.
Note that G and G(A) are symmetric, in the sense G′ = G and (G(A))′ = G(A) without complex

conjugation. The entries of G and G(A) are related by the following Schur-complement identities:

Lemma 3.15 (Resolvent identities). Fix z ∈ C+.

(a) For any i ∈ IN ,

Gii = − 1

z +
∑
α,β∈IM G

(i)
αβXαiXβi

.

For any α ∈ IM ,

Gαα = − tα

1 + tα
∑
i,j∈IN G

(α)
ij XαiXαj

.

(b) For any i 6= j ∈ IN ,

Gij = −Gii
∑

β∈IM

G
(i)
βjXβi.

For any α 6= β ∈ IM ,

Gαβ = −Gαα
∑

j∈IN

G
(α)
jβ Xαj .

For any α ∈ IM and i ∈ IN ,

Giα = −Gii
∑

β∈IM

G
(i)
βαXβi = −Gαα

∑

j∈IN

G
(α)
ij Xαj .

(c) For any A,B,C ∈ I with A 6= C and B 6= C,

G
(C)
AB = GAB −

GACGCB
GCC

.

Proof. This is stated in [KY17, Lemma 4.4]. Let us reproduce the argument here: It suffices

to consider T invertible, as the non-invertible case follows by continuity. We apply the Schur

complement identity

(
A11 A12

A21 A22

)−1

=

(
S −SA12A

−1
22

−A−1
22 A21S A−1

22 +A−1
22 A21SA12A

−1
22

)
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where S = (A11 − A12A
−1
22 A21)−1. Parts (a) and (b) follow by applying this identity to G(z) =

H(z)−1 with A11 corresponding to the (i, i) or (α, α) coordinate. For part (c), note that

A−1
11 − S = A−1

11 (−A12A
−1
22 A21)S = (A−1

11 A12)(−A−1
22 A21S).

Applying this with A22 corresponding to the (C,C) coordinate, we obtain

G
(C)
AB −GAB =

∑

I∈I\{C}

G
(C)
AI (G−1)ICGCB .

Now applying the Schur complement identity with A11 corresponding to the (C,C) coordinate, we

obtain
GAC
GCC

= −
∑

I∈I\{C}

G
(C)
AI (G−1)IC .

Combining these yields part (c).

3.2.4 Local law

We will require sharp bounds on the entries of G(z) for z ∈ C+ close to a regular edge E∗. This

type of “local law” is established in [KY17] for positive definite T ; see also [BPZ13, LS16] for the

rightmost edge. We check in Appendix A.3 that the proof generalizes with minor modifications to

the setting of Assumption 3.1.

Theorem 3.16 (Entrywise local law at regular edges). Suppose Assumption 3.1 holds and E∗ is a

τ -regular edge. Then there exists a τ -dependent constant δ > 0 such that the following holds: Fix

any constant a > 0 and define

D = {z ∈ C+ : Re z ∈ (E∗ − δ, E∗ + δ), Im z ∈ [N−1+a, 1]}. (3.18)

For A ∈ I, denote tA = 1 if A ∈ IN and tA = tα if A = α ∈ IM . Set

Π(z) =

(
m0(z) Id 0

0 −T (Id +m0(z)T )−1

)
∈ C(N+M)×(N+M). (3.19)

Then for all z ≡ E + iη ∈ D and A,B ∈ I,

GAB(z)−ΠAB(z)

tAtB
≺a

√
Imm0(z)

Nη
+

1

Nη
, (3.20)

and also

mN (z)−m0(z) ≺a (Nη)−1.
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It is verified from (3.17) that the quantity on the left of (3.20) is alternatively written as

GAB −ΠAB

tAtB
=

(
GN −m0 Id GNX

′

XGN XGNX
′ −m0(Id +m0T )−1

)

AB

. (3.21)

This is understood as the definition of this quantity when either tA and/or tB is 0.

Corollary 3.17. Under the assumptions of Theorem 3.16, for any ε,D > 0 and all N ≥ N0(ε,D),

P

[
there exist z ∈ D and A,B ∈ I :

|GAB(z)−ΠAB(z)|
|tAtB |

> Nε

(√
Imm0(z)

Nη
+

1

Nη

)]
< N−D.

Proof. This follows from Lemmas 3.8(a) and 3.10. For a large enough constant C > 0 and any

D > 0, on an event of probability 1 − N−D, we have ‖X‖< C for all N ≥ N0(D). The required

boundedness and Lipschitz continuity properties for Lemma 3.10 then follow from (3.21), Lemma

3.14, and Proposition 3.13.

3.2.5 Resolvent approximation

We formalize the approximation (3.2), following [EYY12, Corollary 6.2]. Fix a regular edge E∗ and

define, for s1, s2 ∈ R and η > 0,

X(s1, s2, η) = N

∫ E∗+s2

E∗+s1

ImmN (y + iη)dy. (3.22)

For η much smaller than N−2/3 and s1, s2 on the N−2/3 scale, we expect

#(E∗ + s1, E∗ + s2) ≈ π−1X(s1, s2, η)

where the left side denotes the number of eigenvalues of Σ̂ in this interval.

We apply this in the form of the following lemma; for convenience, we reproduce here a self-

contained proof. (For simplicity, we state the result only for a right edge.)

Lemma 3.18. Suppose Assumption 3.1 holds, and E∗ is a regular right edge. Let K : R→ [0, 1] be

such that K(x) = 1 for all x ≤ 1/3 and K(x) = 0 for all x ≥ 2/3. For all sufficiently small constants

δ, ε > 0, the following holds:

Let λmax be the maximum eigenvalue of Σ̂ in (E∗ − δ, E∗ + δ). Set s+ = N−2/3+ε, l = N−2/3−ε,

and η = N−2/3−9ε. Then for any D > 0, all N ≥ N0(ε,D), and all s ∈ [−s+, s+],

E
[
K(π−1X(s− l, s+, η))

]
−N−D ≤ P [λmax ≤ E∗ + s] ≤ E

[
K(π−1X(s+ l, s+, η))

]
+N−D.
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Proof. Denote

#(a, b) = number of eigenvalues of Σ̂ in [a, b].

For any E1 < E2, any m > 0, and any λ ∈ R, we have the casewise bound

∣∣∣∣∣1[E1,E2](λ)−
∫ E2

E1

1

π

η

η2 + (x− λ)2
dx

∣∣∣∣∣ ≤





E2−E1

π
η

η2+(E1−λ)2 if λ < E1 −m
1 if E1 −m ≤ λ ≤ E1 +m

2
π
η
m if E1 +m < λ < E2 −m

1 if E2 −m ≤ λ ≤ E2 +m

E2−E1

π
η

η2+(λ−E2)2 if λ > E2 +m,

where the middle case E1 +m < λ < E2 −m follows from

1−
∫ E2

E1

1

π

η

η2 + (x− λ)2
dx ≤ 1−

∫ λ+m

λ−m

1

π

η

η2 + (x− λ)2
dx = 1− 2

π
tan−1

(
m

η

)
≤ 2

π

η

m
.

For the first case, we apply also the bound

η

η2 + (E1 − λ)2
≤ η

(E1 − λ)2
≤ 2η

m
· m

m2 + (E1 − λ)2
,

and similarly for the last case. Hence, summing over λ as the eigenvalues of Σ̂,

∣∣∣∣∣#(E1, E2)− N

π

∫ E2

E1

ImmN (x+ iη)dx

∣∣∣∣∣ ≤ R(E1, E2,m) + S(E1, E2,m) (3.23)

where we set

R(E1, E2,m) = #(E1 −m,E1 +m) + #(E2 −m,E2 +m),

S(E1, E2,m) =
2

π

η

m

(
(E2 − E1)N ImmN (E1 + im) + (E2 − E1)N ImmN (E2 + im)

+ #(E1 +m,E2 −m)
)
.

We apply the above with E1, E2 ∈ [E∗ − 2s+, E∗ + 2s+], and with m = N−2/3−3ε. To bound

S(E1, E2,m), note that Proposition 3.13 and Theorem 3.16 yield, for j = 1, 2,

ImmN (Ej + im) ≺ N−1/3+3ε.

For z = E∗+i(2s+), Proposition 3.13 and Theorem 3.16 also yieldNs+ ImmN (z) ≺ N3ε/2. Applying
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#(E∗ − v,E∗ + v) ≤ 2Nv ImmN (E∗ + iv) for any v > 0, this yields

#(E∗ − 2s+, E∗ + 2s+) ≺ N3ε/2. (3.24)

Then applying #(E1 + m,E2 − m) ≤ #(E∗ − 2s+, E∗ + 2s+) and η/m = N−6ε, we obtain

S(E1, E2,m) ≺ N−2ε. By Lemmas 3.14 and 3.10, we may take a union bound over all such E1, E2:

For any ε′, D > 0,

P
[
there exist E1, E2 ∈ [E∗ − 2s+, E∗ + 2s+] such that S(E1, E2,m) > N−2ε+ε′

]
≤ N−D (3.25)

for all N ≥ N0(ε′, D).

Now let E = E∗ + s and E+ = E∗ + s+ − l. Then

#(E,E+) ≤ 1

l2

∫ E

E−l

(∫ E++l

E+

#(E1, E2)dE2

)
dE1

≤ N

π

∫ E++l

E−l
ImmN (x+ iη)dx+

1

l2

∫ E

E−l

∫ E++l

E+

R(E1, E2,m)dE2 dE1 +O≺(N−2ε),

where we have applied (3.23) and (3.25). The first term is π−1X(s− l, s+, η). For the second term,

we obtain from the definition of R(E1, E2,m)

1

l2

∫ E

E−l

∫ E++l

E+

R(E1, E2,m)dE2 dE1 ≤
2m

l
#(E − l −m,E +m) +

2m

l
#(E+ −m,E+ + l +m).

Applying (3.24) to crudely bound #(E − l −m,E + m) and #(E+ −m,E+ + l + m) by #(E∗ −
2s+, E∗ + 2s+), and noting m/l = N−2ε, we obtain

#(E,E+) ≤ π−1X(s− l, s+, η) +O≺(N−ε/2).

Theorem 3.7 yields #(E+, E∗ + δ) = 0 with probability 1−N−D for N ≥ N0(ε,D), so

#(E,E∗ + δ) ≤ π−1X(s− l, s+, η) +O≺(N−ε/2). (3.26)

Similarly, setting E+ = E∗ + s+ + l, we have

#(E,E∗ + δ) ≥ 1

l2

∫ E+l

E

(∫ E+

E+−l
#(E1, E2)dE2

)
dE1

≥ π−1X(s+ l, s+, η)−O≺(N−ε/2). (3.27)

For any D > 0 and all N ≥ N0(ε,D), (3.26) implies that π−1X(s − l, s+, η) ≥ 2/3 whenever
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#(E∗ + s, E∗ + δ) ≥ 1, except possibly on an event of probability N−D. Similarly (3.27) implies

π−1X(s+ l, s+, η) ≤ 1/3 whenever #(E∗+ s, E∗+ δ) = 0, except possibly on an event of probability

N−D. The result then follows from the definition and boundedness of K.

3.3 The interpolating sequence

We now construct the interpolating sequence T (0), . . . , T (L) described at the start of this chapter. We

consider only the case of a right edge; this is without loss of generality, as the edge can have arbitrary

sign and we may take the reflection T 7→ −T . For each pair T ≡ T (l) and Ť ≡ T (l+1), the following

definition captures the relevant property that will be needed in the subsequent computation.

Definition 3.19. Let T, Ť ∈ RM×M be two diagonal matrices satisfying Assumption 3.1. Let E∗

be a right edge of the law ρ defined by T , and let Ě∗ be a right edge of ρ̌ defined by Ť . (T,E∗) and

(Ť , Ě∗) are swappable if, for a constant φ > 0, both of the following hold.

• Letting tα and ťα be the diagonal entries of T and Ť ,

M∑

α=1

|tα − ťα|< φ.

• The m-values m, m̌∗ of E∗, Ě∗ satisfy

|m∗ − m̌∗|< φ/N.

We will say that (T,E∗) and (Ť , Ě∗) are φ-swappable if we wish to emphasize the role of φ. All

subsequent constants may implicitly depend on φ.

We first establish some basic deterministic properties of a swappable pair, including closeness of

the edges E∗, Ě∗ as claimed in (3.5).

Lemma 3.20. Suppose T, Ť are diagonal matrices satisfying Assumption 3.1, E∗, Ě∗ are regular

right edges, and (T,E∗) and (Ť , Ě∗) are swappable. Let m∗, γ and m̌∗, γ̌ be the m-values and scales

of E∗, Ě∗. Denote sα = (1 + tαm∗)
−1 and šα = (1 + ťαm̌∗)

−1. For integers i, j ≥ 0, define

Ai,j =
1

N

M∑

α=1

tiαs
i
αť
j
αš
j
α.

Then there exists a constant C > 0 such that all of the following hold:

(a) For all i, j satisfying i+ j ≤ 4,

|Ai,j −Ai+j,0|≤ C/N.
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(b) (Closeness of edge location)

|E∗ − Ě∗|≤ C/N,

and ∣∣∣∣∣(E∗ − Ě∗)−
1

N

M∑

α=1

(tα − ťα)sαšα

∣∣∣∣∣ ≤ C/N
2. (3.28)

(c) (Closeness of scale)

|γ − γ̌|≤ C/N.

Proof. By Proposition 3.11, |tα|, |sα|, |m∗|, γ ≤ C, and also |ťα|, |šα|, |m̌∗|, γ̌ ≤ C. From the defini-

tions of sα and šα, we verify

tαsα − ťαšα = (tα − ťα)sαšα + (m̌∗ −m∗)tαsαťαšα.

Then swappability implies

|Ai,j −Ai+1,j−1|≤
1

N

M∑

α=1

|tiαsiαťj−1
α šj−1

α ||ťαšα − tαsα|≤ C/N.

Iteratively applying this yields (a).

For (b), note that

E∗ − Ě∗ = − 1

m∗
+

1

m̌∗
+

1

N

M∑

α=1

(tαsα − ťαšα)

= (m∗ − m̌∗)
(

1

m∗m̌∗
−A1,1

)
+

1

N

M∑

α=1

(tα − ťα)sαšα.

Recall 0 = z′0(m∗) = m−2
∗ −A2,0. Then part (b) follows from the definition of swappability, together

with |A1,1 −m−2
∗ |= |A1,1 −A2,0|≤ C/N and |m−2

∗ −m−1
∗ m̌−1

∗ |≤ C/N .

For (c), we have γ−2 = z′′0 (m∗)/2 = −m−3
∗ + A3,0. Then (c) follows from |γ−2 − γ̌−2|≤ |m−3

∗ −
m̌−3
∗ |+|A3,0 −A0,3|≤ C/N .

In the rest of this section, we prove the following lemma:

Lemma 3.21. Suppose T is diagonal and satisfies Assumption 3.1, and E∗ is a τ -regular right

edge with scale γ = 1. Then there exist τ -dependent constants C ′, τ ′, φ > 0, a sequence of diagonal

matrices T (0), T (1), . . . , T (L) in RM×M for L ≤ 2M , and a sequence of right edges E
(0)
∗ , E

(1)
∗ , . . . , E

(L)
∗

of the corresponding laws µ
(l)
0 defined by T (l), such that:

1. T (0) = T and E
(0)
∗ = E∗.

2. T (L) has at most two distinct diagonal entries 0 and t, for some t ∈ R.



CHAPTER 3. EDGE FLUCTUATIONS UNDER SPHERICITY 56

3. Each T (l) satisfies Assumption 3.1 with constant C ′.

4. Each E
(l)
∗ is τ ′-regular.

5. (T (l), E
(l)
∗ ) and (T (l+1), E

(l+1)
∗ ) are φ-swappable for each l = 0, . . . , L− 1.

6. (Scaling) Each E
(l)
∗ has associated scale γ(l) = 1.

We first ignore the scaling condition, property 6, and construct T (0), . . . , T (L) and E
(0)
∗ , . . . , E

(L)
∗

satisfying properties 1–5. We will use a Lindeberg swapping construction, where each T (l+1) differs

from T (l) in only one diagonal entry. It is useful to write z′0 and z′′0 as

z′0(m) =
1

m2
− 1

N

∑

α:tα 6=0

1

(m+ t−1
α )2

z′′0 (m) = − 2

m3
+

2

N

∑

α:tα 6=0

1

(m+ t−1
α )3

,

and to think about swapping entries of T as swapping or removing poles of z′0 and z′′0 . In particular,

for each fixed m ∈ R, we can easily deduce from the above whether a given swap increases or

decreases the values of z′0 and z′′0 at m.

Upon defining a swap T → Ť , the identification of the new right edge Ě∗ for Ť uses the following

continuity lemma.

Lemma 3.22. Suppose T is a diagonal matrix satisfying Assumption 3.1, and E∗ is a τ -regular right

edge with m-value m∗. Let Ť be a matrix that replaces a single diagonal entry tα of T by a value

ťα, such that |ťα|≤ ‖T‖ and either ťα = 0 or |m∗ + ť−1
α |> τ . Let z0, ž0 denote the function (3.11)

defined by T, Ť . Then there exist τ -dependent constants N0, φ > 0 such that whenever N ≥ N0:

• Ť has a right edge Ě∗ with m-value m̌∗ satisfying |m∗ − m̌∗|< φ/N .

• The interval between m∗ and m̌∗ does not contain any pole of z0 or ž0.

• sign(m∗ − m̌∗) = sign(ž′0(m∗)).

(We define sign(x) = 1 if x > 0, −1 if x < 0, and 0 if x = 0.)

Proof. By Proposition 3.11, |m∗|> ν for a constant ν. Take δ < min(τ/2, ν/2). Then the given

conditions for ťα imply that (m∗ − δ,m∗ + δ) does not contain any pole of z0 or ž0, and

|z′0(m)− ž′0(m)|< C/N

for some C > 0 and all m ∈ (m∗ − δ,m∗ + δ). For sufficiently small δ, Proposition 3.12 also ensures

z′′0 (m) > c for all m ∈ (m∗ − δ,m∗ + δ). If ž′0(m∗) < 0 = z′0(m∗), this implies ž0 must have a local

minimum in (m∗,m∗ + C/N), for a constant C > 0 and all N ≥ N0. Similarly, if ž′0(m∗) > 0, then
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ž0 has a local minimum in (m∗−C/N,m∗), and if ž′0(m∗) = 0, then ž0 has a local minimum at m∗.

The result follows from Proposition 3.3 upon setting Ě∗ = ž0(m̌∗).

The basic idea for proving Lemma 3.21 is to take a Lindeberg sequence T (0), . . . , T (L) and apply

the above lemma for each swap. We cannot do this naively for any Lindeberg sequence, because in

general if E
(l)
∗ is τl-regular, then the above lemma only guarantees that E

(l+1)
∗ is τl+1-regular for

τl+1 = τl−C/N and a τl-dependent constant C > 0. Thus edge regularity, as well as the edge itself,

may vanish after O(N) swaps.

To circumvent this, we consider a specific construction of the Lindeberg sequence, apply Lemma

3.22 inductively along this sequence to identify an edge Ě∗ for each successive Ť , and use a separate

argument to show that Ě∗ must be τ ′-regular for a fixed constant τ ′ > 0. Hence we may continue

to apply Lemma 3.22 along the whole sequence.

We consider separately the cases m∗ < 0 and m∗ > 0.

Lemma 3.23. Suppose (the right edge) E∗ has m-value m∗ < 0. Then for some τ -dependent

constant N0, whenever N ≥ N0, Lemma 3.21 holds without the scaling condition, property 6.

Proof. We construct a Lindeberg sequence that first reflects about m∗ each pole of z0 to the right

of m∗, and then replaces each pole by the one closest to m∗.

Suppose, first, that there are K1 non-zero diagonal entries tα of T (positive or negative) where

−t−1
α > m∗. Consider a sequence of matrices T (0), T (1), . . . , T (K1) where T (0) = T , and each T (k+1)

replaces one such diagonal entry tα of T (k) by the value ťα such that −ť−1
α < m∗ and |m∗ + ť−1

α |=
|m∗ + t−1

α |. For each such swap T → Ť , we verify |ťα|≤ |tα|≤ ‖T‖, ž′0(m∗) = z′0(m∗) = 0, and

ž′′0 (m∗) > z′′0 (m∗) > 0. Thus we may take m̌∗ = m∗ in Lemma 3.22, and the new edge Ě∗ = ž0(m∗)

remains τ -regular for the same constant τ .

All diagonal entries of T (K1) are now nonnegative. Let t = ‖T (K1)‖ be the maximal such entry. By

the above construction, −t−1 < m∗ < 0. Since E
(K1)
∗ is τ -regular, (3.12) implies t > c for a constant

c > 0. Let K2 be the number of positive diagonal entries of T (K1) strictly less than t, and consider

a sequence T (K1+1), . . . , T (K1+K2) where each T (k+1) replaces one such diagonal entry in T (k) by t.

Applying Lemma 3.22 inductively to each such swap T → Ť , we verify ž′0(m∗) < z0(m∗) = 0, so

m∗ < m̌∗ < 0. Then |m̌∗|< |m∗| and minα|m̌∗ + ť−1
α |> minα|m∗ + t−1

α |. Also m̌∗ + ť−1
α > 0 for

all ťα 6= 0, so ž′′0 (m̌∗) > −2/m̌3
∗ > 2t3. This verifies Ě∗ = ž0(m̌∗) is τ ′-regular for a fixed constant

τ ′ > 0. (We may take any τ ′ < min(τ, t3/2).)

The total number of swaps L = K1 +K2 is at most 2M , and all diagonal entries of T (L) belong

to {0, t}. This concludes the proof, with property 5 verified by Lemma 3.22.

Lemma 3.24. Lemma 3.23 holds also when (the right edge) E∗ has m-value m∗ > 0.

Proof. Proposition 3.3 implies m∗ is a local minimum of z0. The interval (0,m∗) must contain a

pole of z0—otherwise, by the boundary condition of z0 at 0, there would exist a local maximum m
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of z0 in (0,m∗) satisfying z0(m) > z0(m∗), which would contradict the edge ordering in Proposition

3.3(c). Let −t−1 be the pole in (0,m∗) closest to m∗. Note that t < 0 and |t|> |m∗|−1> τ . We

construct a Lindeberg sequence that first replaces a small but constant fraction of entries of T by t,

then replaces all non-zero tα > t by 0, and finally replaces all tα < t by 0.

First, fix a small constant c0 > 0, let K1 = bc0Mc, and consider a sequence of matrices

T (0), T (1), . . . , T (K1) where T (0) = T and each T (k+1) replaces a different (arbitrary) diagonal entry

of T (k) by t. For c0 sufficiently small, it is easy to check that we may apply Lemma 3.22 to identify

an edge E
(k)
∗ for each k = 1, . . . ,K1, such that each E

(k)
∗ remains τ/2-regular.

T (K1) now has at least c0M diagonal entries equal to t. By the condition in Lemma 3.22 that the

swap m∗ → m̌∗ does not cross any pole of z0 or ž0, we have that −t−1 is still the pole in (0,m
(K1)
∗ )

closest to m
(K1)
∗ . Let K2 be the number of non-zero diagonal entries tα of T (K1) (positive or negative)

such that tα > t. Consider a sequence T (K1+1), . . . , T (K1+K2) where each T (k+1) replaces one such

entry in T (k) by 0. Applying Lemma 3.22 inductively to each such swap T → Ť , we verify ž′0(m∗) >

z′0(m∗) = 0, so −t−1 < m̌∗ < m∗. Then minα:−ť−1
α >−t−1 |m̌∗+ ť−1

α |> minα:−t−1
α >−t−1 |m∗+t−1

α |> τ/2.

The conditions m̌∗ > |t|−1> c and

0 = ž′0(m̌∗) ≤
1

m̌2
∗
− c0M

N

1

(m̌∗ + t−1)2

ensure that m̌∗ + t−1 > ν for a constant ν > 0, and hence minα|m̌∗ + ť−1
α |> min(ν, τ/2). To bound

ž′′0 (m̌∗), let us introduce the function

f(m) = − 2

N

M∑

α=1

t2αm
3

(1 + tαm)3

and define analogously f̌(m) for Ť . We verify f ′(m) < 0 for all m, so f(m̌∗) > f(m∗). Furthermore,

if the swap T → Ť replaces tα by 0, then 1 + tαm̌∗ > 0. (This is obvious for positive tα; for negative

tα, it follows from m̌∗ < −t−1
α .) Then f̌(m̌∗) > f(m̌∗) > f(m∗). Applying the condition 0 = z′0(m∗),

we verify f(m∗) = m4
∗z
′′
0 (m∗). Then

ž′′0 (m̌∗) >
m4
∗

m̌4
∗
z′′0 (m∗) > z′′0 (m∗) > 0.

This shows that Ě∗ = ž0(m̌∗) is τ ′-regular for a fixed constant τ ′ > 0. (We may take τ ′ = min(ν, τ/2)

as above.)

Finally, T (K1+K2) now has at least c0M diagonal entries equal to t, and all non-zero diagonal

entries tα satisfy tα < t < 0. Let K3 be the number of such entries and consider a sequence

T (K1+K2+1), . . . , T (K1+K2+K3) where each T (k+1) replaces one such entry of T (k) by 0. Applying

Lemma 3.22 inductively to each such swap T → Ť , we verify ž′0(m∗) > z′0(m∗) = 0, so −t−1 < m̌∗ <

m∗. As in the K2 swaps above, this implies minα|m̌∗ + ť−1
α |> c for a constant c > 0. The condition
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ťα < t implies 1 + ťαm̌∗ < 0 for all ťα, so we have

f̌(m̌∗) > −
2c0M

N

t2m̌3
∗

(1 + tm̌∗)3
> c

for a constant c. Applying again f̌(m̌∗) = m̌4
∗ž
′′
0 (m̌∗), this yields ž′′0 (m̌∗) > c > 0, so Ě∗ is τ ′-regular

for a constant τ ′ > 0.

The total number of swaps L = K1 +K2 +K3 is at most 2M . All diagonal entries of T (L) belong

to {0, t}, so this concludes the proof.

Proof of Lemma 3.21. By Lemmas 3.23 and 3.24, there exist T (0), . . . , T (L) and E
(0)
∗ , . . . , E

(L)
∗ sat-

isfying conditions 1–5. By Lemma 3.20, the associated scales γ0, . . . , γL satisfy |γl+1−γl|≤ C/N for

a φ, τ ′-dependent constant C > 0 and each l = 0, . . . , L− 1.

We verify from the definitions of E∗,m∗, γ that under the rescaling T 7→ cT for any c > 0, we

have

E∗ 7→ cE∗, m∗ 7→ c−1m∗, γ 7→ c−3/2γ.

Consider then the matrices T̃ (l) = γ
2/3
l T (l) and edges Ẽ

(l)
∗ = γ

2/3
l E

(l)
∗ . We check properties 1–6 for

T̃ (l) and Ẽ
(l)
∗ : Properties 1, 2, and 6 are obvious. Since T (0), . . . , T (L) are all τ ′-regular, Proposition

3.11 implies c < γl < C for constants C, c > 0 and every l, so properties 3 and 4 hold with adjusted

constants. Property 5 also holds with an adjusted constant φ, since

∑

α

|γ2/3tα − γ̌2/3ťα| ≤ γ2/3
∑

α

|tα − ťα|+ |γ2/3 − γ̌2/3|
∑

α

|ťα|< φ′

and

|γ−2/3m∗ − γ̌−2/3m̌∗|≤ γ−2/3|m∗ − m̌∗|+|γ−2/3 − γ̌−2/3| |m̌∗|< φ′/N

for a φ, τ ′-dependent constant φ′ > 0.

3.4 Resolvent comparison

We will conclude the proof of Theorem 2.6 by establishing the following lemma.

Lemma 3.25 (Resolvent comparison). Fix ε > 0 a sufficiently small constant, and let s1, s2, η ∈ R be

such that |s1|, |s2|< N−2/3+ε and η ∈ [N−2/3−ε, N−2/3]. Let T, Ť ∈ RM×M be two diagonal matrices

and E∗, Ě∗ two corresponding regular right edges, such that (T,E∗) and (Ť , Ě∗) are swappable and

their scales satisfy γ = γ̌ = 1. Suppose Assumption 3.1 holds.

Let mN , m̌N be the Stieltjes transforms as in (3.16) corresponding to T, Ť , and define

X = N

∫ E∗+s2

E∗+s1

ImmN (y + iη)dy, X̌ = N

∫ Ě∗+s2

Ě∗+s1

Im m̌N (y + iη)dy.
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Let K : R→ R be any function such that K and its first four derivatives are uniformly bounded by

a constant. Then

E[K(X)−K(X̌)] ≺ N−4/3+16ε. (3.29)

Let us first prove Theorem 2.6 assuming this lemma.

Proof of Theorem 2.6. By rotational invariance of X, we may assume that F = T is diagonal and

satisfies Assumption 3.1. By symmetry with respect to T 7→ −T , it suffices to consider part (a), the

case of a right edge. By rescaling T 7→ γ2/3T , it suffices to consider the case where γ = 1.

Let T (0), . . . , T (L) and E
(0)
∗ , . . . , E

(L)
∗ satisfy Lemma 3.21. Define X(k)(s1, s2, η) as in (3.22) for

each (T (k), E
(k)
∗ ). For a sufficiently small constant ε > 0, let η, s+, l and K : [0,∞)→ [0, 1] be as in

Lemma 3.18, where K has bounded derivatives of all orders.

Fix x ∈ R and let s = xN−2/3. Applying Lemma 3.18, we have (for all large N)

P[λmax(Σ̂) ≤ E∗ + s] ≤ E[K(π−1X(0)(s+ l, s+, η)] +N−1.

Setting ε′ = 9ε and applying Lemma 3.25, we have

E[K(π−1X(k)(s+ l, s+, η)] ≤ E[K(π−1X(k+1)(s+ l, s+, η)] +N−4/3+17ε′

for each k = 0, . . . , L−1. Finally, defining Σ̂(L) = X ′T (L)X and λmax(Σ̂(L)) as its largest eigenvalue

in (E
(L)
∗ − δ′, E(L)

∗ + δ′) for some δ′ > 0, applying Lemma 3.18 again yields

E[K(π−1X(L)(s+ l, s+, η)] ≤ P[λmax(Σ̂(L)) ≤ E(L)
∗ + s+ 2l] +N−1.

Recalling L ≤ 2M and combining the above bounds,

P[N2/3(λmax(Σ̂)− E∗) ≤ x] ≤ P[N2/3(λmax(Σ̂(L))− E(L)
∗ ) ≤ x+ 2N−ε] + o(1).

The matrix T (L) has all diagonal entries 0 or t, so Σ̂(L) = tX̃ ′X̃ for X̃ ∈ RM̃×N having N (0, 1/N)

entries. The corresponding law µ
(L)
0 has a single support interval and a unique right edge, so E

(L)
∗

must be this edge. Regularity of E
(L)
∗ and (3.12) imply |t|� 1 and M̃/N � 1. If E

(L)
∗ > 0, then

t > 0. Applying [Joh01, Theorem 1.1] for the largest eigenvalue of a real Wishart matrix, we have

P[N2/3(λmax(Σ̂(L))− E(L)
∗ ) ≤ x+ 2N−ε] = F1(x) + o(1) (3.30)

where F1 is the distribution function of µTW . If E
(L)
∗ < 0, then t < 0, and edge regularity implies

M̃/N is bounded away from 1. Then we also have (3.30) by considering −Σ̂(L) and applying [FS10,

Theorem I.1.1] for the smallest eigenvalue of a real Wishart matrix. (If M̃ < N , we apply this result
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to the companion matrix X̃X̃ ′.) Combining the above, we obtain

P[N2/3(λmax(Σ̂)− E∗) ≤ x] ≤ F1(x) + o(1).

The reverse bound is analogous, concluding the proof.

In the remainder of this section, we prove Lemma 3.25.

3.4.1 Individual resolvent bounds

For diagonal T and for z = y+iη as appearing in Lemma 3.25, we record here simple resolvent bounds

that follow from the local law. Similar bounds were used in [EYY12, LS16]. We also introduce the

shorthand notation that will be used in the computation.

Let E∗ be a regular right edge. Fix a small constant ε > 0, and fix s1, s2, η such that |s1|, |s2|≤
N−2/3+ε and η ∈ [N−2/3−ε, N−2/3]. Changing variables, we write

X ≡ X(s1, s2, η) = N

∫ s2

s1

ImmN (y + E∗ + iη)dy.

For y ∈ [s1, s2], we write as shorthand

z ≡ z(y) = y + E∗ + iη, G ≡ G(z(y)), mN ≡ mN (z(y)),

G(α) ≡ G(α)(z(y)), m
(α)
N ≡ 1

N

∑

i∈IN

G
(α)
ii , X(α) ≡ N

∫ s2

s1

Imm
(α)
N (y + E∗ + iη)dy.

The above quantities depend implicitly on y.

We use the simplified summation notation

∑

i,j

≡
∑

i,j∈IN

,
∑

α,β

≡
∑

α,β∈IM

where summations over lower-case Roman indices are implicitly over IN and summations over Greek

indices are implicitly over IM . We use also the simplified integral notation

∫
G̃AB ≡

∫ s2

s1

G(z(ỹ))ABdỹ,

∫
m̃N ≡

∫ s2

s1

mN (z(ỹ))dỹ,

etc., so that integrals are implicitly over [s1, s2], and we denote by F̃ the function F evaluated at

F (z(ỹ)) for ỹ the variable of integration. In this notation, X and X(α) are simply

X =
∑

i

Im

∫
G̃ii, X(α) =

∑

i

Im

∫
G̃

(α)
ii .
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We introduce the fundamental small parameter

Ψ = N−1/3+3ε. (3.31)

We will eventually bound all quantities in the computation by powers of Ψ. In fact, as shown in

Lemmas 3.26 and 3.27 below, non-integrated resolvent entries are controlled by powers of the smaller

quantity

N−1/3+ε.

However, integrated quantities will require the additional slack of N2ε. We will pass to using Ψ for

all bounds after this distinction is no longer needed.

We have the following corollaries of Proposition 3.13 and Theorem 3.16:

Lemma 3.26. Under the assumptions of Lemma 3.25, for all y ∈ [s1, s2], i 6= j ∈ IN , and α 6= β ∈
IM ,

Gii ≺ 1,
1

Gii
≺ 1,

Gαα
tα
≺ 1,

tα
Gαα

≺ 1,

Gij ≺ N−1/3+ε,
Giα
tα
≺ N−1/3+ε,

Gαβ
tαtβ

≺ N−1/3+ε, mN −m∗ ≺ N−1/3+ε.

When T is not invertible, these quantities are defined by continuity and the form (3.17) for G.

Proof. Proposition 3.13 implies Imm0(z(y)) ≤ C
√
κ+ η ≤ CN−1/3+ε/2, while η ≥ N−2/3−ε by

assumption. Then Theorem 3.16 yields (tAtB)−1(G−Π)AB ≺ N−1/3+ε for all A,B ∈ I. Proposition

3.13 also implies |m0(z)|� 1 and |1+tαm0(z)|� 1, from which all of the entrywise bounds on G follow.

The bound on mN follows from |m0−m∗|≤ C
√
κ+ η ≤ CN−1/3+ε/2 and |mN −m0|≺ N−1/3+ε.

Lemma 3.27. Under the assumptions of Lemma 3.25, for all i ∈ IN and α ∈ IM ,

∑

k

G
(α)
ik Xαk ≺ N−1/3+ε,

∑

p,q

G(α)
pq XαpXαq −m∗ ≺ N−1/3+ε.

Proof. Applying Lemmas 3.15(b) and 3.26,

∑

k

G
(α)
ik Xαk = −Giα/Gαα ≺ N−1/3+ε.

Similarly, applying Lemma 3.15(a) and Theorem 3.16,

∑

p,q

G(α)
pq XαpXαq −m∗ = − 1

Gαα
− 1

tα
−m∗ =

1

Παα
− 1

Gαα
+ (m0 −m∗) ≺ N−1/3+ε.

(These types of bounds are in fact used in the proof of Theorem 3.16 and may also be derived

directly from concentration inequalities and the independence of Xαk and G(α).)
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Remark 3.28. All probabilistic bounds used in the proof of Lemma 3.35, such as the above, are

derived from Theorem 3.16. Thus they in fact hold in the union bound form of Corollary 3.17. We

continue to use the notation ≺ for convenience, with the implicit understanding that we may take

a union bound over all y ∈ [s1, s2], and in particular integrate such bounds over y.

We record one trivial bound for an integral that will be repeatedly used, and which explains the

appearance of Ψ.

Lemma 3.29. Suppose the assumptions of Lemma 3.25 hold, F (z(y)) ≺ Na(−1/3+ε) for some a ≥ 2,

and we may take a union bound of this statement over y ∈ [s1, s2] (in the sense of Lemma 3.10).

Then, with Ψ = N−1/3+3ε,

N

∫
F̃ ≺ Ψa−1.

Proof. This follows, for a ≥ 2, from

N(s2 − s1)Na(−1/3+ε) ≤ 2N1/3+εNa(−1/3+ε) ≤ 2Ψa−1.

The next lemma will allow us to “remove the superscript” in the computation.

Lemma 3.30. Under the assumptions of Lemma 3.25, for any y ∈ [s1, s2], i, j ∈ IN (possibly

equal), and α ∈ IM ,

Gij −G(α)
ij ≺ N2(−1/3+ε),

mN −m(α)
N ≺ N2(−1/3+ε),

X− X(α) ≺ Ψ.

Proof. Applying the last resolvent identity from Lemma 3.15,

Gij −G(α)
ij =

GiαGjα
Gαα

= Giα
Gjα
tα

tα
Gαα

,

so the first statement follows from Lemma 3.26. Taking i = j and averaging over IN yields the

second statement. The third statement follows from

X− X(α) = Im

(
N

∫
m̃N − m̃(α)

N

)

and Lemma 3.29.

3.4.2 Resolvent bounds for a swappable pair

We now record bounds for a swappable pair (T,E∗) and (Ť , Ě∗), where E∗, Ě∗ are both regular. We

denote by m̌N , Ǧ, X̌ the analogues of mN , G,X for Ť . For ε, s1, s2, η and y ∈ [s1, s2] as in Section
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3.4.1, we write as shorthand

ž ≡ ž(y) = y + Ě∗ + iη, Ǧ ≡ Ǧ(ž(y)), m̌N ≡ m̌N (ž(y)),

where these quantities depend implicitly on y. The results of the preceding section hold equally for

Ǧ, m̌N , and X̌.

The desired bound (3.29) arises from the following identity: Suppose first that T and Ť are

invertible. Applying A−1 −B−1 = A−1(B −A)B−1,

G− Ǧ = G

(
(−ž + z) Id 0

0 −Ť−1 + T−1

)
Ǧ.

Hence, as z − ž = E∗ − Ě∗,

Gij − Ǧij =
∑

k

GikǦjk(E∗ − Ě∗)−
∑

α

Giα
tα

Ǧjα
ťα

(tα − ťα). (3.32)

This holds also by continuity when T is not invertible, where Giα/tα and Ǧjα/ťα are well-defined

by (3.17).

The following lemma will allow us to “remove the check” in the computation.

Lemma 3.31. Suppose the assumptions of Lemma 3.25 hold. Let Ψ = N−1/3+3ε. Then for any

y ∈ [s1, s2], i, j ∈ IN (possibly equal), and α ∈ IM ,

Gij − Ǧij ≺ N2(−1/3+ε),

mN − m̌N ≺ N2(−1/3+ε),

X− X̌ ≺ Ψ.

Proof. Applying Lemma 3.26 for both G and Ǧ, and also the definition of swappability and Lemma

3.20, we have from (3.32)

Gij − Ǧij ≺ |E∗ − Ě∗|·N ·N2(−1/3+ε) +
∑

α

|tα − ťα|N2(−1/3+ε) ≺ N2(−1/3+ε).

(The contribution from k = i or k = j in the first sum of (3.32) is of lower order.) Taking i = j

and averaging over IN yields the second statement, and integrating over y ∈ [s1, s2] and applying

Lemma 3.29 yields the third.

In many cases, we may strengthen the above lemma by an additional factor of Ψ if we take

an expectation. (This type of idea is an important part of the argument in [EYY12, LS16]. For

example, setting a = 0 and Y ≡ Y (α) ≡ 1 in Lemma 3.33 below yields the second-order bound
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E[X− X̌] ≺ Ψ2.) To take expectations of remainder terms, we will invoke Lemma 3.9 combined with

the following basic bound:

Lemma 3.32. Under the assumptions of Lemma 3.25, let P ≡ P (z(y)) be any polynomial in the

entries of X and G with bounded degree, bounded (possibly random) coefficients, and at most NC

terms for a constant C > 0. Then for a constant C ′ > 0 and all y ∈ [s1, s2],

E[|P |] ≤ NC′ .

Proof. By the triangle inequality and Holder’s inequality, it suffices to consider a bounded power of

a single entry of G or X. Then the result follows from Lemma 3.14 and the form (3.17) for G.

Lemma 3.33. Under the assumptions of Lemma 3.25, let Y be any quantity such that Y ≺ Ψa

for some constant a ≥ 0. Suppose that for each α ∈ IM , there exists a quantity Y (α) such that

Y −Y (α) ≺ Ψa+1, and Y (α) is independent of row α of X. Suppose furthermore that E[|Y |`] ≤ NC`

for each integer ` > 0 and some constants C1, C2, . . . > 0.

Then, for all i, j ∈ IN (possibly equal) and y ∈ [s1, s2],

E[(Gij − Ǧij)Y ] ≺ N2(−1/3+ε)Ψa+1 ≺ Ψa+3,

E[(mN − m̌N )Y ] ≺ N2(−1/3+ε)Ψa+1 ≺ Ψa+3.

E[(X− X̌)Y ] ≺ Ψa+2.

Proof. Applying (3.28), the trivial bound N−1 ≺ Ψ3, and Lemma 3.26 to (3.32),

(Gij − Ǧij)Y =
∑

k

GikǦjk(E∗ − Ě∗)Y −
∑

α

Giα
tα

Ǧjα
ťα

(tα − ťα)Y

=
∑

α

(tα − ťα)

(
sαšα

1

N

∑

k

GikǦjk −
Giα
tα

Ǧjα
ťα

)
Y +O≺(Ψa+5).

By swappability and Lemma 3.26, the explicit term on the right is of size O≺(N2(−1/3+ε)Ψa). (The

contributions from k = i and k = j in the summation are of lower order.) Applying the assumption

Y −Y (α) ≺ Ψa+1 as well as Lemma 3.30, we may replace Y with Y (α), Gik with G
(α)
ik , and Ǧjk with

Ǧ
(α)
jk above while introducing an O≺(N2(−1/3+ε)Ψa+1) error. Hence,

(Gij − Ǧij)Y =
∑

α

(tα − ťα)

(
sαšα

1

N

∑

k

G
(α)
ik Ǧ

(α)
jk −

Giα
tα

Ǧjα
ťα

)
Y (α) +O≺(N2(−1/3+ε)Ψa+1).

(3.33)
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Applying the resolvent identities from Lemma 3.15,

Giα
tα

=
Gαα
tα

∑

k

G
(α)
ik Xαk = − 1

1 + tα
∑
p,q G

(α)
pq XαpXαq

∑

k

G
(α)
ik Xαk.

Recalling sα = (1 + tαm∗)
−1, and applying Lemma 3.27 and a Taylor expansion of (1 + tαx)−1

around x = m∗,
Giα
tα

= −sα
∑

k

G
(α)
ik Xαk +O≺(N2(−1/3+ε)),

where the explicit term on the right is of size O≺(N−1/3+ε) ≺ Ψ. A similar expansion holds for

Ǧjα/ťα. Substituting into (3.33),

(Gij − Ǧij)Y =
∑

α

(tα − ťα)sαšα


 1

N

∑

k

G
(α)
ik Ǧ

(α)
jk −

∑

k,l

G
(α)
ik XαkǦ

(α)
jl Xαl


Y (α)

+O≺(N2(−1/3+ε)Ψa+1).

Denoting by Eα the partial expectation over only row α of X (i.e. conditional on Xβj for all β 6= α),

we have

Eα


 1

N

∑

k

G
(α)
ik Ǧ

(α)
jk −

∑

k,l

G
(α)
ik XαkǦ

(α)
jl Xαl


 = 0,

while the remainder term remains O≺(N2(−1/3+ε)Ψa+1) by Lemma 3.9, where the moment condition

of Lemma 3.9 is verified by Lemma 3.32, the moment assumption on Y , and Cauchy-Schwarz.

Then the first statement follows. The second statement follows from applying this with i = j

and averaging over i ∈ IN . The third statement follows from integrating over y ∈ [s1, s2] and

noting N1/3+εN2(−1/3+ε) = Ψ as in Lemma 3.29. (If Y depends on the spectral parameter z(y),

this integration is performed by fixing this parameter for Y , evaluating mN and m̌N at a different

parameter ỹ, and integrating over ỹ. The preceding arguments do not require Y and mN , m̌N to

depend on the same spectral parameter.)

Finally, recall the notation sα = (1+tαm∗)
−1 and Ai = N−1

∑
α t

i
αs
i
α. (This corresponds to Ai,0

in Lemma 3.20.) We derive a deterministic consequence of swappability and the scaling condition

γ = γ̌ = 1. In the proof of [LS16] for a continuous interpolation T (l), denoting ṫα and ṁ∗ the

derivatives with respect to l, the differential analogue of the following lemma is the pair of identities

∑

α

ṫαtαs
3
α = Nṁ∗,

∑

α

ṫαt
2
αs

4
α = Nṁ∗(A4 −m−4

∗ ).

These may be derived by implicitly differentiating 0 = z′0(m∗) and 1 = z′′0 (m∗) with respect to l.

We show that discrete versions of these identities continue to hold, with O(N−1) error:
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Lemma 3.34. Suppose T, Ť satisfy Assumption 3.1, E∗, Ě∗ are associated regular right edges with

scales γ = γ̌ = 1, and (T,E∗) and (Ť , Ě∗) are swappable. Define sα = (1 + tαm∗)
−1, šα =

(1 + ťαm̌∗)
−1, A4 = N−1

∑
α t

4
αs

4
α, and

Pα = sαšα(tαsα + ťαšα), Qα = sαšα(t2αs
2
α + tαsαťαšα + ť2αš

2
α).

Then for some constant C > 0, both of the following hold:

∣∣∣∣∣2N(m∗ − m̌∗)−
M∑

α=1

(tα − ťα)Pα
∣∣∣∣∣ ≤ C/N (3.34)

∣∣∣∣∣3N(m∗ − m̌∗)(A4 −m−4
∗ )−

M∑

α=1

(tα − ťα)Qα
∣∣∣∣∣ ≤ C/N. (3.35)

Proof. For (3.34), we have from the identity 0 = z′0(m∗) applied to T and Ť

m−2
∗ − m̌−2

∗ =
1

N

∑

α

t2αs
2
α − ť2αš2

α. (3.36)

The left side may be written as

m−2
∗ − m̌−2

∗ = (m̌∗ −m∗)(m̌∗ +m∗)m
−2
∗ m̌−2

∗ = 2(m̌∗ −m∗)m−3
∗ +O(N−2), (3.37)

where the second equality applies |m∗|, |m̌∗|� 1 and |m̌∗−m∗|≤ C/N . The right side may be written

as
1

N

∑

α

t2αs
2
α − ť2αš2

α =
1

N

∑

α

(tα − ťα)tαs
2
α + (s2

α − š2
α)tαťα + (tα − ťα)ťαš

2
α.

Including the identities (1 + tαm∗)sα = 1 and (1 + ťαm̌∗)šα = 1,

1

N

∑

α

t2αs
2
α − ť2αš2

α =
1

N

∑

α

(tα − ťα)(tαs
2
α(1 + ťαm̌∗)šα + ťαš

2
α(1 + tαm∗)sα) + (s2

α − š2
α)tαťα

=
1

N

∑

α

(tα − ťα)sαšα(tαsα + ťαšα + tαsαťαm̌∗ + ťαšαtαm∗) + (s2
α − š2

α)tαťα

≡ 1

N

∑

α

(tα − ťα)sαšα(tαsα + ťαšα) +Rα, (3.38)

where we define Rα as the remainder term. Noting that

s2
α − š2

α = (sα − šα)(sα + šα) = (ťαm̌∗ − tαm∗)sαšα(sα + šα),
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we have

Rα = tαťαsαšα(tαsαm̌∗ + tαšαm∗ − ťαsαm̌∗ − ťαšαm∗ + ťαsαm̌∗ + ťαšαm̌∗ − tαsαm∗ − tαšαm∗)
= tαsαťαšα(m̌∗ −m∗)(tαsα + ťαšα).

Then, applying Lemma 3.20(a),

1

N

∑

α

Rα = (m̌∗ −m∗)(A2,1 +A1,2) = 2(m̌∗ −m∗)A3,0 +O(N−2).

By the scaling γ = 1, we have A3,0 = 1 +m−3
∗ . Combining this with (3.36), (3.37), and (3.38) and

multiplying by N yields (3.34).

The identity (3.35) follows similarly: The condition γ = γ̌ implies

m−3
∗ − m̌−3

∗ =
1

N

∑

α

t3αs
3
α − ť3αš3

α.

The left side is

(m̌∗ −m∗)(m2
∗ +m∗m̌∗ + m̌2

∗)m
−3
∗ m̌−3

∗ = 3(m̌∗ −m∗)m−4
∗ +O(N−2),

while the right side is

1

N

∑

α

t3αs
3
α − ť3αš3

α =
1

N

∑

α

(tα − ťα)t2αs
3
α + (s2

α − š2
α)t2αsαťα + (tα − ťα)tαsαťαš

2
α

+ (sα − šα)tαť
2
αš

2
α + (tα − ťα)ť2αš

3
α

=
1

N

∑

α

(tα − ťα)
(
t2αs

3
α(1 + ťαm̌∗)šα + tαsαťαš

2
α(1 + tαm∗)sα

+ ť2αš
3
α(1 + tαm∗)sα

)
+ (sα − šα)((sα + šα)t2αsαťα + tαť

2
αš

2
α)

=
1

N

∑

α

(tα − ťα)sαšα(t2αs
2
α + tαsαťαšα + ť2αš

2
α)

+ tαsαťαšα(m̌∗ −m∗)(t2αs2
α + tαsαťαšα + ť2αš

2
α)

=

(
1

N

∑

α

(tα − ťα)Qα
)

+ 3(m̌∗ −m∗)A4 +O(N−2).

Combining the above and multiplying by N yields (3.35).
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3.4.3 Proof of resolvent comparison lemma

We use the notation of Sections 3.4.1 and 3.4.2. Define the following quantities, depending implicitly

on a fixed index i ∈ IN and y ∈ [s1, s2]:

X3,12′ = K ′(X)(mN −m∗)
1

N

∑

k

G2
ik

X3,3 = K ′(X)
1

N2

∑

k,l

GikGklGil

X3,22̃ = K ′′(X)
1

N2

∑

j,k,l

GikGil Im

∫
G̃jkG̃jl

X3,2′2̃′ = K ′′(X)
1

N2

∑

j,k,l

G2
ik Im

∫
G̃2
jl

X4,22′ = K ′(X)(mN −m∗)2 1

N

∑

k

G2
ik

X4,13 = K ′(X)(mN −m∗)
1

N2

∑

k,l

GikGklGil

X4,4 = K ′(X)
1

N3

∑

j,k,l

GijGjkGklGil

X4,4′ = K ′(X)
1

N3

∑

j,k,l

G2
ikG

2
jl

X4,122̃ = K ′′(X)(mN −m∗)
1

N2

∑

j,k,l

GikGil Im

∫
G̃jkG̃jl

X4,12′2̃′ = K ′′(X)(mN −m∗)
1

N2

∑

j,k,l

G2
ik Im

∫
G̃2
jl

X4,32̃ = K ′′(X)
1

N3

∑

j,p,q,r

GipGiqGpr Im

∫
G̃jqG̃jr

X4,3′2̃ = K ′′(X)
1

N3

∑

j,p,q,r

G2
irGpq Im

∫
G̃jpG̃jq

X4,32̃′ = K ′′(X)
1

N3

∑

j,p,q,r

GiqGirGqr Im

∫
G̃2
jp

X4,21̃2 = K ′′(X)
1

N2

∑

j,k,l

GikGil Im

∫
(m̃N −m∗)G̃jkG̃jl

X
4,2′1̃2

′ = K ′′(X)
1

N2

∑

j,k,l

G2
il Im

∫
(m̃N −m∗)G̃2

jk

X4,23̃ = K ′′(X)
1

N3

∑

j,p,q,r

GipGiq Im

∫
G̃jpG̃jrG̃qr
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X4,23̃′ = K ′′(X)
1

N3

∑

j,p,q,r

GipGiq Im

∫
G̃2
jrG̃pq

X4,2′3̃ = K ′′(X)
1

N3

∑

j,p,q,r

G2
ip Im

∫
G̃jqG̃jrG̃qr

X4,22̃2̃ = K ′′′(X)
1

N3

∑

j,k,p,q,r

GipGiq

(
Im

∫
G̃jpG̃jr

)(
Im

∫
G̃kqG̃kr

)

X4,2′2̃2̃ = K ′′′(X)
1

N3

∑

j,k,p,q,r

G2
ip

(
Im

∫
G̃jqG̃jr

)(
Im

∫
G̃kqG̃kr

)

X4,22̃2̃′ = K ′′′(X)
1

N3

∑

j,k,p,q,r

GipGiq

(
Im

∫
G̃jpG̃jq

)(
Im

∫
G̃2
kr

)

X4,2′2̃′2̃′ = K ′′′(X)
1

N3

∑

j,k,p,q,r

G2
ip

(
Im

∫
G̃2
jq

)(
Im

∫
G̃2
kr

)

Define the aggregate quantities

X3 = X3,12 + X3,3 + X3,22̃

X4 = 3X4,22′ + 6X4,13 + 12X4,4 + 3X4,4′ + 4X4,122̃ + 8X4,32̃ + 4X4,3′2̃

+ 2X4,21̃2 + 2X4,23̃′ + 4X4,23̃ + 4X4,22̃2̃,

X−4 = X4,21̃2 + X4,23̃′ + 2X4,23̃ − X4,122̃ − X4,3′2̃ − 2X4,32̃.

(Not all of the above terms appear in these aggregate quantities; we define them because they appear

in intermediate steps of the proof.) The notation signifies that each term X3,∗ is of size at most

O≺(Ψ3), and each term X4,∗ is of size at most O≺(Ψ4), as may be verified from Lemmas 3.26 and

3.29. A ∼ in the subscript denotes an integrated quantity, and a ′ in the subscript denotes a squared

resolvent entry.

Lemma 3.25 is a consequence of the following two technical results.

Lemma 3.35 (Decoupling). Under the assumptions of Lemma 3.25, denote Xλ = λX + (1 − λ)X̌

for λ ∈ [0, 1]. For fixed i ∈ IN and y ∈ [s1, s2], define X3, X4, and X−4 as above. For fixed α ∈ IM ,

let sα = (1 + tαm∗) and šα = (1 + ťαm̌∗), and define

Pα = sαšα(tαsα + ťαšα), Qα = sαšα(t2αs
2
α + tαsαťαšα + ť2αš

2
α), Rα = sαšα(tαsα − ťαšα)2.

Then ∫ 1

0

E
[
K ′(Xλ)

Giα
tα

Ǧiα
ťα

]
dλ = sαšα

∫ 1

0

E

[
K ′(Xλ)

1

N

∑

k

GikǦik

]
dλ

− PαE[X3] + 1
3QαE[X4] + 1

3RαE[X−4 ] +O≺(Ψ5).
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Lemma 3.36 (Optical theorems). Under the assumptions of Lemma 3.25, for fixed i ∈ IN and

y ∈ [s1, s2], define X3 and X4 as above. Let A4 = N−1
∑
α t

4
αs

4
α. Then

2 ImE[X3] = (A4 −m−4
∗ ) ImE[X4] +O≺(Ψ5).

Lemma 3.35 generalizes [LS16, Lemma 6.2] to a swappable pair. We will present its proof in

Section 3.4.4, following similar ideas. We introduce the interpolation Xλ = λX+(1−λ)X̌ as a device

to bound K(X)−K(X̌). (This is different from a continuous interpolation between the entries of T

and Ť .) Let us make several additional remarks:

1. The proof in [LS16] requires this lemma in “differential form”, where T = Ť . In this case, we

have G = Ǧ, Xλ = X for every λ ∈ [0, 1], sα = šα, and tα = ťα. Then the integral over λ is

irrelevant, and Lemma 3.35 reduces to the full version of [LS16, Lemma 6.2].

2. There is an additional term X−4 that does not appear in [LS16], and which is not canceled by the

optical theorems of Lemma 3.36. (When T = Ť , we have Rα = 0 so this term is not present.)

The cancellation will instead occur by symmetry of its definition, upon integrating over y.

3. The main additional complexity in our proof comes from needing to separately track the terms

that arise from resolvent expansions ofG and Ǧ, and from X and X̌ after Taylor expandingK ′(Xλ).

An important simplification is that we may use Lemmas 3.31 and 3.33 to convert O≺(Ψ3) and

O≺(Ψ4) terms to involve only G and not Ǧ—hence X3,X4,X
−
4 are defined only by T and not Ť .

Swappability of (T,E∗) and (Ť , Ě∗) is used for this simplification.

The other technical ingredient, Lemma 3.36, is identical to the full version of [LS16, Lemma B.1],

as the terms X3 and X4 depend only on the single matrix T . We briefly discuss the breakdown of

its proof in Section 3.4.5.

In [LS16], for expositional clarity, these lemmas were stated and proven only in the special case

K ′ ≡ 1. Full proofs were presented for an analogous deformed Wigner model in [LS15]. Although

more cumbersome, we will demonstrate the full proof of Lemma 3.35 for a general function K in

Section 3.4.4, as much of the additional complexity due to two resolvents G and Ǧ arises from the

interpolation Xλ and the Taylor expansion of K ′.

We conclude this section by establishing Lemma 3.25 using the above two results:

Proof of Lemma 3.25. We write

K(X)−K(X̌) =

∫ 1

0

d

dλ
K(Xλ)dλ =

∫ 1

0

K ′(Xλ)(X− X̌)dλ. (3.39)

Recalling

X =
∑

i

Im

∫
G̃ii
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and applying (3.32),

X− X̌ =
∑

i

Im

∫ (∑

k

G̃ik
˜̌Gik(E∗ − Ě∗)−

∑

α

G̃iα
tα

˜̌Giα
ťα

(tα − ťα)

)
.

(G̃ and ˜̌G denote G and Ǧ evaluated at the variable of integration ỹ.) Further applying (3.28),

Lemma 3.26, and the trivial bound N−2/3+ε ≺ Ψ2,

X− X̌ =
∑

i

Im

∫ ∑

α

(tα − ťα)

(
sαšα

1

N

∑

k

G̃ik
˜̌Gik −

G̃iα
tα

˜̌Giα
ťα

)
+O≺(Ψ4).

Applying this to (3.39), taking the expectation, exchanging orders of summation and integration,

and noting that K ′(Xλ) is real,

E[K(X)−K(X̌)]

=
∑

i

∑

α

(tα − ťα) Im

∫ ∫ 1

0

E

[
K ′(Xλ)

(
sαšα

1

N

∑

k

G̃ik
˜̌Gik −

G̃iα
tα

˜̌Giα
ťα

)]
dλ dỹ +O≺(Ψ4),

where the expectation of the remainder term is still O≺(Ψ4) by Lemmas 3.9 and 3.32. Denoting

by X̃3(i), X̃4(i), and X̃−4 (i) the quantities X3, X4, and X−4 defined by ỹ and the outer index of

summation i, Lemma 3.35 implies

E[K(X)−K(X̌)] =
∑

i

∑

α

(tα−ťα) Im

∫
(PαE[X̃3(i)]− 1

3QαE[X̃4(i)]− 1
3RαE[X̌−4 (i)])dỹ+O≺(N1/3+εΨ5),

where the error is N1/3+εΨ5 because
∑
α|tα − ťα|≤ C and the range of integration is contained in

[−N−2/3+ε, N−2/3+ε]. We note

Im

∫
X̃−4 (i)dỹ = 0

by symmetry of the terms defining X̃−4 , so this term vanishes. Then, applying Lemma 3.36,

E[K(X)−K(X̌)] =
∑

i

∑

α

(tα − ťα)

(
Pα

A4 −m−4
∗

2
− Qα

3

)
Im

∫
E[X̃4(i)]dỹ +O≺(N1/3+εΨ5).

Finally, applying Lemma 3.34, we have

∑

α

(tα − ťα)

(
Pα

A4 −m−4
∗

2
− Qα

3

)
≤ C/N.

Hence E[K(X)−K(X̌)] ≺ N1/3+εΨ5 = N−4/3+16ε.
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3.4.4 Proof of decoupling lemma

In this section, we prove Lemma 3.35. We will implicitly use the resolvent bounds of Lemma 3.26

throughout the proof.

Step 1: Consider first a fixed value λ ∈ [0, 1]. Let Eα denote the partial expectation over row

α of X (i.e. conditional on all Xβj for β 6= α). In anticipation of computing Eα for the quantity on

the left, we expand

K ′(Xλ)
Giα
tα

Ǧiα
ťα

as a polynomial of entries of row α of X, with coefficients independent of all entries in this row.

Applying the resolvent identities,

Giα
tα

=
Gαα
tα

∑

k

G
(α)
ik Xαk = − 1

1 + tα
∑
p,q G

(α)
pq XαpXαq

∑

k

G
(α)
ik Xαk.

Applying Lemma 3.27 and a Taylor expansion of the function (1 + tαx)−1 around x = m∗,

Giα
tα

= −sα
∑

k

G
(α)
ik Xαk + tαs

2
α

(∑

p,q

G(α)
pq XαpXαq −m∗

)∑

k

G
(α)
ik Xαk

− t2αs3
α

(∑

p,q

G(α)
pq XαpXαq −m∗

)2∑

k

G
(α)
ik Xαk +O≺(Ψ4)

(3.40)≡ U1 + U2 + U3 +O≺(Ψ4),

where we defined the three explicit terms of sizes O≺(Ψ), O≺(Ψ2), O≺(Ψ3) as U1, U2, U3. Similarly

(3.41)
Ǧiα
ťα

= Ǔ1 + Ǔ2 + Ǔ3 +O≺(Ψ4),

where Ǔi are defined analogously with šα, ťα, m̌∗, Ǧ in place of sα, tα,m∗, G.

For K ′(Xλ), define X
(α)
λ = λX(α) + (1− λ)X̌(α) and note from Lemma 3.30 that Xλ −X

(α)
λ ≺ Ψ.

Taylor expanding K ′(x) around x = X
(α)
λ ,

(3.42)K ′(Xλ) = K ′(X
(α)
λ ) +K ′′(X

(α)
λ )(Xλ − X

(α)
λ ) +

K ′′′(X
(α)
λ )

2
(Xλ − X

(α)
λ )2 +O≺(Ψ3).

Applying the definition of X,X(α) and the resolvent identities,

X− X(α) = Im

∫ ∑

j

(G̃jj − G̃(α)
jj ) = Im

∫ ∑

j

G̃2
jα

G̃αα
= Im

∫
G̃αα

∑

j,p,q

G̃
(α)
jp XαpG̃

(α)
jq Xαq.
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Further applying the resolvent identity for G̃αα, a Taylor expansion as above, and Lemma 3.29,

X− X(α) = −tαsα Im

∫ ∑

j,p,q

G̃
(α)
jp XαpG̃

(α)
jq Xαq

+ t2αs
2
α Im

∫ ∑

r,s

(
G̃(α)
rs XαrXαs −m∗

)∑

j,p,q

G̃
(α)
jp XαpG̃

(α)
jq Xαq +O≺(Ψ3)

(3.43)≡ V1 + V2 +O≺(Ψ3),

where V1 ≺ Ψ and V2 ≺ Ψ2. Analogously we may write

X̌− X̌(α) = V̌1 + V̌2 +O≺(Ψ3), (3.44)

where V̌1, V̌2 are defined with šα, ťα, m̌∗, Ǧ in place of sα, tα,m∗, G. Substituting (3.43) and (3.44)

into (3.42), and combining with (3.40) and (3.41), we obtain

K ′(Xλ)
Giα
tα

Ǧiα
ťα

= W2 +W3 +W4 +O≺(Ψ5) (3.45)

where the O≺(Ψ2) term is

W2 = K ′(X
(α)
λ )U1Ǔ1,

the O≺(Ψ3) term is

W3 = K ′(X
(α)
λ )(U2Ǔ1 + U1Ǔ2) +K ′′(X

(α)
λ )(λV1 + (1− λ)V̌1)U1Ǔ1,

and the O≺(Ψ4) term is

W4 = K ′(X
(α)
λ )(U3Ǔ1 + U2Ǔ2 + U1Ǔ3) +K ′′(X

(α)
λ )(λV1 + (1− λ)V̌1)(U2Ǔ1 + U1Ǔ2)

+

[
K ′′(X

(α)
λ )(λV2 + (1− λ)V̌2) +

K ′′′(X
(α)
λ )

2
(λV1 + (1− λ)V̌1)2

]
U1Ǔ1.

Step 2: We compute Eα of W2,W3,W4 above. Note that X(α), X̌(α), G(α), Ǧ(α) are independent

of row α of X. Then for W2, we have

(3.46)

Eα[W2] = sαšαK
′(X

(α)
λ )

∑

k,l

G
(α)
ik Ǧ

(α)
il Eα[XαkXαl]

= sαšαK
′(X

(α)
λ )

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

where we have used E[XαkXαl] = 1/N if k = l and 0 otherwise.

For W3, let us introduce

Y
(α)
3,12′ = K ′(X

(α)
λ )(m

(α)
N −m∗)

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,
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Z(α)
3,12′ = K ′(X

(α)
λ )(m̌

(α)
N − m̌∗)

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

Y
(α)
3,3 = K ′(X

(α)
λ )

1

N2

∑

k,l

G
(α)
ik G

(α)
kl Ǧ

(α)
il

Z(α)
3,3 = K ′(X

(α)
λ )

1

N2

∑

k,l

G
(α)
ik Ǧ

(α)
kl Ǧ

(α)
il

Y
(α)

3,2′2̃′
= K ′′(X

(α)
λ )

1

N2

∑

j,k,l

G
(α)
ik Ǧ

(α)
ik Im

∫
(G̃

(α)
jl )2

Z(α)

3,2′2̃′
= K ′′(X

(α)
λ )

1

N2

∑

j,k,l

G
(α)
ik Ǧ

(α)
ik Im

∫
( ˜̌G

(α)
jl )2

Y
(α)

3,22̃
= K ′′(X

(α)
λ )

1

N2

∑

j,k,l

G
(α)
ik Ǧ

(α)
il Im

∫
G̃

(α)
jk G̃

(α)
jl

Z(α)

3,22̃
= K ′′(X

(α)
λ )

1

N2

∑

j,k,l

G
(α)
ik Ǧ

(α)
il Im

∫
˜̌G

(α)
jk

˜̌G
(α)
jl ,

which are versions of X3,∗ that don’t depend on row α ofX and with various instances ofmN ,m∗, G,X

replaced by m̌N , m̌∗, Ǧ,Xλ. Consider the first term of W3 and write

Eα[K ′(X
(α)
λ )U2Ǔ1]

= Eα


−tαs2

αšαK
′(X

(α)
λ )

(∑

p,q

G(α)
pq XαpXαq −m∗

)∑

k,l

G
(α)
ik XαkǦ

(α)
il Xαl




= −tαs2
αšαK

′(X
(α)
λ )

∑

k,l,p,q

(
G(α)
pq Eα[XαpXαqXαkXαl]−

1

N
m∗1{p = q}Eα[XαkXαl]

)
G

(α)
ik Ǧ

(α)
il .

The summand corresponding to (k, l, p, q) is 0 unless each distinct index appears at least twice in

(k, l, p, q). Furthermore, the case where all four indices are equal is negligible:

∑

k

(
G

(α)
kk Eα[X4

αk]− 1

N
m∗Eα[X2

αk]

)
G

(α)
ik Ǧ

(α)
ik ≺ N ·N−2 ·Ψ2 ≺ Ψ5.

(The k = i case of the sum may be bounded separately as O≺(N−2).) Thus up to O≺(Ψ5), we need

only consider summands where each distinct index appears exactly twice. Considering the one case

where k = l and the two cases where k = p and k = q,

Eα[K ′(X
(α)
λ )U2Ǔ1] = −tαs2

αšαK
′(X

(α)
λ )


 1

N2

∑

k

(k)∑

p

(
G(α)
pp −m∗

)
G

(α)
ik Ǧ

(α)
ik

+
2

N2

∑

k

(k)∑

l

G
(α)
ik Ǧ

(α)
il G

(α)
kl


+O≺(Ψ5).
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Re-including p = k and l = k into the double summations introduces an additional O≺(Ψ5) error;

hence we obtain for the first term of W3

(3.47)Eα[K ′(X
(α)
λ )U2Ǔ1] = −tαs2

αšα(Y
(α)
3,12′ + 2Y

(α)
3,3 ) +O≺(Ψ5).

Similar arguments apply for the remaining three terms of W3. For the terms involving an integral,

we may apply Lemma 3.29 and also move Xαk outside of the integral and imaginary part because

X is real and does not depend on the variable of integration ỹ. We obtain

Eα[K ′(X
(α)
λ )U1Ǔ2] = −ťαš2

αsα(Z(α)
3,12′ + 2Z(α)

3,3 ) +O≺(Ψ5), (3.48)

Eα[λK ′′(X
(α)
λ )V1U1Ǔ1] = −λtαs2

αšα(Y
(α)

3,2′2̃′
+ 2Y

(α)

3,22̃
) +O≺(Ψ5), (3.49)

Eα[(1− λ)K ′′(X
(α)
λ )V̌1U1Ǔ1] = −(1− λ)ťαš

2
αsα(Z(α)

3,2′2̃′
+ 2Z(α)

3,22̃
) +O≺(Ψ5), (3.50)

and Eα[W3] is the sum of (3.47–3.50).

For W4, consider the first term and write

Eα[K ′(X
(α)
λ )U3Ǔ1] = Eα


t2αs3

αšαK
′(X

(α)
λ )

(∑

p,q

G(α)
pq XαpXαq −m∗

)2∑

k,l

G
(α)
ik XαkǦ

(α)
il Xαl




= t2αs
3
αšαK

′(X
(α)
λ )

∑

p,q,r,s,k,l

(
G(α)
pq G

(α)
rs Eα[XαpXαqXαrXαsXαkXαl]

− 1

N
m∗1{p = q}G(α)

rs Eα[XαrXαsXαkXαl]

− 1

N
m∗1{r = s}G(α)

pq Eα[XαpXαqXαkXαl]

+
1

N2
m2
∗1{p = q}1{r = s}E[XαkXαl]

)
G

(α)
ik Ǧ

(α)
il .

A summand corresponding to (k, l, p, q, r, s) is 0 unless each distinct index in (k, l, p, q, r, s) appears at

least twice. Furthermore, as in the computations for W3 above, all summands for which (k, l, p, q, r, s)

do not form three distinct pairs may be omitted and reincluded after taking Eα, introducing an

O≺(Ψ5) error. Considering all pairings of these indices,

Eα[K ′(X
(α)
λ )U3Ǔ1] = t2αs

3
αšαK

′(X
(α)
λ )

(
(m

(α)
N −m∗)2 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik

+ 4(m
(α)
N −m∗)

1

N2

∑

k,l

G
(α)
ik G

(α)
kl Ǧ

(α)
il + 8

1

N3

∑

j,k,l

G
(α)
ik G

(α)
jk G

(α)
jl Ǧ

(α)
il

+ 2
1

N3

∑

j,k,l

G
(α)
ik Ǧ

(α)
ik (G

(α)
jl )2

)
+O≺(Ψ5).

At this point, let us apply Lemmas 3.30 and 3.31 to remove each superscript (α) above and to
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convert each Ǧ to G, introducing an O≺(Ψ5) error. (We could not do this naively for W2 and W3,

because the errors would be O≺(Ψ3) and O≺(Ψ4) respectively.) We may also remove the superscript

(α) and convert Xλ to X in K ′(X
(α)
λ ), via the second-derivative bounds

K ′(X
(α)
λ )−K ′(Xλ) ≤ ‖K ′′‖∞|X(α)

λ − Xλ|≺ Ψ.

K ′(Xλ)−K ′(X) ≤ ‖K ′′‖∞|Xλ − X|≺ Ψ.

We thus obtain

Eα[K ′(X
(α)
λ )U3Ǔ1] = t2αs

3
αšα(X4,22′ + 4X4,13 + 8X4,4 + 2X4,4′) +O≺(Ψ5).

Applying a similar computation to each term of W4, we obtain

Eα[K ′(X
(α)
λ )(U3Ǔ1 + U2Ǔ2 + U1Ǔ3)] (3.51)

= sαšα(t2αs
2
α + tαsαťαšα + ť2αš

2
α)(X4,22′ + 4X4,13 + 8X4,4 + 2X4,4′) +O≺(Ψ5), (3.52)

Eα[K ′′(X
(α)
λ )(λV1 + (1− λ)V̌1)(U2Ǔ1 + U1Ǔ2)]

= sαšα(λtαsα + (1− λ)ťαšα)(tαsα + ťαšα)×
(X4,12′2̃′ + 2X4,122̃ + 2X4,32̃′ + 2X4,3′2̃ + 8X4,32̃) +O≺(Ψ5), (3.53)

Eα[K ′′(X
(α)
λ )(λV2 + (1− λ)V̌2)U1Ǔ1]

= sαšα(λt2αs
2
α + (1− λ)ť2αš

2
α)(X

4,2′1̃2
′ + 2X4,21̃2 + 2X4,2′3̃ + 2X4,23̃′ + 8X4,23̃) +O≺(Ψ5), (3.54)

Eα

[
K ′′′(X

(α)
λ )

2
(λV1 + (1− λ)V̌1)2U1Ǔ1

]

=
sαšα

2
(λtαsα + (1− λ)ťαšα)2(X4,2′2̃′2̃′ + 2X4,2′2̃2̃ + 4X4,22̃2̃′ + 8X4,22̃2̃) +O≺(Ψ5), (3.55)

and Eα[W4] is the sum of (3.52–3.55).

The O≺(Ψ5) remainder in (3.45) is given by the difference of the left side with W2,W3,W4. As

this is an integral over a polynomial of entries of G(α) and X, its partial expectation is still O≺(Ψ5)

by Lemmas 3.9 and 3.32.

Summarizing the results of Steps 1 and 2, we collect (3.45), (3.46), (3.47–3.50), and (3.52–3.55):

Eα
[
K ′(Xλ)

Giα
tα

Ǧiα
ťα

]

= sαšαK
′(X

(α)
λ )

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik

− tαs2
αšα(Y

(α)
3,12′ + 2Y

(α)
3,3 )− ťαš2

αsα(Z(α)
3,12′ + 2Z(α)

3,3 )

− λtαs2
αšα(Y

(α)

3,2′2̃′
+ 2Y

(α)

3,22̃
)− (1− λ)ťαš

2
αsα(Z(α)

3,2′2̃′
+ 2Z(α)

3,22̃
)
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+ sαšα(t2αs
2
α + tαsαťαšα + ť2αš

2
α)(X4,22′ + 4X4,13 + 8X4,4 + 2X4,4′)

+ sαšα(λtαsα + (1− λ)ťαšα)(tαsα + ťαšα)(X4,12′2̃′ + 2X4,122̃ + 2X4,32̃′ + 2X4,3′2̃ + 8X4,32̃)

+ sαšα(λt2αs
2
α + (1− λ)ť2αš

2
α)(X

4,2′1̃2
′ + 2X4,21̃2 + 2X4,2′3̃ + 2X4,23̃′ + 8X4,23̃)

+
sαšα

2
(λtαsα + (1− λ)ťαšα)2(X4,2′2̃′2̃′ + 2X4,2′2̃2̃ + 4X4,22̃2̃′ + 8X4,22̃2̃) +O≺(Ψ5). (3.56)

Step 3: In (3.56), we consider the first term on the right (of size O≺(Ψ2)) and remove the

superscripts (α), keeping track of the O≺(Ψ3) and O≺(Ψ4) terms that arise.

Applying the resolvent identities and a Taylor expansion for Gαα, we write

G
(α)
ik = Gik −

GiαGkα
Gαα

= Gik −Gαα
∑

r,s

G
(α)
ir XαrG

(α)
ks Xαs

= Gik + tαsα
∑

r,s

G
(α)
ir XαrG

(α)
ks Xαs − t2αs2

α

(∑

p,q

G(α)
pq XαpXαq −m∗

)∑

r,s

G
(α)
ir XαrG

(α)
ks Xαs

+O≺(Ψ4)

≡ Gik +R2k +R3k +O≺(Ψ4), (3.57)

where we defined the two remainder terms of sizes O≺(Ψ2), O≺(Ψ3) as R2k, R3k. Similarly we write

(3.58)Ǧ
(α)
ik = Ǧik + Ř2k + Ř3k +O≺(Ψ4).

For K ′(X
(α)
λ ), we apply the Taylor expansion (3.42) and recall V1, V̌1, V2, V̌2 from (3.43,3.44) to obtain

K ′(X
(α)
λ ) = K ′(Xλ)−K ′′(X(α)

λ )(Xλ − X
(α)
λ )− K ′′′(X

(α)
λ )

2
(Xλ − X

(α)
λ )2 +O≺(Ψ3)

(3.59)
= K ′(Xλ)−K ′′(X(α)

λ )(λV1 + (1− λ)V̌1)−K ′′(X(α)
λ )(λV2 + (1− λ)V̌2)

− K ′′′(X
(α)
λ )

2
(λV1 + (1− λ)V̌1)2 +O≺(Ψ3).

Taking the product of (3.57), (3.58), and (3.59), applying the identity

xyz = (x− δx)(y − δy)(z − δz) + xyδz + xδyz + δxyz − xδyδz − δxyδz − δxδyz + δxδyδz

(with x = G
(α)
ik , x− δx = Gik, and δx = R2k +R3k, etc.), and averaging over k ∈ IN , we obtain

K ′(X
(α)
λ )

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ≡ S2 + S3,1 + S3,2 + S4,1 + S4,2 + S4,3 + S4,4 + S4,5 +O≺(Ψ5), (3.60)

where the O≺(Ψ2) term is

S2 = K ′(Xλ)
1

N

∑

k

GikǦik,
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the O≺(Ψ3) terms are

S3,1 = K ′(X
(α)
λ )

1

N

∑

k

G
(α)
ik Ř2k +K ′(X

(α)
λ )

1

N

∑

k

R2kǦ
(α)
ik ,

S3,2 = −K ′′(X(α)
λ )(λV1 + (1− λ)V̌1)

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

and the O≺(Ψ4) terms are

S4,1 = K ′(X
(α)
λ )

1

N

∑

k

G
(α)
ik Ř3k +K ′(X

(α)
λ )

1

N

∑

k

R3kǦ
(α)
ik ,

S4,2 = −K ′′(X(α)
λ )(λV2 + (1− λ)V̌2)

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

S4,3 = −K
′′′(X

(α)
λ )

2
(λV1 + (1− λ)V̌1)2 1

N

∑

k

G
(α)
ik Ǧ

(α)
ik ,

S4,4 = −K ′(X(α)
λ )

1

N

∑

k

R2kŘ2k,

S4,5 = K ′′(X
(α)
λ )(λV1 + (1− λ)V̌1)

1

N

∑

k

G
(α)
ik Ř2k +K ′′(X

(α)
λ )(λV1 + (1− λ)V̌1)

1

N

∑

k

R2kǦ
(α)
ik .

Recalling the definition of R2k and applying Eα to the O≺(Ψ3) terms, we obtain

Eα[S3,1] = tαsαY
(α)
3,3 + ťαšαZ(α)

3,3 ,

Eα[S3,2] = λtαsαY
(α)

3,2′2̃′
+ (1− λ)ťαšαZ(α)

3,2′2̃′
.

Similarly, we apply Eα to each of the O≺(Ψ4) terms, considering all pairings of the four summation

indices as in Step 2. Then applying Lemmas 3.30 and 3.31 to remove superscripts and convert Ǧ to

G, we obtain

Eα[S4,1] = −(t2αs
2
α + ť2αš

2
α)(X4,13 + 2X4,4) +O≺(Ψ5),

Eα[S4,2] = −(λt2αs
2
α + (1− λ)ť2αš

2
α)(X

4,2′1̃2
′ + 2X4,2′3̃) +O≺(Ψ5),

Eα[S4,3] = −1

2
(λtαsα + (1− λ)ťαšα)2(X4,2′2̃′2̃′ + 2X4,2′2̃2̃) +O≺(Ψ5),

Eα[S4,4] = −tαsαťαšα(X4,4′ + 2X4,4) +O≺(Ψ5),

Eα[S4,5] = −(λtαsα + (1− λ)ťαšα)(tαsα + ťαšα)(X4,32̃′ + 2X4,32̃) +O≺(Ψ5).

Then applying Eα to (3.60), noting that the remainder is again O≺(Ψ5) by Lemmas 3.9 and 3.32,
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and substituting into (3.56),

Eα
[
K ′(Xλ)

Giα
tα

Ǧiα
ťα

]
= sαšαEα

[
K ′(Xλ)

1

N

∑

k

GikǦik

]
− tαs2

αšα(Y
(α)
3,12′ + Y

(α)
3,3 )

− ťαš2
αsα(Z(α)

3,12′ + Z(α)
3,3 )− 2λtαs

2
αšαY

(α)

3,22̃
− 2(1− λ)ťαš

2
αsαZ(α)

3,22̃

+ sαšα(t2αs
2
α + ť2αš

2
α)(X4,22′ + 3X4,13 + 6X4,4 + 2X4,4′)

+ sαšα(tαsαťαšα)(X4,22′ + 4X4,13 + 6X4,4 + X4,4′) + sαšα(λtαsα

+ (1− λ)ťαšα)(tαsα + ťαšα)(X4,12′2̃′ + 2X4,122̃ + X4,32̃′ + 2X4,3′2̃ + 6X4,32̃)

+ sαšα(λt2αs
2
α + (1− λ)ť2αš

2
α)(2X4,21̃2 + 2X4,23̃′ + 8X4,23̃)

+
sαšα

2
(λtαsα + (1− λ)ťαšα)2(4X4,22̃2̃′ + 8X4,22̃2̃) +O≺(Ψ5).

(3.61)

Step 4: In (3.61), we remove the superscript (α) from Y3,∗ and Z3,∗, keeping track of the

O≺(Ψ4) errors that arise. For each quantity Y
(α)
3,∗ or Z(α)

3,∗ , let Y3,∗ or Z3,∗ be the analogous quantity

with each instance of m
(α)
N , G(α), G̃(α),X

(α)
λ replaced by mN , G, G̃,Xλ.

For Y
(α)
3,12′ , recall from (3.57)

G
(α)
ik = Gik +R2k +O≺(Ψ3),

and from (3.59)

K ′(X
(α)
λ ) = K ′(Xλ)−K ′′(X(α)

λ )(λV1 + (1− λ)V̌1) +O≺(Ψ2).

For m
(α)
N −m∗, we apply the resolvent identities and write

m
(α)
N −m∗ = mN −m∗ −

1

N

∑

j

G2
jα

Gαα

= mN −m∗ −Gαα
1

N

∑

j,k,l

G
(α)
jk XαkG

(α)
jl Xαl

= mN −m∗ + tαsα
1

N

∑

j,k,l

G
(α)
jk XαkG

(α)
jl Xαl +O≺(Ψ3)

≡ mN −m∗ +Q+O≺(Ψ3),

where Q is the O≺(Ψ2) term. Multiplying the above and averaging over k yields

Y
(α)
3,12′ = Y3,12′ +K ′(X

(α)
λ )(m

(α)
N −m∗)

1

N

∑

k

G
(α)
ik Ř2k

+K ′(X
(α)
λ )(m

(α)
N −m∗)

1

N

∑

k

Ǧ
(α)
ik R2k +K ′(X

(α)
λ )Q

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik

−K ′′(X(α)
λ )(λV1 + (1− λ)V̌1)(m

(α)
N −m∗)

1

N

∑

k

G
(α)
ik Ǧ

(α)
ik +O≺(Ψ5),
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where each term except Y3,12′ on the right is of size O≺(Ψ4). Taking Eα and applying Lemmas 3.30

and 3.31 to remove superscripts and checks,

(3.62)Y
(α)
3,12′ =Eα[Y3,12′ ]+(tαsα+ ťαšα)X4,13 +tαsαX4,4′+(λtαsα+(1−λ)ťαšα)X4,12′2̃′+O≺(Ψ5).

Similar arguments yield

Z(α)
3,12′ = Eα[Z3,12′ ] + (tαsα + ťαšα)X4,13 + ťαšαX4,4′ + (λtαsα + (1− λ)ťαšα)X4,12′2̃′ +O≺(Ψ5),

Y
(α)
3,3 = Eα[Y3,3] + (2tαsα + ťαšα)X4,4 + (λtαsα + (1− λ)ťαšα)X4,32̃′ +O≺(Ψ5),

Z(α)
3,3 = Eα[Z3,3] + (tαsα + 2ťαšα)X4,4 + (λtαsα + (1− λ)ťαšα)X4,32̃′ +O≺(Ψ5),

Y
(α)

3,22̃
= Eα[Y3,22̃] + (tαsα + ťαšα)X4,32̃ + 2tαsαX4,23̃ + (λtαsα + (1− λ)ťαšα)X4,22̃2̃′ +O≺(Ψ5),

Z(α)

3,22̃
= Eα[Z3,22̃] + (tαsα + ťαšα)X4,32̃ + 2ťαšαX4,23̃ + (λtαsα + (1− λ)ťαšα)X4,22̃2̃′ +O≺(Ψ5).

Substituting into (3.61),

Eα
[
K ′(Xλ)

Giα
tα

Ǧiα
ťα

]
= sαšαEα

[
K ′(Xλ)

1

N

∑

k

GikǦik

]
− tαs2

αšαEα[Y3,12′ + Y3,3]

− ťαš2
αsαEα[Z3,12′ + Z3,3]− 2λtαs

2
αšαEα[Y3,22̃]− 2(1− λ)ťαš

2
αsαEα[Z3,22̃]

+ sαšα(t2αs
2
α + tαsαťαšα + ť2αš

2
α)(X4,22′ + 2X4,13 + 4X4,4 + X4,4′)

+ sαšα(λtαsα + (1− λ)ťαšα)(tαsα + ťαšα)(2X4,122̃ + 2X4,3′2̃ + 4X4,32̃)

+ sαšα(λt2αs
2
α + (1− λ)ť2αš

2
α)(2X4,21̃2 + 2X4,23̃′ + 4X4,23̃)

+ 4sαšα(λtαsα + (1− λ)ťαšα)2X4,22̃2̃ +O≺(Ψ5).

(3.63)

Step 5: We take the full expectation of both sides of (3.63), applying Lemma 3.33 to convert

Y3,∗ and Z3,∗ into X3,∗. We illustrate the argument for Z3,12′ :

For k 6= i, denote

Y = K ′(Xλ)(m̌N − m̌∗)Gik, Y (α) = K ′(X
(α)
λ )(m̌

(α)
N − m̌∗)G(α)

ik .

Then Y ≺ Ψ2, and Y − Y (α) ≺ Ψ3 for all α ∈ IM , the latter from Lemma 3.30 and the second-

derivative bound for K. Then applying Lemma 3.33,

E[Y Ǧik] = E[Y Gik] +O≺(Ψ5).

Hence

(3.64)E

[
K ′(Xλ)(m̌N − m̌∗)

1

N

∑

k

Gik(Ǧik −Gik)

]
= O≺(Ψ5),

where the k = i term is controlled directly by Lemma 3.31. Applying this argument again with

Y = K ′(Xλ)G2
ik, together with the bound m̌∗ − m∗ ≤ C/N ≺ Ψ3, we may convert the term



CHAPTER 3. EDGE FLUCTUATIONS UNDER SPHERICITY 82

m̌N − m̌∗:
(3.65)E

[
K ′(Xλ)(m̌N − m̌∗ −mN +m∗)

1

N

∑

k

G2
ik

]
= O≺(Ψ5).

Finally, a Taylor expansion of K ′(x) around X yields

(3.66)K ′(Xλ) = K ′(X) + (1− λ)K ′′(X)(X̌− X) +O≺(Ψ2),

where we have used X̌−X ≺ Ψ by Lemma 3.31. Applying the third implication of Lemma 3.33 with

Y = K ′′(X)(mN −m∗)G2
ik ≺ Ψ3 for k 6= i, we obtain

(3.67)E

[
K ′′(X)(X̌− X)(mN −m∗)

1

N

∑

k

G2
ik

]
= O≺(Ψ5).

Then combining (3.64–3.67), we obtain E[Z3,12′ ] = E[X3,12′ ] +O≺(Ψ5).

The same argument holds for the other terms Y3,∗ and Z3,∗. Then taking the full expectation

of (3.63),

E
[
K ′(Xλ)

Giα
tα

Ǧiα
ťα

]
= sαšαE

[
K ′(Xλ)

1

N

∑

k

GikǦik

]
− (tαs

2
αšα + ťαš

2
αsα)E[X3,12′ + X3,3]

− 2(λtαs
2
αšα + (1− λ)ťαš

2
αsα)E[X3,22̃]

+ sαšα(t2αs
2
α + tαsαťαšα + ť2αš

2
α)E[X4,22′ + 2X4,13 + 4X4,4 + X4,4′ ]

+ sαšα(λtαsα + (1− λ)ťαšα)(tαsα + ťαšα)E[2X4,122̃ + 2X4,3′2̃ + 4X4,32̃]

+ sαšα(λt2αs
2
α + (1− λ)ť2αš

2
α)E[2X4,21̃2 + 2X4,23̃′ + 4X4,23̃]

+ 4sαšα(λtαsα + (1− λ)ťαšα)2E[X4,22̃2̃] +O≺(Ψ5).

(3.68)

Finally, we integrate (3.68) over λ ∈ [0, 1], applying
∫
λ =

∫
(1−λ) = 1/2 and

∫
λ2 =

∫
2λ(1−λ) =∫

(1 − λ)2 = 1/3. Simplifying the result and identifying the terms X3, X4, X−4 , Pα, Qα, and Rα
concludes the proof of the lemma.

3.4.5 Proof of optical theorems

We discuss briefly the proof of Lemma 3.36. In the setting K ′ ≡ 1, Lemma 3.36 corresponds to

[LS16, Lemma B.1] upon taking the imaginary part.

The proof for general K is the same as that of [LS16, Lemma B.1], with additional terms arising

from the Taylor expansion of K ′ as in the proof of Lemma 3.35. The computation may be broken

down into the following intermediate identities:

1

N

(
E[K ′(X)] + 2m−1

∗ E[K ′(X)(mN −m∗)]
)

= 2E[X3]− 2m−1
∗ (z − E∗)E[X2]− (A4 − 2m−1

∗ −m−4
∗ )E[X4] +O≺(Ψ5), (3.69)
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1

N
E[K ′(X)(mN −m∗)]− 2E[X4,22′ + X4,13 + X4,4 + X4,122̃] = O≺(Ψ5), (3.70)

E[2X4,13 + 3X4,4 + X4,4′ + 2X4,32̃] = O≺(Ψ5), (3.71)

(z − E∗)E[X2]− E[X4,22′ + 4X4,4 + X4,4′ + 2X4,3′2̃] = O≺(Ψ5), (3.72)

E[X4,122̃ + 2X4,32̃ + X4,3′2̃ + X4,21̃2 + 2X4,23̃ + X4,23̃′ + 2X4,22̃2̃] = O≺(Ψ5), (3.73)

where

X2 = K ′(X)
1

N

∑

k

G2
ik.

For K ′ ≡ 1, (3.69) reduces to [LS16, (B.29)], (3.70) to [LS16, (B.33)], (3.71) to [LS16, (B.38)], and

a linear combination of (3.71) and (3.72) to [LS16, (B.51)]. The last identity (3.73) is trivial for

K ′ ≡ 1, as the left side is 0. It is analogous to [LS15, Eq. (C.42)] in the full computation for the

deformed Wigner model, and may be derived as an “optical theorem” from X3,22̃ in the same manner

as (3.70) and (3.71). (The derivations of these identities do not require positivity of T or E∗.) We

omit further details and refer the reader to [LS16].

Lemma 3.36 follows from substituting (3.70) and (3.72) into (3.69), adding 4m−1
∗ times (3.71)

and 4m−1
∗ times (3.73), and taking the imaginary part (noting K ′ is real-valued). This concludes

the proof of Lemma 3.25, and hence of Theorem 2.6.



Chapter 4

Outliers in the spiked model

In this chapter, we prove Theorems 2.12–2.14, which describe the behavior of outlier eigenvalues

and eigenvectors of Σ̂ under a spiked model for Σ1, . . . ,Σk. We also prove Theorem 2.17, which

provides theoretical guarantees for Algorithm 1 for estimating spike eigenvalues and eigenvectors in

this setting.

Notation: Throughout, δ > 0 is a fixed constant. C, c > 0 denote δ-dependent constants that may

change from instance to instance. For random (or deterministic) scalars ξ and ζ, we write

ξ ≺ ζ and ξ = O≺(ζ)

if, for any constants ε,D > 0, we have

P[|ξ|> nε|ζ|] < n−D

for all n ≥ n0, where n0 may depend only on δ, ε,D and the constants of Assumptions 2.1 and 2.10.

4.1 Behavior of outliers

The proofs of Theorems 2.12–2.14 will apply a matrix perturbation approach developed in [Pau07].

Without loss of generality, we may rotate coordinates in Rp so that S corresponds to the first L

coordinates. Hence for every r = 1, . . . , k,

Vr =

(
V̊r

0

)

84
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where V̊r ∈ RL×lr . Recalling N = p− L and assuming momentarily that σ2
r > 0, we may write

Σr = σ2
r

(
Γr 0

0 IdN

)
, Γr = IdL +σ−2

r V̊rΘrV̊
′
r . (4.1)

Letting X̊r ∈ Rmr×L and Xr ∈ Rmr×N be independent with i.i.d. N (0, 1/N) entries, and setting

Ξr = X̊rΓ
1/2
r , we may represent αr as

αr =
√
N
(
X̊r Xr

)
Σ1/2
r =

√
Nσr

(
Ξr Xr

)
.

Recalling Frs = NσrσsU
′
rBUs from (2.7), we then have

Σ̂ = Y ′BY =

k∑

r,s=1

α′rU
′
rBUsαs =

k∑

r,s=1

(
Ξ′r

X ′r

)
Frs

(
Ξs Xs

)
=

(
S11 S12

S21 S22

)
, (4.2)

where
(
S11 S12

S21 S22

)
=

(
Ξ′FΞ Ξ′FX

X ′FΞ X ′FX

)
,

(
Ξ X

)
=




Ξ1 X1

...
...

Ξk Xk


 .

Note that σ2
rΓr, σrΞr, and Frs/(σrσs) are well-defined by continuity even when σ2

r = 0 and/or

σ2
s = 0. The above definitions are understood in this sense if σ2

r = 0 for any r.

For any z /∈ spec(X ′FX), the Schur complement of the lower-right block of Σ̂− z Id is

K̂(z) = (S11 − z Id)− S12(S22 − z Id)−1S21 = −Ξ′GM (z)Ξ− z IdL (4.3)

where

GM (z) = FXGN (z)X ′F − F, GN (z) = (X ′FX − z IdN )−1. (4.4)

If λ̂ is an eigenvalue of Σ̂ separated from supp(µ0), then we expect from Theorem 2.5 that λ̂ /∈
spec(X ′FX), so we should have 0 = det K̂(λ̂). Defining the complex spectral domain

Uδ = {z ∈ C : dist(z, supp(µ0)) ≥ δ},

we will show that on Uδ, the matrix K̂(z) is close to the deterministic approximation

K(z) =

k∑

r=1

tr(z)(σ
2
rΓr)− z IdL . (4.5)

Recalling (4.1) and comparing (4.5) with (2.12), we observe that K(z) is the upper L×L submatrix

of −T (z). This will yield Theorems 2.12 and 2.13. Studying further the fluctuations of K̂(z) about
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K(z), we will establish Theorem 2.14.

We show in Section 4.3 that GM (z) and GN (z) are blocks of a linearized resolvent matrix for

X ′FX. Our proof establishes deterministic approximations for linear and quadratic functions of

the entries of GM (z), which we may state as follows: Recall (2.13), and define a deterministic

approximation of GM as

ΠM = −F (Id +m0F )−1 = m0F (Id +m0F )−1F − F.

Define

∆(z) = XGN (z)X ′ −m0(z)(Id +m0(z)F )−1. (4.6)

Then, omitting the spectral argument z for brevity, we have

GM = ΠM + F∆F, tr = (Nσ2
r)−1 Trr(−GM + F∆F ). (4.7)

We prove the following lemmas in Section 4.3.

Lemma 4.1. Fix δ, ε,D > 0. For any z ∈ Uδ and any deterministic matrix V ∈ CM×M ,

P
[
|Tr ∆V |> n−1/2+ε‖V ‖HS

]
< n−D.

Lemma 4.2. Fix δ, ε,D > 0. For any z ∈ Uδ and any deterministic matrices V,W ∈ CM×M ,

P
[
|Tr ∆V∆W −N−1(∂zm0) Tr [V (Id +m0F )−2] Tr [W (Id +m0F )−2]| > n1/2+ε‖V ‖ ‖W‖

]
< n−D.

We will use Lemma 4.1 to approximate linear functions in GM (z), and then use Lemma 4.2 to

approximate quadratic functions in GM (z). Note that if V = wv′ is of rank one, then Lemma 4.1 is

an anisotropic local law of the form established in [KY17] for spectral arguments z separated from

supp(µ0). For general V , the statement above is stronger than that obtained by expressing V as

a sum of rank-one matrices and applying the triangle inequality to the Hilbert-Schmidt norm. We

will require this stronger form for the proof of Theorem 2.14.

We record here also the following basic results regarding supp(µ0) and the Stieltjes transform

m0(z) for spectral arguments z separated from this support, which are restatements of Propositions

A.3 and A.8 in Appendix A.

Proposition 4.3. Suppose Assumption 2.10 holds, and let µ0 be the law defined by Theorem 2.4.

For a constant C > 0, supp(µ0) ⊂ [−C,C].

Proposition 4.4. Suppose Assumption 2.10 holds, and let m0(z) be the Stieltjes transform of the

law µ0. Fix any constant δ > 0. Then for some constant c > 0, all z ∈ Uδ, and each eigenvalue tα



CHAPTER 4. OUTLIERS IN THE SPIKED MODEL 87

of F ,

|1 + tαm0(z)|> c.

4.1.1 First-order behavior

We prove Theorems 2.12 and 2.13. Let us first establish the approximations

sup
z∈Uδ
‖K̂(z)−K(z)‖ ≺ n−1/2, (4.8)

sup
z∈Uδ
‖∂zK̂(z)− ∂zK(z)‖ ≺ n−1/2. (4.9)

Denote by (GM )rs and (ΠM )rs the (r, s) blocks of GM and ΠM . We record a basic lemma which

bounds GM , ΠM , and the derivatives of K and K̂. Quantities such as Frs/(σrσs) are defined by

continuity at σ2
r = 0 and/or σ2

s = 0.

Lemma 4.5. There is a constant C > 0 such that

(a) For all z ∈ Uδ and r, s = 1, . . . , k,

‖Frs/(σrσs)‖/< C, ‖(ΠM )rs/(σrσs)‖< C, ‖K(z) + z Id‖< C, ‖∂zK(z)‖< C.

(b) For any D > 0 and all n ≥ n0(δ,D), with probability at least 1 − n−D, for all z ∈ Uδ and

r, s = 1, . . . , k

‖(GM )rs/(σrσs)‖< C, ‖K̂(z) + z Id‖< C, ‖∂zK̂(z)‖< C, ‖∂2
zK̂(z)‖< C.

Proof. For (a), ‖Frs/(σrσs)‖< C by Assumption 2.1. From Proposition 4.4, we have ‖(Id +m0F )−1‖<
C. Furthermore, |m0(z)|≤ 1/δ for z ∈ Uδ by (2.11). Then, denoting by Pr the projection onto block

r and applying

(ΠM )rs = m0PrF (Id +m0F )−1FPs − Frs,

we obtain

‖(ΠM )rs/(σrσs)‖< C‖PrF/σr‖‖FPs/σs‖+‖Frs/(σrσs)‖< C.

This implies also |tr(z)|< C, which together with ‖σ2
rΓr‖< C yields the bound on K. The bound

for ∂zK follows similarly.

For (b), applying Theorem 2.5 and a standard spectral norm bound for Gaussian matrices, on

an event of probability 1 − n−D we have spec(X ′FX) ⊂ supp(µ0)δ/2, ‖Xr‖< C, and ‖X̊r‖< C

for all r = 1, . . . , k. From the spectral decomposition of GN , on this event, we have ‖GN‖< C,
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‖∂zGN‖< C, and ‖∂2
zGN‖< C for all z ∈ Uδ. Then

‖(GM )rs/(σrσs)‖, ‖∂z(GM )rs/(σrσs)‖, ‖∂2
z (GM )rs/(σrσs)‖< C.

As K̂ = −∑r,s Ξ′rGMΞs − z Id and ‖σrΞr‖< C‖σ2
rΓr‖1/2< C, this yields the bounds on K̂ and its

derivatives.

We recall also the following bound for Gaussian quadratic forms.

Lemma 4.6 (Gaussian quadratic forms). Let x and y be independent vectors of any dimensions,

with i.i.d. N (0, 1/N) entries. Then for any complex deterministic matrices A and B of the corre-

sponding sizes,

x′Ax−N−1 TrA ≺ N−1‖A‖HS, x′By ≺ N−1‖B‖HS.

Proof. The first statement follows from the Hanson-Wright inequality, see e.g. [RV13]. The second

follows from the first applied to (x,y), with A a 2× 2 block matrix having blocks 0, B, B′, 0.

Applying (4.7), we may write K̂(z)−K(z) = E1(z) + E2(z) where

E1(z) = −Ξ′GMΞ +

k∑

r=1

(
N−1 Trr GM

)
Γr, (4.10)

E2(z) = −
k∑

r=1

(
N−1 Trr F∆F

)
Γr. (4.11)

Writing Pr for the projection onto block r, Lemma 4.1 yields

(Nσ2
r)−1 Trr F∆F = (Nσ2

r)−1 Tr ∆FPrF ≺ n−3/2‖FPrF/σ2
r‖HS≺ n−1. (4.12)

Hence ‖E2(z)‖≺ n−1. For E1, we write

Ξ′GMΞ =

k∑

r,s=1

Ξ′r(GM )rsΞs =

k∑

r,s=1

(σ2
rΓr)

1/2X̊ ′r
(GM )rs
σrσs

X̊s(σ
2
sΓs)

1/2.

Recall that the matrices X̊r are independent of each other and of GM . Applying Lemma 4.6 condi-

tional on GM and taking a union bound over the columns of X̊r and X̊s, for all r, s,

∥∥∥∥X̊ ′r
(GM )rs
σrσs

X̊s − 1{r = s}((Nσ2
r)−1 Trr GM ) IdL

∥∥∥∥
∞
≺ n−1‖(GM )rs/(σrσs)‖HS,

where ‖A‖∞= maxi,j |Aij |. As L is at most a constant, this norm is equivalent to the operator norm.

By Lemma 4.5, ‖(GM )rs/(σrσs)‖HS≺ n1/2, so ‖E1(z)‖≺ n−1/2. Then

‖K̂(z)−K(z)‖≺ n−1/2. (4.13)
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Lipschitz continuity allows us to take a union bound over z ∈ Uδ: On the event where the

conclusions of Lemma 4.5 hold, for any z, z′ ∈ Uδ,

‖K̂(z)− K̂(z′)‖< C|z − z′|, ‖K(z)−K(z′)‖< C|z − z′|.

Then, taking a union bound of (4.13) over a grid of values in Uδ ∩ {|z|≤ n1/2} with spacing n−1/2,

we obtain

sup
z∈Uδ: |z|≤n1/2

‖K̂(z)−K(z)‖≺ n−1/2. (4.14)

For |z|> n1/2, we apply a direct argument: By Proposition 4.3 and (2.11), we have |m0(z)|<
Cn−1/2. Then |tr(z)− (Nσ2

r)−1 Trr F |< Cn−1/2. Furthermore, on the high-probability event where

‖X ′FX‖< C and ‖X̊r‖< C for each r = 1, . . . , k, we have ‖GN‖< Cn−1/2, ‖[(GM )rs−Frs]/(σrσs)‖<
Cn−1/2, and ‖σrΞr‖< C. Then, on this event,

sup
|z|>n1/2

‖K̂(z)−K(z)‖≤
∥∥∥∥∥Ξ′FΞ−

k∑

r=1

(N−1 Trr F )Γr

∥∥∥∥∥+ Cn−1/2.

Applying Lemma 4.6 again yields sup|z|>n1/2‖K̂(z)−K(z)‖≺ n−1/2. Combining with (4.14) yields

(4.8). Note that Dij(z) ≡ K̂(z)ij −K(z)ij is analytic over Uδ/2. Letting γ be the circle around z

with radius δ/2, the Cauchy integral formula implies

|∂zDij(z)|≤
1

2π

∫

γ

|Dij(w)|
|z − w|2 dw ≤

4

δ
max
w∈γ
|Dij(w)|.

Then applying (4.8) with δ/2 in place of δ, we obtain also the derivative bound (4.9).

Proof of Theorem 2.12. Let E be the event where

spec(X ′FX) ⊂ supp(µ0)δ/2,

sup
z∈Uδ/2

‖K̂(z)−K(z)‖< n−1/2+ε/2, sup
z∈Uδ/2

‖∂zK̂(z)− ∂zK(z)‖< n−1/2+ε/2,

which holds with probability 1−n−D for all n ≥ n0(δ, ε,D). On E , by the Schur complement identity

det(Σ̂− λ Id) = det(X ′FX − λ Id) det(K̂(λ)),

the eigenvalues of Σ̂ outside supp(µ0)δ/2 are the roots λ̂ ∈ Uδ/2 ∩ R of det(K̂(λ̂)), counting multi-

plicity. As T (z) is block diagonal with upper L × L block equal to −K(z) and lower N ×N block

equal to −m0(z)−1 Id, the elements of Λ0 are the roots λ ∈ R \ supp(µ0) of det(K(λ)), counting

multiplicity.

Let µ̂1(λ) ≤ . . . ≤ µ̂L(λ) be the eigenvalues of K̂(λ), and let µ1(λ) ≤ . . . ≤ µL(λ) be those of
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K(λ). Proposition 2.11 implies that ∂λK(λ) has maximum eigenvalue at most -1, so for any interval

I of R \ supp(µ0), any λ, λ′ ∈ I with λ < λ′, and any ` ∈ {1, . . . , L},

µ`(λ)− µ`(λ′) ≥ λ′ − λ.

On E , for λ ∈ I ∩ Uδ/2, we may bound the largest eigenvalue of ∂λK̂(λ) by −1/2. Then similarly

µ̂`(λ)− µ̂`(λ′) ≥ (λ′ − λ)/2.

For each (λ, `) with λ ∈ I ∩ Uδ and µ`(λ) = 0, we have

µ`(λ− n−1/2+ε) ≥ n−1/2+ε, µ`(λ+ n−1/2+ε) ≤ −n−1/2+ε,

and hence on E
µ̂`(λ− n−1/2+ε) > 0, µ̂`(λ+ n−1/2+ε) < 0.

So there is some λ̂ where µ̂`(λ̂) = 0 and |λ̂−λ|< n−1/2+ε. Conversely, for each (λ̂, `) with λ̂ ∈ I ∩Uδ
and µ̂`(λ̂) = 0, there is some λ with µ`(λ) = 0 and |λ − λ̂|< n−1/2+ε. Taking Λδ and Λ̂δ to be the

roots of det(K(λ)) and det(K̂(λ̂)) corresponding to these pairs (λ, `) and (λ̂, `) for each interval I

of R \ supp(µ0), we obtain Theorem 2.12.

Proof of Theorem 2.13. For the given λ and λ̂, Theorem 2.12 implies λ− λ̂ ≺ n−1/2. Let us write

K̂(λ̂)−K(λ) = (K̂(λ̂)− K̂(λ)) + (K̂(λ)−K(λ)).

The first term on the right has norm O≺(n−1/2), by the bound on ∂λK̂(λ) from Lemma 4.5. The

second term also has norm O≺(n−1/2), by (4.8). Hence

‖K̂(λ̂)−K(λ)‖≺ n−1/2. (4.15)

Similarly,

‖∂λK̂(λ̂)− ∂λK(λ)‖≺ n−1/2. (4.16)

For the given v̂, let us write v̂ = (v̂1, v̂2) where v̂1 consists of the first L coordinates. Then, in

the block decomposition of Σ̂ from (4.2), the equation Σ̂v̂ = λ̂v̂ yields

S11v̂1 + S12v̂2 = λ̂v̂1, S21v̂1 + S22v̂2 = λ̂v̂2.

The second equation yields v̂2 = −(S22 − λ̂ Id)−1S21v̂1. Substituting this into the first yields
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K̂(λ̂)v̂1 = 0, while substituting it into 1 = ‖v̂‖2= ‖v̂1‖2+‖v̂2‖2 yields

1 = v̂′1(Id +S12(S22 − λ̂ Id)−2S21)v̂1 = −v̂′1(∂λK̂(λ̂))v̂1.

Applying (4.16), we obtain

− v̂′1(∂λK(λ))v̂1 = 1 +O≺(n−1/2). (4.17)

In particular, ‖v̂1‖≥ c for a constant c > 0. Hence v̂1/‖v̂1‖ is a well-defined unit vector in ker K̂(λ̂).

For the given v, let us also write v = (v1,v2). As v ∈ S by Proposition 2.11, we have v2 = 0,

‖v1‖= 1, and v1 ∈ kerK(λ). We apply the Davis-Kahan theorem to bound ‖v̂1/‖v̂1‖−v1‖: Let

µ1(λ) ≤ . . . ≤ µL(λ) be the eigenvalues of K(λ), with µ`(λ) = 0. By Proposition 2.11, ∂λK(λ) has

maximum eigenvalue at most -1. Thus, if |µ`′(λ)|< δ for another `′ 6= `, then µ`′(λ − δ) > 0 and

µ`′(λ+ δ) < 0, so µ`′(λ
′) = 0 for some λ′ ∈ (λ− δ, λ+ δ). This contradicts the given condition that

λ is separated from other elements of Λ0 by δ. Hence |µ`′(λ)|≥ δ for all `′ 6= `, so the Davis-Kahan

Theorem and (4.15) imply

‖v̂1 − ‖v̂1‖v1‖ ≺ n−1/2 (4.18)

for an appropriate choice of sign of v1. Substituting into (4.17), −‖v̂1‖2v′1∂λK(λ)v1 = 1 +

O≺(n−1/2). As v′1∂λK(λ)v1 ≤ −1, this yields

‖v̂1‖= (−v′1∂λK(λ)v1)−1/2 +O≺(n−1/2).

Substituting back into (4.18),

‖v̂1 − (−v′1∂λK(λ)v1)−1/2v1‖ = ‖PS v̂ − (v′∂λT (λ)v)−1/2v‖ ≺ n−1/2,

where the equality uses v = (v1, 0), PS v̂ = (v̂1, 0), and that K is the upper-left block of −T . This

proves (a).

For (b), note simply that for any O ∈ RN×N , the rotation X 7→ XO induces the mapping

(v̂1, v̂2) 7→ (v̂1, O
′v̂2). AsX and Σ̂ are invariant in law under such a rotation, v̂2 must be rotationally

invariant in law conditional on v̂1.

4.1.2 Fluctuations of outlier eigenvalues

Next, we prove Theorem 2.14. We establish asymptotic normality using the following elementary

lemma.

Lemma 4.7. Suppose z ∈ Rn has law N (0, V V ′) where V ∈ Rn×m, and let A ∈ Rn×n. If

‖V ′AV ‖/‖V ′AV ‖HS→ 0 as n→∞, then

‖V ′AV ‖−1
HS(z′Az− E[z′Az])→ N (0, 2).
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Proof. Denote the spectral decomposition of V ′AV as O′DO where D = diag(d1, . . . , dm), and let

ξ ∈ Rm have i.i.d. N (0, 1) entries. Then z′Az− E[z′Az] is equal in law to

ξ′Dξ − E[ξ′Dξ] =

m∑

i=1

di(ξ
2
i − 1).

As
m∑

i=1

E
[
d2
i (ξ

2
i − 1)2

]
= 2‖D‖2HS,

m∑

i=1

E
[
|di(ξ2

i − 1)|3
]
≤ C‖D‖2HS·‖D‖,

and ‖D‖/‖D‖HS→ 0, the result follows from the Lyapunov central limit theorem.

Proof of Theorem 2.14. For the given λ and v, we have v = (v1, 0), where v1 ∈ RL and K(λ)v1 = 0.

Furthermore, recall from the proof of Theorem 2.13 that for the given λ̂, there is a unit vector v̂1

where K̂(λ̂)v̂1 = 0 and ‖v̂1−v1‖≺ n−1/2. Lemma 4.5 implies ‖K̂(λ̂)‖< C with probability 1−n−D,

so

v′1K̂(λ̂)v1 = (v̂1 − v1)′K̂(λ̂)(v̂1 − v1) ≺ n−1.

Applying this and v′1K(λ)v1 = 0, we obtain

v′1(K̂(λ̂)− K̂(λ))v1 + v′1(K̂(λ)−K(λ))v1 ≺ n−1. (4.19)

Recall that Theorem 2.12 implies λ − λ̂ ≺ n−1/2. Applying a second-order Taylor expansion for

the first term of (4.19), approximating ∂λK̂(λ) by ∂λK(λ) using (4.9), and bounding ∂2
λK̂(λ) using

Lemma 4.5, we get

v′1(K̂(λ̂)− K̂(λ))v1 = (λ̂− λ)v′1∂λK(λ)v1 +O≺(n−1). (4.20)

For the second term of (4.19), recall K̂(λ)−K(λ) = E1(λ)+E2(λ) with E1 and E2 as in (4.10–4.11).

Recall also from (4.12) that ‖E2(λ)‖≺ n−1. Then (4.19) becomes

(λ̂− λ)v′1∂λK(λ)v1 + v′1E1(λ)v1 ≺ n−1. (4.21)

Observe that Ξ is independent of X, and z = Ξv1 ∈ RM has independent Gaussian entries. The

covariance matrix of z is V V ′ for the diagonal matrix

V = V ′ = N−1/2
k∑

r=1

(v′1Γrv1)1/2Pr.

Then v′1E1(λ)v1 = E[−z′GM (λ)z | X], and we may apply Lemma 4.7 conditional on X: Lemma 4.5

implies, with high probability, ‖(GM )rs/(σrσs)‖< C for each r, s, so ‖V ′GM (λ)V ‖< C/n. On the
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other hand, since v′T (λ)v = 0, we have from (2.15) and (2.11)

∣∣∣∣∣
k∑

r=1

tr(λ)v′1V̊rΘrV̊
′
rv1

∣∣∣∣∣ =

∣∣∣∣
1

m0(λ)

∣∣∣∣ ≥ δ.

Then for some constant c > 0 and some r ∈ {1, . . . , k} we must have

|tr(λ)|> c, |v′1V̊rΘrV̊
′
rv1|> c.

The latter implies v′1(σ2
rΓr)v1 > c. The former implies (Nσ2

r)−1|Trr GM (λ)|> c on an event of

probability 1− n−D, by (4.7) and (4.12). Then ‖(GM )rr/σ
2
r‖HS> c

√
n, and for this r

‖V ′GM (λ)V ‖HS≥ N−1v′1(σ2
rΓr)v1‖(GM )rr/σ

2
r‖HS> cn−1/2. (4.22)

Thus, on this high probability event, we have ‖V ′GM (λ)V ‖/‖V ′GM (λ)V ‖HS< Cn−1/2. Applying

Lemma 4.7 conditional on X and this event,

‖V ′GM (λ)V ‖−1
HS(v′1E1(λ)v1)→ N (0, 2).

As the limit does not depend on X, this convergence holds unconditionally as well. Then, applying

this, v′1∂λK(λ)v1 = −v′∂λT (λ)v, and (4.22) to (4.21), we have

(v′∂λT (λ)v)√
2‖V ′GM (λ)V ‖HS

(λ̂− λ)→ N (0, 1). (4.23)

Finally, let us approximate ‖V ′GM (λ)V ‖HS: We have

‖V ′GMV ‖2HS= TrGMV V
′GMV V

′ =

k∑

r,s=1

N−2(v′1Γrv1)(v′1Γsv1) TrGMPrGMPs.

We apply GM = ΠM + F∆F from (4.7) and expand the above. Note that Lemma 4.1 implies

Tr ΠMPrF∆FPs
σ2
rσ

2
s

≺ n−1/2 ‖FPsΠMPrF‖HS

σ2
rσ

2
s

≺ ‖FPs/σs‖·‖(ΠM )sr/(σsσr)‖·‖PrF/σr‖≺ 1,

so the cross terms of the expansion are negligible, and we have

TrGMPrGMPs
σ2
rσ

2
s

=
Tr ΠMPrΠMPs

σ2
rσ

2
s

+
TrF∆FPrF∆FPs

σ2
rσ

2
s

+O≺(1).

The first term on the right may be written as Tr(PsΠMPr)(PrΠMPs)/(σ
2
rσ

2
s) = ‖ΠM/(σrσs)‖2rs.
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For the second term, applying Lemma 4.2,

Tr ∆FPrF∆FPsF

σ2
rσ

2
s

= (Nσ2
rσ

2
s)−1(∂λm0) Trr [F (Id +m0F )−2F ] Trs [F (Id +m0F )−2F ] +O≺(n1/2)

= N(∂λtr)(∂λts)(∂λm0)−1 +O≺(n1/2).

Then, recalling wrs from (2.16) and applying v′1(σ2
rΓr)v1 = v′Σrv by (4.1), we obtain

‖V ′GMV ‖2HS = N−1
k∑

r,s=1

wrs(λ)(v′Σrv)(v′Σsv) + (N∂λm0)−1

(
k∑

r=1

(∂λtr)v
′Σrv

)2

+O≺(n−3/2)

= N−1
k∑

r,s=1

wrs(λ)(v′Σrv)(v′Σsv) + (N∂λm0)−1(v′∂λTv − 1)2 +O≺(n−3/2),

where the second line applies (2.12). By (4.22), the O≺(n−3/2) error above is negligible. Then

Theorem 2.14 follows from this and (4.23).

4.2 Guarantees for spike estimation

In this section, we establish Theorem 2.17. For notational convenience, we assume r = 1. Part (c)

of Theorem 2.17 follows immediately from the observation that Algorithm 1 uses only the eigenval-

ues/eigenvectors of Σ̂(a), so each estimated eigenvector v̂ is equivariant under orthogonal rotations

on S⊥.

For parts (a) and (b), we may decompose their content into the following three claims.

1. With probability at least 1 − n−D, for each (µ̂, v̂) ∈ M, there exists a spike eigenvalue and

eigenvector (µ,v) of Σ1 and a scalar α ∈ (0, 1] such that |µ̂− µ|< n−1/2+ε and ‖PS v̂ − αv‖<
n−1/2+ε.

2. For each spike eigenvalue µ of Σ1 and a sufficiently small constant ε > 0, with probability at

least 1− n−D, there is at most one pair (µ̂, v̂) ∈M where |µ̂− µ|< ε.

3. For a constant c0 > 0 independent of C̄ in Assumption 2.1, and for each spike eigenvalue

µ of Σ1 with µ > c0, with probability at least 1 − n−D, there exists (µ̂, v̂) ∈ M such that

|µ̂− µ|< n−1/2+ε.

The first claim will be straightforward to show from the preceding probabilistic results. The

second and third claims require a certain injectivity and surjectivity property of the map (λ̂,a) 7→
(t1(λ̂,a), . . . , tk(λ̂,a)) for a ∈ Sk−1 and λ̂ ∈ spec(Σ̂(a)). For this, we will use Assumption 2.16.

Denote by m0(λ,a), T (λ,a), etc. these functions defined for B = B(a) = a1B1 + . . .+ akBk. We

record the following basic bounds.
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Lemma 4.8. There is a constant C > 0 such that

(a) For all a ∈ Sk−1, λ ∈ R \ supp(µ0(a))δ, and r = 1, . . . , k,

|m0(λ,a)|< C, |∂λm0(λ,a)|< C, |∂2
λm0(λ,a)|< C, |m0(λ,a)|−1< C(|λ|∨1),

‖∂am0(λ,a)‖< C, ‖∂λ∂am0(λ,a)‖< C, ‖∂2
am0(λ,a)‖< C,

|tr(λ,a)|< C, |∂λtr(λ,a)|< C, |∂2
λtr(λ,a)|< C,

‖∂atr(λ,a)‖< C, ‖∂λ∂atr(λ,a)‖< C, ‖∂2
atr(λ,a)‖< C.

(b) For all a ∈ Sk−1, the roots λ of 0 = detT (λ,a) are contained in [−C,C].

(c) For any D > 0 and all n ≥ n0(δ,D), with probability at least 1− n−D,

sup
a∈Sk−1

‖Σ̂(a)‖< C, sup
a∈Rk

k
sup
r=1
‖∂ar Σ̂(a)‖< C.

Proof. For (a), the upper bounds on m0, ∂λm0, and ∂2
λm0 follow from (2.11) and the condition

|x − λ|≥ δ for all x ∈ supp(µ0(a))δ. The upper bound on m−1
0 follows from (2.8) and the bounds

‖F (a)‖< C and ‖(Id +m0F (a))−1‖< C, the latter holding by Proposition 4.4. For the derivatives

in a, fix r and denote m0 = m0(λ,a), F = F (a), and ∂ = ∂ar . We have

∂
(
F (Id +m0F )−1

)
= (∂F )(Id +m0F )−1 − F (Id +m0F )−1

(
(∂m0)F +m0(∂F )

)
(Id +m0F )−1

= (Id +m0F )−1(∂F )(Id +m0F )−1 − (∂m0)F 2(Id +m0F )−2. (4.24)

Then, differentiating (2.8) with respect to ar and also with respect to z = λ, we obtain the equations

0 = (∂m0)(m−2
0 −N−1 Tr[F 2(Id +m0F )−2]) +N−1 Tr[(∂F )(Id +m0F )−2],

1 = (∂λm0)(m−2
0 −N−1 Tr[F 2(Id +m0F )−2]).

Applying the second equation to the first,

∂m0 = −(∂λm0)N−1 Tr[(∂F )(Id +m0F )−2]. (4.25)

The bound ‖∂am0‖< C then follows from |∂λm0|< C, ‖Fr‖< C, and ‖(Id +m0F )−1‖< C. The

bounds ‖∂λ∂am0‖< C and ‖∂2
am0‖< C follow from the chain rule. For tr(λ,a), recall from (4.7)

that

−tr = (Nσ2
r)−1 Trr ΠM = (Nσ2

r)−1 Trr(m0F (Id +m0F )−1F − F ).

The bound |tr|< C then follows from ‖PrFPr‖< Cσ2
r and ‖PrF‖< Cσr, where Pr is the projection
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onto block r. The bounds on the derivatives of tr follow from the chain rule and those on m0.

Part (a) implies ‖T (λ,a)‖< C for all λ ∈ R \ supp(µ0(a))δ. As Proposition 2.11(c) shows

∂λT (λ,a) has smallest eigenvalue at least 1, T (λ,a) must be non-singular for all λ outside [−C,C]

for some C > 0, implying part (b). Finally, part (c) follows from Σ̂(a) =
∑
r arY

′BrY and the

observation that ‖Y ′BrY ‖< C for all r = 1, . . . , k with probability 1− n−D.

Next, we verify that for the conclusions of Theorems 2.12 and 2.13(a), we may take a union

bound over a ∈ Sk−1.

Lemma 4.9. Under the conditions of Theorem 2.17, for all n ≥ n0(δ, ε,D), with probability 1−n−D
the conclusions of Theorems 2.12 and 2.13(a) hold simultaneously for all a ∈ Sk−1.

Proof. Consider a covering net N ⊂ Sk−1 with |N |≤ nC for some C = C(k) > 0, such that for all

a ∈ Sk−1 there exists a0 ∈ N where ‖a0 − a‖< n−1/2. With probability 1 − n−D, the conclusions

of Theorems 2.12 and 2.13 hold with constants δ/2 and ε/2 simultaneously over a0 ∈ N by a union

bound. Furthermore, by Lemma 4.8, with probability at least 1 − n−D we have ‖Σ̂(a) − Σ̂(a0)‖<
Cn−1/2 for all a ∈ Sk−1, where a0 is the closest point to a in N . Note that by Theorem 2.5, this

implies also supp(µ0(a)) ⊆ supp(µ0(a0))δ/4 and supp(µ0(a0)) ⊆ supp(µ0(a))δ/4 for all large n.

On the above event, consider any a ∈ Sk−1 and nearest point a0 ∈ N . Let Λδ/2(a0) and Λ̂δ/2(a0)

be the sets guaranteed by Theorem 2.12 at a0, so

ordered-dist(Λδ/2(a0), Λ̂δ/2(a0)) < n−1/2+ε/2.

The condition ‖Σ̂(a)− Σ̂(a0)‖< Cn−1/2 implies there is Λ̂δ(a) ⊂ spec(Σ̂(a)) such that

ordered-dist(Λ̂δ(a), Λ̂δ/2(a0)) < Cn−1/2.

Since Λ̂δ/2(a0) contains all eigenvalues of Σ̂(a0) outside supp(µ0(a0))δ/2, we have that Λ̂δ(a) contains

all eigenvalues of Σ̂(a) outside supp(µ0(a))δ. On the other hand, Λδ/2(a0) is a subset of roots of 0 =

det(K(λ,a0)), where K(λ,a0) is defined by (4.5) at B = B(a0). Letting µ1(λ,a0) ≤ . . . ≤ µL(λ,a0)

denote the eigenvalues of K(λ,a0), the multiset Λ0(a0) is in 1-to-1 correspondence with pairs (`, λ0)

where µ`(λ0,a0) = 0. For each such (`, λ0), Lemma 4.8 implies ‖K(λ0,a) −K(λ0,a0)‖< Cn−1/2,

so |µ`(λ0,a)|< Cn−1/2. As −K is the upper L × L submatrix of T , Proposition 2.11(c) implies µ`

decreases in λ at a rate of at least 1, so µ`(λ,a) = 0 for some λ with |λ− λ0|< Cn−1/2. Thus there

exists Λδ(a) ⊆ Λ0(a) where

ordered-dist(Λδ(a),Λδ/2(a0)) < Cn−1/2,

and similarly Λδ(a) contains all elements of Λ0(a) outside supp(µ0(a))δ. Then

ordered-dist(Λδ(a), Λ̂δ(a)) < 2Cn−1/2 + n−1/2+ε/2 < n−1/2+ε,
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so the conclusion of Theorem 2.12 holds at each a ∈ Sk−1.

For Theorem 2.13(a), let λ ∈ Λ0(a) be separated from other elements of Λ0(a) by δ. Then

Proposition 2.11(c) implies 0 is separated from other eigenvalues of T (λ,a) by δ. Letting λ0 ∈ Λ0(a0)

be such that |λ0−λ|< Cn−1/2, as identified above, Lemma 4.8 implies ‖T (λ0,a0)−T (λ,a)‖< Cn−1/2.

Thus if v and v0 are the null unit eigenvectors of T (λ,a) and T (λ0,a0), then ‖v − v0‖< Cn−1/2

for an appropriate choice of sign. Similarly, if λ̂ ∈ spec(Σ̂(a)) and λ̂0 ∈ spec(Σ̂(a0)) are such that

|λ̂ − λ|< n−1/2+ε and |λ̂0 − λ0|< n−1/2+ε, then λ̂ is separated from other eigenvalues of Σ̂(a) by

δ−Cn−1/2+ε, and the bound ‖Σ̂(a)− Σ̂(a0)‖< Cn−1/2 implies that the corresponding eigenvectors

v̂ and v̂0 satisfy ‖v̂− v̂0‖< Cn−1/2. Lemma 4.8 finally implies ‖∂λT (λ,a)−∂λT (λ0,a0)‖< Cn−1/2,

so the conclusion of Theorem 2.13(a) at a follows from that at a0.

We may now establish the first of the above three claims for Theorem 2.17.

Proof of Claim 1. Consider the event of probability 1− n−D on which the conclusions of Theorems

2.12(a) and 2.13 hold simultaneously over a ∈ Sk−1.

For each (µ̂, v̂) ∈ M, there are a ∈ Sk−1 and λ̂ ∈ spec(Σ̂(a)) ∩ Iδ(a) with µ̂ = λ̂/t1(λ̂,a)

and t2(λ̂,a) = . . . = tk(λ̂,a) = 0. On the above event, for each such (λ̂,a), there exists λ with

|λ̂− λ|< n−1/2+ε and 0 = detT (λ,a). Then Lemma 4.8 implies

‖T (λ̂,a)− T (λ,a)‖< Cn−1/2+ε. (4.26)

An eigenvalue of T (λ,a) is 0, so an eigenvalue of T (λ̂,a) has magnitude at most Cn−1/2+ε. From

the two equivalent forms (2.12) and (2.15) of T and the condition t2(λ̂,a) = . . . = tk(λ̂,a) = 0,

T (λ̂,a) = λ̂ Id−t1(λ̂,a)Σ1 = − 1

m0(λ̂,a)
Id−t1(λ̂,a)V ′1Θ1V1. (4.27)

Since |m0(λ,a)|< C, the second form above implies that the O(n−1/2+ε) eigenvalue of T (λ̂,a) must

be λ̂− t1(λ̂,a)µ = −1/m0(λ̂,a)− t1(λ̂,a)θ for a spike eigenvalue µ = θ+σ2
1 of Σ1. As θ is bounded,

the condition |−1/m0(λ̂,a) − t1(λ̂,a)θ|< Cn−1/2+ε implies in particular that |t1(λ̂,a)|> c for a

constant c > 0. Then dividing |λ̂ − t1(λ̂,a)µ|< Cn−1/2+ε by t1(λ̂,a), |µ̂ − µ|< Cn−1/2+ε for a

different constant C > 0. Furthermore, on the above event, ‖PS v̂ − αw‖< n−1/2+ε for the null

vector w of T (λ,a) and for α = (w′∂λT (λ,a)w)−1/2. By the second form in (4.27), the separation

of values of Θ1 by τ , and the above lower bound on t1(λ̂,a), the null eigenvalue of T (λ,a) is separated

from other eigenvalues by a constant c > 0. Then (4.26) implies ‖w−v‖< Cn−1/2+ε where v is the

(appropriately signed) eigenvector of T (λ̂,a) corresponding to the eigenvalue λ̂− t1(λ̂,a)µ. This is

exactly the eigenvector of Σ1 corresponding to µ, and thus ‖PS v̂ − αv‖< Cn−1/2+ε.

For the remaining two claims, let us first sketch the argument at a high level: Suppose µ is a
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spike eigenvalue of Σ1, and a0 ∈ Sk−1 and λ̂0 ∈ spec(Σ̂(a0)) are such that

λ̂0/t1(λ̂0,a0) ≈ µ, tr(λ̂0,a0) ≈ 0 for all r = 2, . . . , k.

We will show that under Assumption 2.16, this holds for some (λ̂0,a0) whenever µ is sufficiently

large. The separation of µ from other eigenvalues of Σ1 will imply that λ̂0 is separated from other

eigenvalues of Σ̂(a0). Then for all a ∈ Sk−1 in a neighborhood of a0, we may identify an eigenvalue

λ̂(a) of Σ̂(a) such that λ̂(a0) = λ̂0 and λ̂(a) varies analytically in a. Applying a version of the

inverse function theorem, we will show that the mapping

a 7→ (t2(λ̂(a),a), . . . , tk(λ̂(a),a))

is injective in this neighborhood of a0, and its image contains 0. This local injectivity, together with

Assumption 2.16, will imply Claim 2. The image containing 0 will imply Claim 3.

We use the following quantitative version of the inverse function theorem to carry out this

argument.

Lemma 4.10. Fix constants C, c0, c1,m > 0. Let x0 ∈ Rm, let U = {x ∈ Rm : ‖x− x0‖< c0}, and

let f : U → Rm be twice continuously differentiable. Denote by df ∈ Rm×m the derivative of f , and

suppose for all v ∈ Rm, i, j, k ∈ {1, . . . ,m}, and x ∈ U that

‖(df(x0))v‖≥ c1‖v‖, |∂xi∂xjfk(x)|< C.

Then there are constants ε0, ε1, c > 0 such that f is injective on U0 = {x ∈ Rm : ‖x − x0‖< ε0},
‖f(x1) − f(x2)‖≥ c‖x1 − x2‖ for all x1,x2 ∈ U0, and the image f(U0) contains {y ∈ Rm : ‖y −
f(x0)‖< ε1}.

Proof. Assume without loss of generality x0 = 0 and f(x0) = 0. By Taylor’s theorem and the given

second derivative bound, for all x ∈ U and a constant C > 0, ‖df(x) − df(0)‖≤ C‖x‖. Then for

sufficiently small ε0 > 0, all x ∈ U0 = {x ∈ Rm : ‖x‖< ε0}, and all v ∈ Rm,

‖(df(x))v‖≥ ‖(df(0))v‖−C‖x‖‖v‖≥ (c1 − Cε0)‖v‖≥ (c1/2)‖v‖.

Furthermore, for all x1,x2 ∈ U ,

‖f(x2)− f(x1)− (df(x1))(x2 − x1)‖≤ C‖x2 − x1‖2.

Then for sufficiently small ε0 > 0 and all x1,x2 ∈ U0,

‖f(x2)− f(x1)‖≥ (c1/2)‖x2 − x1‖−C‖x2 − x1‖2≥ c‖x2 − x1‖ (4.28)
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for a constant c > 0. In particular, f is injective on U0.

To prove the surjectivity claim, let K = {x ∈ Rm : ‖x‖≤ ε0/2} ⊂ U0. For a sufficiently small

constant ε1 > 0, the above applied with x2 = x on the boundary of K and x1 = 0 implies

‖f(x)‖> 2ε1 for all x on the boundary of K.

Fix any y ∈ Rm with ‖y‖< ε1, and define h(x) = ‖f(x)− y‖2 over x ∈ K. As K is compact, there

is x∗ ∈ K that minimizes h. Since h(0) = ‖y‖2< ε2
1 while h(x) > ε2

1 for x on the boundary of K by

the above, x∗ is in the interior of K. Then

0 = dh(x∗) = 2(f(x∗)− y)′(df(x∗)).

Since df(x∗) is invertible by (4.28), this implies f(x∗) = y. So f(U0) contains any such y.

We now make the above proof sketch for Claims 2 and 3 precise.

Lemma 4.11. Let µ = θ + σ2
1 be the `th largest spike eigenvalue of Σ1. Define

t+(λ,a) = (t2(λ,a), . . . , tk(λ,a)).

Then there exist constants c, ε0, ε1 > 0 such that for any D > 0 and all n ≥ n0(δ,D), under the

conditions of Theorem 2.17, the following holds with probability at least 1−n−D: For all a0 ∈ Sk−1,

if there exists λ̂0 ∈ spec(Σ̂(a0)) ∩ Iδ(a0) which satisfies

∣∣∣∣∣−
1

m0(λ̂0,a0)
− t1(λ̂0,a0) θ

∣∣∣∣∣ < ε1, ‖t+(λ̂0,a0)‖< ε1, (4.29)

then:

• λ̂0 is the `th largest eigenvalue of Σ̂(a0).

• The `th largest eigenvalue λ̂(a) of Σ̂(a) is simple over O = {a ∈ Rk : ‖a− a0‖< ε0}.

• The map f̂(a) = t+(λ̂(a),a) is injective on U = O ∩ Sk−1 and satisfies ‖f̂(a1) − f̂(a2)‖≥
c‖a1 − a2‖ for all a1,a2 ∈ U . Furthermore, its image f̂(U) contains {t ∈ Rk−1 : ‖t‖< ε1}.

Proof. Throughout the proof, we use the convention that constants C, c > 0 do not depend on ε0, ε1.

Let N ⊂ Sk−1 be a covering net with |N |≤ nC , such that for each a ∈ Sk−1 there is a0 ∈ N with

‖a− a0‖< n−1/2. It suffices to establish the result for each fixed a0 ∈ N with probability 1− n−D.

The result then holds simultaneously for all a0 ∈ Sk−1 by a union bound over N and the Lipschitz

continuity of m−1
0 , t1, and t+ as established in Lemma 4.8.

Thus, let us fix a0 ∈ N . Consider the good event where the conclusion of Theorem 2.12 holds for

B = B(a0), and also ‖Σ̂(a)− Σ̂(a0)‖≤ C‖a−a0‖ and ‖∂ar Σ̂(a)‖< C for all r = 1, . . . , k and a ∈ Rk.



CHAPTER 4. OUTLIERS IN THE SPIKED MODEL 100

Consider m0, tr, T defined at a0, and (for notational convenience) suppress their dependence on a0.

On this good event, for each λ̂0 satisfying (4.29), there exists λ0 with |λ0 − λ̂0|< n−1/2+ε and 0 =

detT (λ0). Lemma 4.8 implies |m0(λ0)−1 −m0(λ̂0)−1|< Cn−1/2+ε and |tr(λ0)− tr(λ̂0)|< Cn−1/2+ε

for each r. Then (2.15), (4.29), and the condition θ ≥ τ in Theorem 2.17 imply

‖T (λ0) +m0(λ0)−1(Id−θ−1V1Θ1V
′
1)‖< Cε1. (4.30)

Since λ0 ∈ Iδ(a0) is greater than supp(µ0), we have m0(λ0) < 0 by (2.11). As θ is the `th

largest value of Θ1, this implies the `th smallest eigenvalue of −m0(λ0)−1(Id−θ−1V1Θ1V1) is 0.

Then, denoting by µ1(λ) ≤ . . . ≤ µp(λ) the eigenvalues of T (λ), (4.30) yields |µ`(λ0)|< Cε1. The

separation of values of Θ1 by τ further implies µ`−1(λ0) < −|m0(λ0)θ|−1τ + Cε1 and µ`+1(λ0) >

|m0(λ0)θ|−1τ − Cε1. As θ < C and |m0(λ0)|< C, for sufficiently small ε1 this yields

µ`+1(λ0) > c, µ`−1(λ0) < −c, µ`(λ0) = 0

for a constant c > 0, where the third statement must hold because 0 = detT (λ0). For each

j = 1, . . . , p and all λ < λ′ in Iδ(a0), note that

λ′ − λ ≤ µj(λ′)− µj(λ) < C(λ′ − λ),

where the lower bound follows from Proposition 2.11(c) and the upper bound follows from ‖∂λT (λ)‖<
C. Then λ0 is separated from all other roots of 0 = detT (λ) by a constant c > 0. Furthermore,

there are exactly `−1 roots of 0 = detT (λ) which are greater than λ0, one corresponding to each µj

for j = 1, . . . , `− 1. Then on the above good event, there can only be one such λ̂0 satisfying (4.29),

which is the `th largest eigenvalue of Σ̂(a0). Furthermore, it is separated from all other eigenvalues

of Σ̂(a0) by a constant c > 0, and for a sufficiently small constant ε0 > 0, the `th largest eigenvalue

λ̂(a) is simple and analytic on O = {a ∈ Rk : ‖a− a0‖< ε0}. This verifies the first two statements.

To verify the third statement, consider a chart (V, ϕ) where V = {v ∈ Rk−1 : ‖v‖< ε0},
ϕ : V → U is a smooth, bijective map with bounded first- and second-order derivatives, ϕ(0) = a0,

and ‖ϕ(v1)−ϕ(v2)‖≥ ‖v1 − v2‖/2 for all v1,v2 ∈ V . We apply Lemma 4.10 to the map ĝ = f̂ ◦ϕ.

To verify the second-derivative bounds for ĝ, note that for a ∈ O, letting v̂(a) be the unit eigenvector

where Σ̂(a)v̂(a) = λ̂(a)v̂(a), we have

∂ar λ̂(a) = v̂(a)′(∂ar Σ̂(a))v̂(a), (4.31)

∂ar∂as λ̂(a) = (∂as v̂(a))′(∂ar Σ̂(a))v̂(a) + v̂(a)′(∂ar Σ̂(a))(∂as v̂(a))

= 2v̂(a)′(∂ar Σ̂(a))(λ̂(a) Id−Σ̂(a))†(∂asΣ̂(a))v̂(a),

where (λ̂(a) Id−Σ̂(a))† is the Moore-Penrose pseudo-inverse. Since λ̂(a) is separated from other
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eigenvalues of Σ̂(a) by a constant, ‖(λ̂(a) Id−Σ̂(a))†‖< C. Then Lemma 4.8 and the chain rule imply

that on the above good event, ĝ has all second-order derivatives bounded on V . It remains to check

the condition ‖(dĝ(0))v‖≥ c‖v‖ for a constant c > 0 and all v ∈ Rk−1. Since dĝ(0) = df̂(a0) ·dϕ(0),

and dϕ(0)v is orthogonal to a0 with ‖dϕ(0)v‖≥ ‖v‖/2, we must check

‖(df̂(a0))w‖≥ c‖w‖ (4.32)

for a constant c > 0 and all w orthogonal to a0, where df̂ is the derivative of f̂ : O → Rk−1.

For this, let λ0 = λ̂0 + O(n−1/2+ε) be the root of 0 = detT (λ,a0), and let v0 ∈ kerT (λ0,a0).

As λ0 is a simple root, the implicit function theorem implies we may define λ(a) analytically on a

neighborhood of a0 such that λ(a0) = λ0 and 0 = detT (λ(a),a). As T (λ(a),a) is analytic in a and 0

is a simple eigenvalue of this matrix at a0, we may also define the null eigenvector v(a) analytically

on a neighborhood of a0, so that v(a0) = v0, T (λ(a),a)v(a) = 0, and ‖v(a)‖2= 1. We show in

Lemma 4.12 below that on an event of probability 1− n−D, we have

‖dλ(a0)− dλ̂(a0)‖< n−1/2+ε. (4.33)

Assuming (4.33) holds, let us first show that the analogue of (4.32) holds for the function

f(a) = t+(λ(a),a).

Denote m(a) = m0(λ(a),a), b(a) = m(a)a, and s+(b) = (s2(b), . . . , sk(b)) where s is as in (2.20).

Then m(a)f(a) = s+(b(a)). Denote b0 = b(a0) and differentiate this with respect to a at a0 to get

f(a0)(dm(a0))′ +m(a0)df(a0) = ds+(b0)db(a0).

Hence for any w ∈ Rk,

df(a0)w =
1

m(a0)

(
ds+(b0)db(a0)w − f(a0)(dm(a0))′w

)
.

Applying ‖f(a0)‖= ‖t+(λ0,a0)‖< ε1 from (4.29), and ‖dm(a0)‖< C and c < |m(a0)|< C from the

chain rule, (4.33), (4.31), and Lemma 4.8, we have

‖df(a0)w‖≥ c‖ds+(b0)db(a0)w‖−Cε1‖w‖. (4.34)

To bound the first term on the right, recall (2.15) and multiply the condition 0 = v(a)′T (λ(a),a)v(a)

by m(a) to get

0 = v(a)′

(
− Id +

k∑

r=1

sr(b(a))VrΘrV
′
r

)
v(a).
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Differentiate this with respect to a at a0, and set yr = v′0VrΘrV
′
rv0 and y = (y1, . . . , yk), to get

0 =

k∑

r=1

dsr(b0)db(a0) · v′0VrΘrV
′
rv0 = y′ds(b0)db(a0).

For any w ∈ Rk, letting y+ = (y2, . . . , yk), this yields

‖y+‖·‖ds+(b0)db(a0)w‖ ≥ |y′+ds+(b0)db(a0)w|
= |y1ds1(b0)db(a0)w|
≥ |y1|·‖ds(b0)db(a0)w‖−|y1|·‖ds+(b0)db(a0)w‖.

So

‖ds+(b0)db(a0)w‖≥ |y1|·‖ds(b0)db(a0)w‖
|y1|+‖y+‖

. (4.35)

Note that |y1|+‖y+‖< C. Applying v′0T (λ0,a0)v0 = 0 to (4.30), we have also |y1 − θ|< Cε1,

so |y1|> θ − Cε1 > c for sufficiently small ε1 > 0. Finally, recall b(a) = m(a)a, so db(a0) =

m(a0) Id +a0(dm(a0))′. If w is orthogonal to a0, then

‖db(a0)w‖= ‖m(a0)w + a0(dm(a0))′w‖≥ ‖m(a0)w‖≥ c‖w‖.

As ‖b0‖< C, Assumption 2.16 implies ‖ds(b0)v‖≥ c‖v‖ for any v ∈ Rk, so combining these

observations with (4.35) and (4.34) yields finally ‖(df(a0))w‖≥ c‖w‖ for w orthogonal to a0.

To conclude the proof, recall f(a) = t+(λ(a),a) while f̂(a) = t+(λ̂(a),a). Applying (4.33),

Lemma 4.8, and the chain rule, we obtain ‖df(a0)− df̂(a0)‖< Cn−1/2+ε. Hence (4.32) holds, and

we may apply Lemma 4.10 to the function ĝ = f̂ ◦ ϕ. This shows, for some constants c, ε̃0, ε̃1 > 0,

that f̂ is injective on Ũ = {a ∈ Sk−1 : ‖a− a0‖< ε̃0}, f̂(Ũ) contains {t ∈ Rk−1 : ‖t− f̂(a0)‖< ε̃1},
and ‖f̂(a1)− f̂(a2)‖≥ c‖a1− a2‖ for a1,a2 ∈ Ũ . Observe that if ‖t‖< ε1, then ‖t− f̂(a0)‖< 2ε1 by

(4.29). Reducing ε0 and ε1 to ε̃0 and ε̃1/2 concludes the proof.

Lemma 4.12. Let a0 ∈ Sk−1, let U ⊂ Rk be a neighborhood of a0, and let λ(a) and λ̂(a) be

analytic functions on U such that 0 = detT (λ(a),a) and λ̂(a) ∈ spec(Σ̂(a)) for each a ∈ U . Suppose

λ(a0)− λ̂(a0) ≺ n−1/2, and λ(a0) is separated from all other roots of 0 = detT (λ,a0) by a constant

c > 0. Then

‖dλ(a0)− dλ̂(a0)‖≺ n−1/2.

Proof. Let λ0 = λ(a0) and λ̂0 = λ̂(a0). Denote by K̂(λ,a) and K(λ,a) the functions (4.3) and (4.5)

for F = F (a). Let us first establish, for each r = 1, . . . , k,

‖∂arK(λ0,a0)− ∂arK̂(λ0,a0)‖≺ n−1/2. (4.36)
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The proof is similar to that of (4.8), and we will be brief. For notational convenience, we omit all

arguments (λ0,a0) and denote ∂ = ∂ar . Recalling GM from (4.4),

∂GM = (∂F )XGNX
′F + FX(∂GN )X ′F + FXGNX

′(∂F )− ∂F
= (∂F )XGNX

′F − FXGNX ′(∂F )XGNX
′F + FXGNX

′(∂F )− ∂F
= −(FXGNX

′ − Id)(∂F )(XGNX
′F − Id). (4.37)

Denoting by (∂GM )rs the (r, s) block, (4.37) and Lemma 4.5 imply ‖(∂GM )rs/(σrσs)‖HS≺ n1/2, so

Lemma 4.6 applied conditionally on X yields

∥∥∥∥∥∂K̂ +

k∑

r=1

(
N−1 Trr(∂GM )

)
Γr

∥∥∥∥∥ ≺ n
−1/2. (4.38)

Now recall XGNX
′ = ∆ +m0(Id +m0F )−1 from (4.6), so XGNX

′F − Id = ∆F − (Id +m0F )−1.

Substituting this into (4.37) and applying Lemmas 4.1 and 4.2, we obtain after some simplification

σ−2
r Trr(∂GM ) = −σ−2

r Trr [(Id +m0F )−1(∂F )(Id +m0F )−1]

−N−1(∂λm0) Tr [(∂F )(Id +m0F )−1]σ−2
r Trr [F 2(Id +m0F )−2] +O≺(n1/2).

Applying (4.24) and (4.25),

(Nσ2
r)−1 Trr(∂GM ) = −(Nσ2

r)−1 Trr

[
∂
(
F (Id +m0F )−1

)]
+O≺(n−1/2) = −∂tr +O≺(n−1/2).

Applying this to (4.38) and recalling the definition (4.5) of K, we obtain (4.36) as desired.

Note that (4.8), (4.9), λ0 − λ̂0 ≺ n−1/2, and Lemma 4.5 imply

‖K(λ0,a0)− K̂(λ̂0,a0)‖≺ n−1/2, (4.39)

‖∂λK(λ0,a0)− ∂λK̂(λ̂0,a0)‖≺ n−1/2. (4.40)

From (4.38), we verify that on the high-probability event where spec(X ′F (a0)X) ⊂ supp(µ0(a0))δ/2,

‖Xr‖< C, and ‖X̊r‖< C for all r = 1, . . . , k, we have

sup
λ∈R\supp(µ0(a0))δ

‖∂arK̂(λ,a0)‖< C, sup
λ∈R\supp(µ0(a0))δ

‖∂λ∂arK̂(λ,a0)‖< C.

Then this and (4.36) yield similarly

‖∂arK(λ0,a0)− ∂arK̂(λ̂0,a0)‖≺ n−1/2. (4.41)

Let µ1(λ,a) ≤ . . . ≤ µL(λ,a) and µ̂1(λ,a) ≤ . . . ≤ µ̂L(λ,a) be the eigenvalues of K(λ,a) and
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K̂(λ,a). Then (4.39) implies µ`(λ0,a0)−µ̂`(λ̂0,a0) ≺ n−1/2 for each `. Note that 0 = detK(λ(a),a)

and 0 = det K̂(λ̂(a),a) for all a ∈ U . In particular, µ`(λ0,a0) = 0 for some `. As λ0 is separated

from other roots of 0 = detT (λ,a0) by c > 0, Proposition 2.11(c) implies 0 is separated from other

eigenvalues of T (λ0,a0) by c. Assuming U is sufficiently small, this implies that µ`(λ(a),a) = 0 and

µ̂`(λ(a),a) = 0 for the same ` and all a ∈ U . Differentiating these identities in a at a0, we obtain

dλ(a0) = −(∂λµ`(λ0,a0))−1∂aµ`(λ0,a0), dλ̂(a0) = −(∂λµ̂`(λ̂0,a0))−1∂aµ̂`(λ̂0,a0). (4.42)

Letting v0 ∈ kerK(λ0,a0) and v̂0 ∈ ker K̂(λ̂0,a0) be the unit eigenvectors, we have for both ∂ = ∂λ

and ∂ = ∂ar that

∂µ`(λ0,a0) = v′0∂K(λ0,a0)v0, ∂µ̂`(λ̂0,a0) = v̂′0∂K̂(λ̂0,a0)v̂0.

The Davis-Kahan theorem yields ‖v0−v̂0‖≺ n−1/2, so (4.40), (4.41), and the bounds ‖∂K‖, ‖∂K̂‖≺ 1

imply

∂µ`(λ0,a0)− ∂µ̂`(λ̂0,a0) ≺ n−1/2, ∂µ`(λ0,a0) ≺ 1, ∂µ̂`(λ̂0,a0) ≺ 1.

Applying this and ∂λµ`(λ0,a0) ≤ −1 to (4.42), we obtain ‖dλ(a0)− dλ̂(a0)‖≺ n−1/2.

We now conclude the proofs of the remaining two claims for Theorem 2.17.

Proof of Claim 2. Suppose µ = θ+σ2
1 is a spike eigenvalue of Σ1. Each estimated µ̂ where |µ̂−µ|< ε

corresponds to a pair (λ̂,a) where a ∈ Sk−1, λ̂ ∈ spec(Σ̂(a)) ∩ Iδ(a), and

|λ̂/t1(λ̂,a)− µ|< ε, t2(λ̂,a) = . . . = tk(λ̂,a) = 0.

Then λ̂ = −1/m0(λ̂,a) + σ2
1t1(λ̂,a) by (2.8). Applying this and |t1(λ̂,a)|< C to the above, (λ̂,a)

satisfies ∣∣∣∣∣−
1

m0(λ̂,a)
− t1(λ̂,a)θ

∣∣∣∣∣ < Cε, t2(λ̂,a) = . . . = tk(λ̂,a) = 0. (4.43)

By Lemma 4.11, there exist constants ε0, ε1 > 0 such that if Cε < ε1, then with probability

1 − n−D, (4.43) cannot hold for two different pairs (λ̂0,a0) and (λ̂1,a1) with ‖a1 − a0‖< ε0. On

the other hand, on the event where the conclusion of Theorem 2.12 holds for all a ∈ Sk−1, we

have −C < m0(λ̂0,a0) < −c and −C < m0(λ̂1,a1) < −c for constants C, c > 0 by Lemma 4.8.

On this event, if (4.43) holds for (λ̂0,a0) and (λ̂1,a1) with ‖a1 − a0‖≥ ε0, then ‖m0(λ̂0,a0)a0 −
m0(λ̂1,a1)a1‖> cε0 for some c > 0 because both a0 and a1 belong to the sphere. Recalling s :

Rk → Rk from (2.20), note that m0(λ̂,a)t(λ̂,a) = s(m0(λ̂,a)a). Assumption 2.16 then implies

‖m0(λ̂0,a0)t(λ̂0,a0) − m0(λ̂1,a1)t(λ̂1,a1)‖> cε0 for a different c > 0. But the first condition of

(4.43) implies |m0(λ̂0,a0)t(λ̂0,a0) + 1/θ|< Cε and similarly for (λ̂1,a1), for some C > 0. This is a

contradiction for ε sufficiently small, so with probability 1 − n−D, at most one pair (λ̂,a) satisfies
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(4.43).

Proof of Claim 3. We first show that for a constant c0 > 0 (independent of C̄) and any value θ > c0,

there exist a0 ∈ Sk−1 and λ0 ∈ Iδ(a0) where

− 1

m0(λ0,a0)
− t1(λ0,a0)θ = 0, t2(λ0,a0) = . . . = tk(λ0,a0) = 0. (4.44)

Indeed, Proposition 4.3 shows supp(µ0(a)) ∈ [−C1, C1] for a constant C1 > 0 and all a ∈ Sk−1.

Then for each a ∈ Sk−1, at the left endpoint λ+ of Iδ(a) we have

m0(λ+,a) =

∫
1

x− λ+
µ0(a)(dx) ≤ −(2C1 + δ)−1, (4.45)

and m0(λ,a) increases to 0 as λ increases from λ+ to ∞. We apply Lemma 4.10 to the map

s from (2.20): Note that s(0) = 0, and Assumption 2.16 guarantees ‖(ds(0))v‖≥ c‖v‖. Setting

U = {b : ‖b‖< ε} for a sufficiently small constant ε > 0, we have |∂bi∂bjsr(b)|< C for all i, j, r and

b ∈ U . We may take ε < (2C1 + δ)−1. Then applying Lemma 4.10, for some constant c0 > 0 and

any θ > c0, there exists b0 ∈ U such that s(b0) = (−1/θ, 0, . . . , 0). Now let a0 = −b0/‖b0‖∈ Sk−1.

As ‖b0‖< (2C1 + δ)−1, (4.45) implies there exists λ ∈ Iδ(a0) with m0(λ,a0) = −‖b0‖, and hence

b0 = m0(λ0,a0)a0. Noting that m0(λ0,a0)t(λ0,a0) = s(b0) = (−1/θ, 0, . . . , 0), this yields (4.44).

Now let µ = θ + σ2
1 be a spike eigenvalue of Σ1, where θ > c0, and let (λ0,a0) be as above. By

Theorem 2.12, there exists λ̂0 ∈ spec(Σ̂(a0)) ∩ Iδ(a0) with λ̂0 − λ0 ≺ n−1/2. Applying Lemma 4.8,

− 1

m0(λ̂0,a0)
− t1(λ̂0,a0)θ ≺ n−1/2, tr(λ̂0,a0) ≺ n−1/2 for all r = 2, . . . , k.

Lemma 4.11 implies there exist a ∈ Sk−1 and λ̂ ∈ spec(Σ̂(a)) with t+(λ̂,a) = 0 and c‖a − a0‖≤
‖t+(λ̂0,a0)‖. The latter condition implies ‖a−a0‖≺ n−1/2, so also ‖Σ̂(a)−Σ̂(a0)‖≺ n−1/2, λ̂− λ̂0 ≺
n−1/2, and λ̂ ∈ Iδ(a) with probability 1− n−D. Applying Lemma 4.8 again, we obtain

− 1

m0(λ̂,a)
− t1(λ̂,a)θ ≺ n−1/2, t2(λ̂,a) = . . . = tk(λ̂,a) = 0.

This and (2.8) imply λ̂/t1(λ̂,a) − µ ≺ n−1/2, so with probability 1 − n−D, there is an estimated

eigenvalue µ̂ with |µ̂− µ|< n−1/2+ε.

4.3 Resolvent approximations

We conclude the preceding proofs by establishing Lemmas 4.1 and 4.2.

Both statements rely on a “fluctuation averaging” idea, similar to that in [EYY11, EYY12,

EKYY13b, EKYY13a], to control a weighted average of weakly dependent random variables. We
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introduce a variant of this idea which controls the size of the weighted average by the squared-sum

of the weights, rather than the size of the largest weight, and also develop it for sums over double-

indexed and quadruple-indexed arrays. We present this abstract result in Section 4.3.1, and then

apply it to combinations of resolvent entries and their products in the remainder of the section.

4.3.1 Fluctuation averaging

Let x1, . . . ,xn be independent random variables in some probability space. For Y a scalar-valued

function of x1, . . . ,xn, denote by Ei[Y] its expectation with respect to only xi, i.e.

Ei[Y] = E[Y | x1, . . . ,xi−1,xi+1, . . . ,xn].

Define

Qi[Y] = Y − Ei[Y].

Note that the operators {Ei,Qi : i = 1, . . . , n} all commute. For S ⊂ {1, . . . , n}, define

ES =
∏

i∈S
Ei, QS =

∏

i∈S
Qi

where the products denote operator composition.

We will consider subsets S ⊂ {1, . . . , n} of size at most a constant ` > 0. For quantities ξ and ζ

possibly depending on S, we write

ξ ≺` ζ

to mean P[|ξ|> nε|ζ|] < n−D for all |S|≤ ` and all n ≥ n0(`, ε,D), where the constant n0 is allowed

to depend on ` (in addition to ε and D).

We will require Y to satisfy the moment condition of the following lemma.

Lemma 4.13. For constants τ, C1, C2, . . . > 0, suppose Y ≺ n−τ and E[|Y|`] ≤ nC` for each integer

` > 0. Then for any sub-σ-algebra G, E[Y | G] ≺ n−τ .

Proof. See Lemma 3.9.

A variable Yi is centered with respect to xi if Ei[Yi] = 0. If it is independent of xj , then

Qj [Yi] = 0. We quantify weak dependence of Yi on xj by requiring Qj [Yi] to be typically smaller

than Yi by a factor of n−1/2. The following is an abstract fluctuation averaging result for variables

that are weakly dependent in this sense.

Lemma 4.14. Let τ, C1, C2, . . . > 0 be fixed constants, and let each Y∗ ∈ {Yi,Yij ,Yijkl} below be

a scalar-valued function of x1, . . . ,xn that satisfies Y∗ ≺ n−τ and E[|Y∗|`] ≤ NC` for each ` > 0.
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(a) Suppose (Yi : i = 1, . . . , n) satisfy Ei[Yi] = 0 and, for all S ⊂ {1, . . . , n} with i /∈ S and |S|≤ `,

QS [Yi] ≺` N−τ−|S|/2. (4.46)

Then for any deterministic (ui ∈ C : i = 1, . . . , n),

∑

i

uiYi ≺ N−τ
(∑

i

|ui|2
)1/2

.

(b) Suppose (Yij : i, j = 1, . . . , n, i 6= j) satisfy Ei[Yij ] = Ej [Yij ] = 0 and, for all S ⊂ {1, . . . , n}
with i, j /∈ S and |S|≤ `,

QS [Yij ] ≺` N−τ−|S|/2.

Then for any deterministic (uij ∈ C : i, j = 1, . . . , n, i 6= j),

∑

i 6=j

uijYij ≺ N−τ

∑

i 6=j

|uij |2



1/2

.

(c) Suppose (Yijkl : i, j, k, l = 1, . . . , n all distinct) satisfy Ei[Yijkl] = Ej [Yijkl] = Ek[Yijkl] =

El[Yijkl] = 0 and, for all S ⊂ {1, . . . , n} with i, j, k, l /∈ S and |S|≤ `,

QS [Yijkl] ≺` N−τ−|S|/2.

Then for any deterministic (uij ∈ C : i, j = 1, . . . , n, i 6= j) and (vkl ∈ C : k, l = 1, . . . , n, k 6= l),

∑

i,j,k,l

all distinct

uijvklYijkl ≺ N−τ

∑

i 6=j

|uij |2



1/2
∑

k 6=l

|vkl|2



1/2

.

Proof. The proof is similar to the “Alternative proof of Theorem 4.7” presented in [EKYY13a,

Appendix B]. Fix any constants ε,D > 0, and choose an even integer ` such that (` − 1)ε > D.

For part (a), let us normalize so that
∑
i|ui|2= 1. We apply the moment method and bound the

quantity

E



∣∣∣∣∣
∑

i

uiYi
∣∣∣∣∣

`

 =

∑

i

uiE[Yi], (4.47)

where we denote as shorthand

i = (i1, . . . , i`),
∑

i

=

n∑

i1,...,i`=1

, ui =

`/2∏

a=1

uia
∏̀

a=`/2+1

uia , Yi =

`/2∏

a=1

Yia
∏̀

a=`/2+1

Yia .
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Fix i, and let T = T (i) ⊂ {1, . . . , n} be the indices that appear exactly once in i. Applying the

identity

Y =


∏

j∈T
(Ej +Qj)


Y =

∑

S⊆T

ET \SQSY

to each Yia and expanding the product of the sums,

Yi =
∑

S1,...,S`⊆T

Y(S1, . . . , S`), Y(S1, . . . , S`) =
∏̀

a=1

ET \SaQSaỸia , Ỹia =




Yia a ≤ `/2
Yia a ≥ `/2 + 1.

Note that QiaỸia = Ỹia , so (4.46) and Lemma 4.13 yield

ET \SaQSaỸia ≺` QSaỸia ≺` n−τ−(|Sa\{ia}|)/2.

Then, taking the product over all a = 1, . . . , ` and applying
∑
a|Sa \ {ia}|≥ −|T |+

∑
a|Sa|,

Y(S1, . . . , S`) ≺` n−`τ+
|T |
2 −

∑`
a=1

|Sa|
2 . (4.48)

Next, note that if ia ∈ T , then QSaYia = 0 and Y(S1, . . . , S`) = 0 unless ia ∈ Sa. Furthermore, if

ia ∈ Sa but ia /∈ Sb for all b 6= a, then ET \SbQSbỸib does not depend on xia for all b 6= a, so we have

Eia [Y(S1, . . . , S`)] = Eia
[
ET \SaQSaỸia

] ∏

b:b 6=a

(ET \SbQSbỸib) = 0.

Thus if E[Y(S1, . . . , S`)] 6= 0, then each ia ∈ T must belong to both Sa and at least one other Sb, so
∑
a|Sa|≥ 2|T |. Then (4.48) and Lemma 4.13 yield E[Y(S1, . . . , S`)] ≺` n−`τ−|T |/2. As the number

of choices of subsets S1, . . . , S` ⊆ T is an `-dependent constant, we arrive at

E[Yi] ≺` n−`τ−|T |/2.

Returning to (4.47), we obtain

E



∣∣∣∣∣
∑

i

uiYi
∣∣∣∣∣

`

 ≺`

∑̀

t=0

n−`τ−t/2
∑

i:|T (i)|=t

|ui|.

We may separate the sum over {i : |T (i)|= t} as a sum first over groupings of the indices i1, . . . , i`

that coincide, followed by a sum over distinct values of those indices. Under our normalization,

∑

i

|ui|≤ n1/2,
∑

i

|ui|k≤ 1 for all k ≥ 2.
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Furthermore, the number of groupings is an `-dependent constant, so

∑

i:|T (i)|=t

|ui|≺` nt/2, E



∣∣∣∣∣
∑

i

uiYi
∣∣∣∣∣

`

 ≺` n−`τ .

The latter statement means that the expectation is (deterministically) at most n−`τ+ε for all n ≥
n0(`, ε). Then, as ` depends only on ε and D, and we chose (`−1)ε > D, Markov’s inequality yields

for all n ≥ n0(ε,D)

P

[∣∣∣∣∣
∑

i

uiYi
∣∣∣∣∣ > n−τ+ε

]
≤ n−`τ+ε

(n−τ+ε)`
< n−D.

As ε,D > 0 were arbitrary, this concludes the proof of part (a).

Parts (b) and (c) are similar, except for an additional combinatorial argument encapsulated in

Lemma 4.15 below: For (b), normalize so that
∑
i 6=j |uij |2= 1 and write

E




∣∣∣∣∣∣
∑

i6=j

uijYij

∣∣∣∣∣∣

`

 =

∑

i,j

ui,jE[Yi,j]

where

∑

i,j

=
∑

i1 6=j1

. . .
∑

i` 6=j`

, ui,j =

`/2∏

a=1

uiaja
∏̀

a=`/2+1

uiaja , Yi,j =

`/2∏

a=1

Yiaja
∏̀

a=`/2+1

Yiaja .

Fixing i, j and letting T = T (i, j) be the indices that appear exactly once in the combined vector

(i, j), the same argument yields E[Yi,j] ≺` n−`τ−|T |/2. Applying Lemma 4.15 with Ba[i, j] = |uij |
and Ba[i, i] = 0 for all a = 1, . . . , ` and i 6= j, we get

∑

i,j:|T (i,j)|=t

|ui,j|≺` nt/2,

which concludes the proof in the same way as part (a). For part (c), normalize so that
∑
i 6=j |uij |2=

∑
k 6=l|vkl|2= 1, and write analogously

E




∣∣∣∣∣∣∣∣

∑

i,j,k,l

distinct

uijvklYijkl

∣∣∣∣∣∣∣∣

`
 =

∑

i,j,k,l

ui,jvk,lE[Yi,j,k,l].

Letting T be the indices appearing exactly once in the combined vector (i, j,k, l), the bound



CHAPTER 4. OUTLIERS IN THE SPIKED MODEL 110

E[Yi,j,k,l] ≺ n−`τ−|T |/2 follows as before, and the bound

∑

i,j,k,l:|T |=t

|ui,jvk,l|≺ nt/2

follows from Lemma 4.15 applied with Ba[i, j] = |uij | and Ba[i, i] = 0 for a = 1, . . . , ` and Ba[i, j] =

|vij | and Ba[i, i] = 0 for a = `+ 1, . . . , 2`.

Lemma 4.15. Fix ` ≥ 1. For each a = 1, . . . , `, let Ba = (Ba[i, j]) ∈ Rn×n satisfy

Ba[i, j] ≥ 0, Ba[i, i] = 0, ‖Ba‖HS≤ 1

for all i, j ∈ {1, . . . , n}. For (i, j) = (i1, . . . , i`, j1, . . . , j`) ∈ {1, . . . , n}2`, denote by s(i, j) the number

of elements of {1, . . . , n} that appear exactly once in (i, j). Then for a constant C` > 0 and all

s ∈ {0, . . . , 2`},
∑

i,j∈{1,...,n}2`
s(i,j)=s

∏̀

a=1

Ba[ia, ja] ≤ C`ns/2.

Proof. Define an equivalence relation (i, j) ∼ (i′, j′) if a permutation of {1, . . . , n} maps (i, j) to

(i′, j′). For an equivalence class E, define s(E) = s(i, j) for any (i, j) ∈ E. Let E be the set of

equivalence classes where ia 6= ja for all a = 1, . . . , `. Then, as Ba has zero diagonal,

∑

i,j∈{1,...,n}2`
s(i,j)=s

∏̀

a=1

Ba[ia, ja] =
∑

E∈E: s(E)=s

B(E), B(E) =
∑

(i,j)∈E

∏̀

a=1

Ba[ia, ja].

For E ∈ E , if (i, j) ∈ E has m distinct values, then let (u,v) = (u1, . . . , u`, v1, . . . , v`) ∈
{1, . . . ,m}2` be the canonical element of E where these values are {1, . . . ,m} in sequential or-

der. Identify E with the directed multi-graph on the vertex set {1, . . . ,m} with the ` edges

{(ua, va) : a = 1, . . . , `}. Writing the summation defining B(E) as a summation over the m possible

distinct index values,

B(E) =

n∑

i(1),...,i(m)=1

distinct

∏̀

a=1

Ba[i(ua), i(va)].

As Ba has nonnegative entries, we may drop the distinctness condition in the sum to obtain the

upper bound

B(E) ≤ U(E) =

n∑

i(1),...,i(m)=1

∏̀

a=1

Ba[i(ua), i(va)].
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The number of equivalence classes in E is a constant C` > 0, so it suffices to show for all E ∈ E

U(E) ≤ ns(E)/2. (4.49)

Let the degree of a vertex be the total number of its in-edges and out-edges. Then s(E) is the

number of degree-1 vertices. Consider first a class E where every vertex has even degree. Then each

connected component of the multi-graph may be traversed as an Eulerian cycle, where each edge is

traversed exactly once in either its forward or backward direction. Letting C be the set of connected

components, this yields

U(E) ≤
∏

C∈C
Tr


 ∏

a:(ua,va)∈C

B̃a


 ,

where the second product over edges is taken in the order of the Eulerian cycle of C, and B̃a = Ba if

(ua, va) is traversed in the forward direction and B̃a = B′a if it is traversed in the backward direction.

(This holds because each term of U(E) appears on the right upon expanding the traces, and the

extra terms on the right are nonnegative.) Note that for any k ≥ 2 and any matrices A1, . . . , Ak,

TrA1 . . . Ak ≤ ‖A1‖HS·‖A2 . . . Ak‖HS≤ ‖A1‖HS‖A2‖HS. . . ‖Ak‖HS.

The multi-graph has no self-loops, so each C ∈ C has at least 2 edges. Applying this and ‖B̃a‖HS≤ 1

for each a, we obtain U(E) ≤ 1.

Next, consider E where every vertex has degree at least 2, and there is some vertex u of odd

degree. Then there is another vertex v of odd degree in the same connected component as u, because

the sum of vertex degrees in a connected component is even. We may pick v such that there is a

path P from u to v, traversing edges either forwards or backwards, where every intermediary vertex

between u and v has degree 2. (Otherwise, replace v by the first such vertex along any path from

u to v.) Let us remove the path by summing over the intermediary vertex labels: For notational

convenience, suppose the intermediary vertices are p+ 1, . . . ,m. Then, since only edges in the path

P touch the vertices p+ 1, . . . ,m, we have

U(E) =
∑

i(1),...,i(p)

∏

a:(ua,va)/∈P

Ba[i(ua), i(va)]


 ∑

i(p+1),...,i(m)

∏

a:(ua,va)∈P

Ba[i(ua), i(va)]


 .

Note that the quantity in parentheses is element [u, v] of the matrix

∏

a:(ua,va)∈P

B̃a,

where the product is taken in the order of traversal of P , and B̃a = Ba or B′a depending on the
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direction of traversal of edge a. As the Hilbert-Schmidt norm of this product is at most 1, we obtain

U(E) ≤ U(E′), U(E′) =
∑

i(1),...,i(p)

∏

a:(ua,va)/∈P

Ba[i(ua), i(va)].

Here E′ corresponds to the multi-graph with path P and intermediary vertices p+1, . . . ,m removed.

Each vertex of this new multi-graph still has degree at least 2—hence we may iteratively apply this

procedure until the resulting graph has no vertices of odd degree. Then U(E) ≤ 1 follows from the

first case above.

Finally, consider E where s(E) = s > 0. For notational convenience, let 1, . . . , s be the vertices

of degree 1. Then, applying the general inequality
∑N
i=1 wi ≤ N1/2(

∑N
i=1 w

2
i )

1/2 with N = ns, we

have

U(E) ≤ ns/2U(E′)1/2, U(E′) =

n∑

i1,...,is=1




n∑

is+1,...,im=1

∏̀

a=1

Ba[i(ua), i(va)]




2

.

The quantity U(E′) corresponds to a multi-graph with s + 2(m − s) vertices and 2` edges, where

each vertex s+ 1, . . . ,m is duplicated into two copies. Each of the original vertices 1, . . . , s now has

degree 2, and each copy of s + 1, . . . ,m continues to have degree at least 2. Then U(E′) ≤ 1 from

the above, so U(E) ≤ ns/2. This establishes (4.49) in all cases, concluding the proof.

4.3.2 Preliminaries

We first reduce the proofs of Lemmas 4.1 and 4.2 to the case where F is diagonal and invertible,

and z belongs to

UC
δ = {z ∈ Uδ : |Im z|≥ N−2}.

This latter reduction is for convenience of verifying the moment condition of Lemma 4.13.

Lemma 4.16. Suppose Lemmas 4.1 and 4.2 hold for z ∈ UC
δ and when F is replaced by any

invertible diagonal matrix T satisfying ‖T‖≤ C. Then they hold also for the given matrix F and

any z ∈ Uδ.

Proof. Applying rotational invariance in law of X and the transformations F 7→ O′FO, X 7→ O′X,

V 7→ O′V O, and W 7→ O′WO, we may reduce from F to the diagonal matrix T of its eigenvalues.

If T is not invertible and/or z /∈ UC
δ , consider an invertible matrix T̃ with ‖T − T̃‖≤ N−2 and

z̃ ∈ UC
δ with |z − z̃|≤ N−2. Then, denoting by m̃0 and ∆̃ these quantities defined with T̃ and z̃, on

the high-probability event where spec(X ′TX) ⊂ supp(µ0)δ/2 and ‖X‖< C, we have

|m0 − m̃0|< CN−2, |∂zm0 − ∂zm̃0|< CN−2, ‖∆− ∆̃‖< CN−2.

Here, the first two statements follow from (2.11) and the condition z ∈ Uδ, and the third applies

Proposition 4.4 and the identity A−1 − B−1 = A−1(B − A)B−1. Bounding the trace by M times
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the operator norm, one may then verify Tr ∆V −Tr ∆̃V ≺ N−1/2‖V ‖HS. Similarly, the quantity on

the left of Lemma 4.2 changes by O≺(N1/2‖V ‖‖W‖) upon replacing m0 and ∆ by m̃0 and ∆̃. So it

suffices to establish Lemmas 4.1 and 4.2 for T̃ and z̃.

Thus, in the remainder of this section, we consider a diagonal matrix

T = diag(t1, . . . , tM ) ∈ RM×M , tα 6= 0 for all tα.

Define the (N +M)× (N +M) linearized resolvent

G(z) =

(
−z IdN X ′

X −T−1

)−1

=

(
GN (z) Go(z)

′

Go(z) GM (z)

)
,

where the Schur complement identity yields

GN (z) = (X ′TX − z IdN )−1, Go(z) = TXGN (z), GM (z) = TXGN (z)X ′T − T. (4.50)

From (4.7), we have

∆(z) = T−1(GM (z)−ΠM (z))T−1, ΠM (z) = −T (Id +m0(z)T )−1. (4.51)

Note that G,GN , GM are symmetric, and ΠM is diagonal. We omit the spectral argument z when

the meaning is clear.

We use the same index notation as in Chapter 3: Denote IN = {1, . . . , N}, IM = {1, . . . ,M},
and the disjoint union I = IN tIM . We index GN by IN , GM by IM , and G by I. We use Roman

letters i, j, k for indices in IN , Greek letters α, β, γ for indices in IM , and capital letters A,B,C

for general indices in I. We denote by xi ∈ RM and xα ∈ RN the ith column and αth row of X,

both regarded as column vectors. For any subset S ⊂ I, X(S) denotes X with rows in S ∩ IM
and columns in S ∩ IN removed, T (S) denotes T with rows and columns in S ∩ IM removed, and

G(S), G
(S)
N etc. denote these quantities defined with X(S) and T (S) in place of X and T . We index

these matrices by IN \ S and IM \ S.

Lemma 4.17 (Resolvent identities).

(a) For all i ∈ IN and α ∈ IM ,

Gii = − 1

z + x′iG
(i)
M xi

, Gαα = − tα

1 + tαx′αG
(α)
N xα

.

(b) For all i 6= j ∈ IN and α 6= β ∈ IM , denoting by ei ∈ RN and eα ∈ RM the standard basis
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vectors for coordinates i and α,

Gij = −Giix′iG(i)
o ej = GiiG

(i)
jj x′iG

(ij)
M xj ,

Giα = −Giix′iG(i)
M eα = −Gααe′iG

(α)
N xα,

Gαβ = −Gααe′βG
(α)
o xα = GααG

(α)
ββ x′αG

(αβ)
N xβ .

(c) For all C ∈ I and A,B ∈ I \ {C},

G
(C)
AB = GAB −

GACGCB
GCC

.

Proof. See Lemma 3.15. The second equalities for Gij and Gαβ follow from applying the identities

again to the matrices G
(α)
o and G

(i)
o .

For i 6= j ∈ IN and α 6= β ∈ IM , define

Zi = x′iG
(i)
M xi −N−1 TrG

(i)
M , Zα = x′αG

(α)
N xα −N−1 TrG

(α)
N ,

Zij = x′iG
(ij)
M xj , Zαβ = x′αG

(αβ)
N xβ .

We will use the following bounds implicitly throughout the remainder of this section. Note that

(|z|∨1)−1 ≤ 1 and tα ≤ C, so we will omit these factors in the bounds in certain applications.

Lemma 4.18. For all z ∈ Uδ,

(a) (Norm bounds)

‖GN‖≺ (|z|∨1)−1, ‖Go‖≺ (|z|∨1)−1, ‖GM‖≺ 1.

(b) (Diagonal bounds) For all i ∈ IN and α ∈ IM ,

Gii ≺ (|z|∨1)−1, G−1
ii ≺ |z|∨1, Gαα ≺ tα, G−1

αα ≺ t−1
α .

(c) (Z bounds) For all i 6= j ∈ IN and α 6= β ∈ IM ,

Zi ≺ N−1/2, Zα ≺ (|z|∨1)−1N−1/2, Zij ≺ N−1/2, Zαβ ≺ (|z|∨1)−1N−1/2,

e′iG
(α)
N xα ≺ (|z|∨1)−1N−1/2, x′iG

(i)
M eα ≺ tαN−1/2,

x′iG
(i)
o ej ≺ (|z|∨1)−1N−1/2, e′βG

(α)
o xα ≺ tβ(|z|∨1)−1N−1/2.
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(d) (Off-diagonal bounds) For all i 6= j ∈ IN and α 6= β ∈ IM ,

Gij ≺ (|z|∨1)−2N−1/2, Giα ≺ tα(|z|∨1)−1N−1/2, Gαβ ≺ tαtβ(|z|∨1)−1N−1/2.

Proof. By Theorem 2.5, spec(X ′TX) ⊂ supp(µ0)δ/2 holds with high probability. On this event,

‖GN‖≤ C min(1/δ, 1/|z|). As ‖X‖≺ 1, part (a) follows from (4.50).

For (b), the bounds on Gii and Gαα follow from (4.50) and part (a). The bounds on G−1
ii and

G−1
αα follow from Lemma 4.17(a), ‖G(α)

N ‖≺ 1 and ‖G(i)
M ‖≺ 1 in part (a), and ‖xi‖≺ 1 and ‖xα‖≺ 1.

For (c), note that part (a) implies ‖G(i)
M ‖HS≺ N1/2 and ‖G(α)

N ‖HS≺ (|z|∨1)−1N1/2. Then the

bounds for Zi and Zα follow from Lemma 4.6 applied conditionally on X(i) and X(α). For Zij , as xi

is independent of G
(ij)
M xj , we have that x′iG

(ij)
M xj is Gaussian conditional on X(i) and |x′iG

(ij)
M xj |≺

N−1/2‖G(ij)
M xj‖≺ N−1/2‖G(ij)

M ‖≺ N−1/2. The remaining five bounds are similar.

Finally, (d) follows from Lemma 4.17(b) and parts (b) and (c).

4.3.3 Linear functions of the resolvent

We prove Lemma 4.1. Let Ei and Eα be the partial expectations over column xi and row xα of X.

For S ⊂ IN or S ⊂ IM , let ES , QS , and ≺` be as in Section 4.3.1. Note that Ei[Zi] = 0, Eα[Zα] = 0,

and Eα[Zαβ ] = Eβ [Zαβ ] = 0. We verify that these quantities satisfy the conditions of Lemma 4.14.

Lemma 4.19. For z ∈ UC
δ , each Z∗ ∈ {Zi,Zα,Zαβ}, and some constants C1, C2, . . . > 0, we have

E[|Z∗|`] ≤ NC` for each ` > 0. Furthermore, for any constant ` > 0,

(a) For S ⊂ IN with i /∈ S and |S|≤ `, QSZi ≺` N−1/2−|S|/2.

(b) For S ⊂ IM with α /∈ S and |S|≤ `, QSZα ≺` N−1/2−|S|/2.

(c) For S ⊂ IM with α, β /∈ S and |S|≤ `, QSZαβ ≺` N−1/2−|S|/2.

Proof. Let C` > 0 denote an `-dependent constant that may change from instance to instance.

Taking the expectation first over xi, we have E[|x′iG
(i)
M xi|`] ≤ E[‖G(i)

M ‖`‖xi‖2`] ≤ C`E[‖G(i)
M ‖`].

Note that ‖G(i)
N ‖≤ 1/|Im z|≤ N2 for z ∈ UC

δ , so ‖G(i)
M ‖≤ C(N2‖X(i)‖2+1) by (4.50). Then

E[|x′iG
(i)
M xi|`] ≤ NC` follows. Also E[|N−1 TrG

(i)
M |`] ≤ C`E[‖G(i)

M ‖`] ≤ NC` , so E[|Zi|`] ≤ NC` .

Similar arguments show E[|Zα|`] ≤ NC` and E[|Zαβ |`] ≤ NC` .

For the remaining statements, the argument is similar to the type of resolvent expansion per-

formed in [BEK+14]. We begin with (a): For S = ∅, this follows from Lemma 4.18. For |S|≥ 1,

observe that Zi = Qi[x′iG
(i)
M xi], so QS [Zi] = QS∪{i}[x′iG

(i)
M xi]. Define

G
(i)
xj =

∑

α∈IM

XiαG
(i)
αj = x′iG

(i)
o ej .
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Suppose j ∈ S. We may apply Lemma 4.17(c) to write

x′iG
(i)
M xi =

∑

α,β

XαiG
(i)
αβXβi = L({j}) +R({j})

where

L({j}) =
∑

α,β

XαiG
(ij)
αβ Xβi = x′iG

(ij)
M xi, R({j}) =

∑

α,β

Xαi

G
(i)
αjG

(i)
βj

G
(i)
jj

Xβi =
(G

(i)
xj )2

G
(i)
jj

.

Here, L({j}) no longer depends on xj . Note that Lemma 4.17(c) yields, for j 6= k,

Gxj = G
(k)
xj +

GxkGjk
Gkk

,
1

Gjj
=

1

G
(k)
jj

−
G2
jk

GjjG
(k)
jj Gkk

. (4.52)

Then if |S|≥ 2 and k ∈ S, let us apply these identities to the numerator and denominator of R({j})
to further write

x′iG
(i)
M xi = L({j, k}) +R({j, k}),

where

L({j, k}) = L({j}) +
(G

(ik)
xj )2

G
(ik)
jj

collects terms which no longer depend on at least one of xj or xk, and the remainder is

R({j, k}) = −(G
(ik)
xj )2

(G
(i)
jk )2

G
(i)
jj G

(ik)
jj G

(i)
kk

+G
(ik)
xj

G
(i)
xkG

(i)
jk

G
(i)
kk

1

G
(i)
jj

+
G

(i)
xkG

(i)
jk

G
(i)
kk

G
(i)
xj

1

G
(i)
jj

.

Recursively using (4.52) to apply this procedure for each index in S, we obtain

x′iG
(i)
M xi = L(S) +R(S),

where

• Each term of L(S) does not depend on at least one of the columns (xj : j ∈ S).

• R(S) is a sum of at most C` summands, each summand a product of at most C` terms, for a

constant C` depending only on ` (the maximum size of S).

• Each summand of R(S) is a product of 2 terms of the form G
(T )
xj , some number m ≥ |S|−1 of

terms of the form G
(T )
jk for j 6= k, and m+ 1 terms of the form (G

(T )
jj )−1. Here i ∈ T ⊆ S.

We observe that QS∪{i}[L(S)] = 0. Applying G
(T )
xj ≺` (|z|∨1)−1N−1/2, G

(T )
jk ≺` (|z|∨1)−1N−1/2,

and (G
(T )
jj )−1 ≺` |z|∨1, we have R(S) ≺` N−(|S|+1)/2. Then part (a) follows from Lemma 4.13 and
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the bound

QS∪{i}[R(S)] =


 ∏

j∈S∪{i}

(1− Ej)


 [R(S)] ≤

∑

T :T ⊆S∪{i}

|ET [R(S)]|≺` R(S).

The proof of part (b) is similar: Define

Ǧαβ =
Gαβ
|tαtβ |1/2

, Ǧ
(α)
βx =

∑

i∈IN

Gβi
|tβ |1/2

Xiα = |tβ |−1/2e′βG
(α)
o xα.

We apply Lemma 4.17(c) in the forms

x′αG
(α)
N xα = x′αG

(αβ)
N xα +

(Ǧ
(α)
βx )2

Ǧ
(α)
ββ

, Ǧαβ = Ǧ
(γ)
αβ +

ǦαγǦβγ

Ǧγγ
,

1

Ǧββ
=

1

Ǧ
(γ)
ββ

− (Ǧβγ)2

ǦββǦ
(γ)
ββ Ǧγγ

.

(4.53)

This allows us to write, for each S ⊂ IM with |S|≥ 1 and α /∈ S,

x′αG
(α)
N xα = L(S) +R(S),

where L(S) contains terms not depending on at least one row (xβ : β ∈ S), and each summand of

R(S) is a product of 2 terms of the form Ǧ
(T )
βx , m ≥ |S|−1 terms of the form Ǧ

(T )
βγ for β 6= γ, and

m+ 1 terms of the form (Ǧ
(T )
ββ )−1. Applying Ǧ

(T )
βx ≺ N−1/2, Ǧ

(T )
βγ ≺ N−1/2, and (Ǧ

(T )
ββ )−1 ≺ 1, we

obtain part (b). The argument for part (c) is similar and omitted for brevity.

Define the empirical Stieltjes transform

mN (z) = N−1 TrGN (z) = N−1 Tr(X ′TX − z Id)−1.

We next establish a bound on mN − m0 for z separated from supp(µ0). We follow [BEK+14,

KY17], although for simplicity we will use the result of Theorem 2.5 to establish “stability” of

the Marcenko-Pastur equation, rather than proving this directly using the stochastic continuity

argument of [BEK+14].

Lemma 4.20. Let z ∈ UC
δ . Then mN (z)−m0(z) ≺ N−1.

Proof. Recall the function

z0(m) = − 1

m
+

1

N

∑

α

tα
1 + tαm

.

We first establish the following claim: If for all z ∈ UC
δ and a constant τ > 0 we have

z − z0(mN (z)) ≺ N−τ , (4.54)
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then also for all z ∈ UC
δ we have

m0(z)−mN (z) ≺ N−τ . (4.55)

Indeed, fix any constants ε,D > 0. Suppose first that Im z ≥ N−τ+ε. Let E be the event where

|z − z0(mN )|< N−τ+ε/2, which holds with probability at least 1 − N−D by (4.54). On E we have

Im z0(mN ) > 0, so Theorem 2.4 guarantees that m0(z0(mN )) is the unique root m ∈ C+ to the

equation z0(mN ) = z0(m). Thus m0(z0(mN )) = mN . Applying |∂zm0|≤ C for all z ∈ Uδ and

integrating this bound along a path from z to z0(mN ), we obtain

|m0(z)−mN (z)|= |m0(z)−m0(z0(mN ))|< CN−τ+ε/2.

Now suppose Im z ∈ (0, N−τ+ε). Let z̃ be such that Re z̃ = Re z and Im z̃ = N−τ+ε. By the

preceding argument, |m0(z̃)−mN (z̃)|< CN−τ+ε/2 with probability at least 1−N−D. Apply again

|∂zm0|≤ C, and also |∂zmN |≤ C on the event spec(X ′TX) ⊂ supp(µ0)δ/2, which holds with proba-

bility 1−N−D by Theorem 2.5. Then

|m0(z)−mN (z)|≤ |m0(z)−m0(z̃)|+|m0(z̃)−mN (z̃)|+|mN (z̃)−mN (z)|< CN−τ+ε/2

with probability 1− 2N−D. The same arguments hold by conjugation symmetry for Im z < 0, and

hence in all cases we obtain (4.55).

It remains to establish (4.54) for τ = 1. Applying Lemma 4.17(a),

G−1
ii = −z − x′iG

(i)
M xi = −z −N−1 TrG

(i)
M −Zi. (4.56)

Next, applying Lemma 4.17(c),

N−1 TrG
(i)
M = N−1

∑

α

G(i)
αα = N−1

∑

α

(
Gαα −

G2
iα

Gii

)
= N−1 TrGM −G−1

ii N
−1
∑

α

G2
iα.

Then applying the bounds G−1
ii ≺ |z|∨1 and Giα ≺ (|z|∨1)−1/2N−1/2,

G−1
ii = −z −N−1 TrGM −Zi +O≺(N−1). (4.57)

Applying Zi ≺ N−1/2 and Gjj ≺ (|z|∨1)−1, this yields Gjj/Gii − 1 = Gjj(G
−1
ii − G−1

jj ) ≺
(|z|∨1)−1N−1/2 for all i, j ∈ IN . Then for all i ∈ IN , we have mN/Gii − 1 ≺ (|z|∨1)−1N−1/2,

and hence also

Gii/mN − 1 ≺ (|z|∨1)−1N−1/2. (4.58)
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Expanding G−1
ii around m−1

N ,

N−1
∑

i

G−1
ii = N−1

∑

i

(
m−1
N −m−2

N (Gii −mN ) +m−2
N G−1

ii (Gii −mN )2
)

= m−1
N +N−1m−2

N

∑

i

G−1
ii (Gii −mN )2.

Thus

m−1
N = N−1

∑

i

G−1
ii

(
1− (Gii/mN − 1)2

)
.

Applying (4.58), G−1
ii ≺ |z|∨1, and (4.57), we obtain

m−1
N = N−1

∑

i

G−1
ii +O≺(N−1) = −z −N−1 TrGM −N−1

∑

i

Zi +O≺(N−1). (4.59)

Next, applying Lemma 4.17 and the bounds G−1
αα ≺ t−1

α and Giα ≺ tαN
−1/2, we obtain analo-

gously to (4.57)

tαG
−1
αα = −1− tαx′αG

(α)
N xα = −1− tαmN − tαZα +O≺(tαN

−1). (4.60)

Since Gαα/tα ≺ 1 and Zα ≺ N−1/2, the above implies in particular (1 + tαmN )−1 ≺ 1 and (1 +

tαmN + tαZα)−1 ≺ 1. Then multiplying the above by Gαα(1 + tαmN + tαZα)−1, we obtain

Gαα = − tα
1 + tαmN + tαZα

+O≺(t2αN
−1)

= − tα
1 + tαmN

+
t2αZα

(1 + tαmN )2
+O≺(t2αN

−1). (4.61)

As TrGM =
∑
αGαα, combining with (4.59) and recalling the definition of z0(m), we have

z − z0(mN ) = −N−1
∑

i

Zi −N−1
∑

α

t2α
(1 + tαmN )2

Zα +O≺(N−1).

Applying first the bounds Zi ≺ N−1/2, Zα ≺ N−1/2, and (1 + tαmN )−1 ≺ 1 to the above, we

obtain z − z0(mN ) ≺ N−1/2. Then (4.55) yields m0 −mN ≺ N−1/2. This allows us to replace mN

by m0 with an additional O≺(N−1) error, yielding

z − z0(mN ) = −N−1
∑

i

Zi −N−1
∑

α

t2α
(1 + tαm0)2

Zα +O≺(N−1).

By Proposition 4.4, |tα|2/|1+ tαm0|2≤ C for a constant C > 0. Then Lemmas 4.14(a) and 4.19(a–b)

imply that both sums above are O≺(N−1). So (4.54) holds with τ = 1.
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We record an estimate from the above proof for future use:

Lemma 4.21. For z ∈ UC
δ and each α ∈ IM ,

Gαα −Παα

t2α
=

1

(1 + tαm0)2
Zα +O≺(N−1).

Proof. This follows from (4.61), upon applying mN−m0 ≺ N−1 and |1+tαm0|≥ c from Proposition

4.4 to yield −tα/(1 + tαmN ) = Παα + O≺(t2αN
−1) and t2αZα/(1 + tαmN )2 = t2αZα/(1 + tαm0)2 +

O≺(t2αN
−1).

We now conclude the proof of Lemma 4.1: By Lemma 4.16, we may consider the case where

F = T is diagonal and invertible, and z ∈ UC
δ . We write

Tr ∆V =
∑

α

∆ααVαα +
∑

α6=β

∆αβVαβ .

Applying (4.51) and Lemma 4.21,

∑

α

∆ααVαα =
∑

α

Gαα −Παα

t2α
Vαα =

∑

α

1

(1 + tαm0)2
VααZα +O≺(N−1/2‖V ‖HS).

As |1 + tαm0|> c by Proposition 4.4, we may apply Lemmas 4.14(a) and 4.19(b) to yield

∑

α

∆ααVαα ≺ N−1/2‖V ‖HS.

For the off-diagonal contribution, by (4.51) and Lemma 4.17(b) we have

∑

α6=β

∆αβVαβ =
∑

α 6=β

Gαβ
tαtβ

Vαβ =
∑

α6=β

GααG
(α)
ββ

tαtβ
VαβZαβ .

As Zαβ ≺ N−1/2 and
∑
α6=β |Vαβ |≤M(

∑
α6=β |Vαβ |2)1/2 ≺ N‖V ‖HS, we may make O≺(N−1) adjust-

ments of the coefficients of VαβZαβ while incurring an O≺(N−1/2‖V ‖HS) error in the sum. Then,

applying G
(α)
ββ /tβ = Gββ/tβ +O≺(N−1) by Lemma 4.17(c), followed by Lemma 4.21, we have

∑

α 6=β

∆αβVαβ = I + II + III + IV +O≺(N−1/2‖V ‖HS)

where

I =
∑

α 6=β

ΠααΠββ

tαtβ
VαβZαβ ,
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II =
∑

α 6=β

tα
(1 + tαm0)2

Zα
Πββ

tβ
VαβZαβ ,

III =
∑

α 6=β

Παα

tα

tβ
(1 + tβm0)2

ZβVαβZαβ ,

IV =
∑

α 6=β

tα
(1 + tαm0)2

Zα
tβ

(1 + tβm0)2
ZβVαβZαβ .

Lemmas 4.14(b) and 4.19(c) yield I ≺ N−1/2‖V ‖HS. For II, first fixing α and summing over β,

Lemmas 4.14(a) and 4.19(c) yield

∑

β/∈{α}

Πββ

tβ
VαβZαβ ≺ N−1/2‖vα‖

where vα is row α of V . Then, applying Zα ≺ N−1/2,

II ≺
∑

α

N−1‖vα‖≺ N−1/2‖V ‖HS.

Similarly III ≺ N−1/2‖V ‖HS. Finally, the direct bounds Zα,Zβ ,Zαβ ≺ N−1/2 and
∑
α6=β |Vαβ |≺

N‖V ‖HS yield IV ≺ N−1/2‖V ‖HS. Thus Tr ∆V ≺ N−1/2‖V ‖HS as desired.

4.3.4 Quadratic functions of the resolvent

We now prove Lemma 4.2. We will apply the fluctuation averaging mechanism, Lemma 4.14, to the

quantities

Yαβγρ = (x′αG
(αβγρ)
N xβ)(x′γG

(αβγρ)
N xρ), Yαβγ = (x′αG

(αβγ)
N xβ)(x′αG

(αβγ)
N xγ),

Ỹαβγ = G(βγ)
αα (x′αG

(αβγ)
N xβ)(x′αG

(αβγ)
N xγ),

Yαβ,1 = Z2
αβ −N−1x′α(G

(αβ)
N )2xα, Yαβ,2 = N−1x′α(G

(αβ)
N )2xα −N−2 Tr[(G

(αβ)
N )2]

where α, β, γ, ρ above are distinct. Note that each Y∗ above satisfies Y∗ ≺ N−1, and furthermore

Eα[Yαβγρ] = Eβ [Yαβγρ] = Eγ [Yαβγρ] = Eρ[Yαβγρ] = 0,

Eβ [Yαβγ ] = Eγ [Yαβγ ] = 0, Eβ [Ỹαβγ ] = Eγ [Ỹαβγ ] = 0, Eβ [Yαβ,1] = 0, Eα[Yαβ,2] = 0.

The following verifies the conditions of Lemma 4.14.

Lemma 4.22. For z ∈ UC
δ , each Y∗ ∈ {Yαβγρ,Yαβγ , Ỹαβγ ,Yαβ,1,Yαβ,2}, and some constants

C1, C2, . . . > 0, we have E[|Y∗|`] ≤ NC` for all ` > 0. Furthermore, for any constant ` > 0,
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(a) For S ⊂ IM with α, β, γ, ρ /∈ S and |S|≤ `, QSYαβγρ ≺` N−1−|S|/2.

(b) For S ⊂ IM with α, β, γ /∈ S and |S|≤ `, QSYαβγ ≺` N−1−|S|/2.

(c) For S ⊂ IM with α, β, γ /∈ S and |S|≤ `, QSỸαβγ ≺` N−1−|S|/2.

(d) For S ⊂ IM with α, β /∈ S and |S|≤ `, QSYαβ,1 ≺` N−1−|S|/2.

(e) For S ⊂ IM with α, β /∈ S and |S|≤ `, QSYαβ,2 ≺` N−1−|S|/2.

Proof. The bound E[|Y∗|`] ≤ NC` follows from ‖G(∗)
N ‖≤ 1/|Im z|≤ N2 for z ∈ UC

δ and the same

arguments as in Lemma 4.19.

The remainder of the proof is also similar to Lemma 4.19(b–c): For (a), define

Ǧαβ =
Gαβ
|tαtβ |1/2

, Ǧ(αβγρ)
ηxα = e′ηG

(αβγρ)
o xα/|tη|1/2=

∑

i

G
(αβγρ)
ηi

|tη|1/2
Xiα.

We iterate through S and expand both of the terms x′αG
(αβγρ)
N xβ and x′γG

(αβγρ)
N xρ simultaneously,

using Lemma 4.17(c) in the form

x′αG
(αβγρ)
N xβ = x′αG

(αβγρη)
N xβ +

Ǧ
(αβγρ)
ηxα Ǧ

(αβγρ)
ηxβ

Ǧ
(αβγρ)
ηη

together with the latter two identities of (4.53). This yields, for each S ⊂ IM with |S|≥ 1 and

α, β, γ, ρ /∈ S, a decomposition

Yαβγρ = L(S) +R(S)

where L(S) collects terms not depending on at least one row (xη : η ∈ S), and each summand of

R(S) is a product of m ≥ |S|+2 “numerator” terms of the form x′αG
(T )
N xβ , Ǧ

(T )
ηxα , or Ǧ

(T )
ην and

m − 2 “denominator” terms of the form (Ǧ
(T )
ηη )−1. Each numerator term is O≺(N−1/2) and each

denominator term is O≺(1), so R(S) ≺` N−1−|S|/2. Then QS [Yαβγρ] = QS [R(S)] ≺` N−1−|S|/2.

The same argument holds for parts (b–e). For (c), we expand also the term G
(βγ)
αα together with

the other two terms, using the second identity of (4.53). For (d) and (e) we apply this argument

separately to

Z2
αβ = (x′αG

(αβ)
N xβ)2, x′α(G

(αβ)
N )2xα =

∑

i

(x′αG
(αβ)
N ei)

2, Tr[(G
(αβ)
N )2] =

∑

i,j

(e′iG
(αβ)
N ej)

2

and to each of the above summands. We obtain the additional numerator terms x′αG
(αβ)
N ei, e′iG

(αβ)
N ej ,

and Ǧ
(T )
iη = G

(T )
iη /|tη|1/2 in the expansions, which are still O≺(N−1/2).

Using this, we prove Lemma 4.2. By Lemma 4.16, we may consider F = T diagonal and invertible,
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and z ∈ UC
δ . For convenience, let us normalize so that ‖V ‖= ‖W‖= 1. We write

Tr ∆V∆W =
∑

α,β,γ,ρ

∆αβVβγ∆γρWρα. (4.62)

Fixing α, β, summing over γ, ρ, and applying Lemma 4.1,

∑

γ,ρ/∈{α,β}

Vβγ∆γρWρα ≺ N−1/2. (4.63)

Combining with the bound ∆αβ ≺ N−1/2 and then summing over α, β, we see that Tr ∆V∆W ≺ N .

We show that the terms where α = β, α = γ, β = ρ, and/or γ = ρ are O≺(1): Consider first

α = β. Applying again (4.63) and ∆αα ≺ N−1/2, we obtain

∑

α,γ,ρ

∆ααVαγ∆γρWρα ≺
∑

α

|∆αα|N−1/2 ≺ 1.

Symmetrically, for γ = ρ, ∑

α,β,γ

∆αβVβγ∆γγWγα ≺ 1.

For α = γ, let vα and wα be columns α of V and W . Summing first over β, ρ, we have by Lemma

4.1 ∑

α,β,ρ

∆αβVβα∆αρWρα =
∑

α

e′α∆vαe′α∆wα ≺
∑

α

N−1/2 ·N−1/2 ≺ 1.

Symmetrically, for β = ρ, ∑

α,β,γ

∆αβVβγ∆γβWβα ≺ 1.

When two or more of these four cases hold simultaneously, for example α = β = γ or α = γ, β = ρ

or α = β = γ = ρ, we have

∑

α,ρ

∆ααVαα∆αρWρα ≺
∑

α

|∆ααVαα|N−1/2 ≺ 1,

∑

α,β

∆αβVβα∆αβWβα ≺ N−1
∑

α,β

|VβαWβα|≺ 1,

∑

α

∆ααVαα∆ααWαα ≺ N−1
∑

α

|VααWαα|≺ 1.

Then we may eliminate all of these cases from the sum (4.62) by inclusion-exclusion.

The remaining cases are when possibly α = ρ and/or β = γ. We write the contributions from

these cases as

I =

∗∑

α,β,γ,ρ

∆αβVβγ∆γρWρα, II =

∗∑

α,β,γ

∆αβVβγ∆γαWαα,
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III =

∗∑

α,β,ρ

∆αβVββ∆βρWρα, IV =

∗∑

α,β

∆αβVββ∆βαWαα,

where summations with ∗ denote that all indices are restricted to be distinct.

For I, let us first apply

Gαα/tα = Παα/tα +O≺(N−1/2), G
(α)
ββ /tβ = Πββ/tβ +O≺(N−1/2)

from Lemma 4.21. Then, by (4.51) and Lemma 4.17(b), we have

∆αβ =
Gαβ
tαtβ

=
GααG

(α)
ββ

tαtβ
Zαβ =

Παα

tα

Πββ

tβ
Zαβ +O≺(N−1). (4.64)

Note that (4.63) holds also with the summation further restricted to γ 6= ρ, by Lemma 4.1. Then,

as the O≺(N−1) remainder term in (4.64) does not depend on γ and ρ,

I =

∗∑

α,β,γ,ρ

(
Παα

tα

Πββ

tβ
Zαβ

)
Vβγ∆γρWρα +O≺(N1/2). (4.65)

For fixed γ and ρ, applying Lemma 4.14(b) and Lemma 4.19(c), we also have

∗∑

α,β/∈{γ,ρ}

(
Παα

tα

Πββ

tβ
Zαβ

)
VβγWρα ≺ N−1/2.

Then we may apply the approximation (4.64) to ∆γρ in (4.65), yielding

I =

∗∑

α,β,γ,ρ

(
Παα

tα

Πββ

tβ
Zαβ

)
Vβγ

(
Πγγ

tγ

Πρρ

tρ
Zγρ

)
Wρα +O≺(N1/2). (4.66)

Next, let us apply Lemma 4.17(b–c) and write

Zαβ = x′αG
(αβ)
N xβ

=
∑

i,j

XαiXβj

(
G

(αβγ)
ij +

G
(αβ)
iγ G

(αβ)
jγ

G
(αβ)
γγ

)

=
∑

i,j

XαiXβj

(
G

(αβγ)
ij +G(αβ)

γγ (e′iG
(αβγ)
N xγ)(e′jG

(αβγ)
N xγ)

)

= x′αG
(αβγ)
N xβ +G(αβ)

γγ (x′αG
(αβγ)
N xγ)(x′βG

(αβγ)
N xγ). (4.67)

Applying these steps again to the first term of (4.67), we obtain Zαβ = Z(γρ)
αβ +Rαβγρ where

Z(γρ)
αβ = x′αG

(αβγρ)
N xβ ,
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Rαβγρ = G(αβ)
γγ (x′αG

(αβγ)
N xγ)(x′βG

(αβγ)
N xγ) +G(αβγ)

ρρ (x′αG
(αβγρ)
N xρ)(x

′
βG

(αβγρ)
N xρ).

By Lemmas 4.14(b) and 4.22(c), for fixed γ and ρ, we have

∗∑

α,β/∈{γ,ρ}

(
Παα

tα

Πββ

tβ
Rαβγρ

)
VβγWρα ≺ N−1.

Then, applying this and Zγρ ≺ N−1/2, (4.66) holds with Zαβ replaced by Z(γρ)
αβ . Applying the

symmetric argument to replace Zγρ by Z(αβ)
γρ , we obtain

I =

∗∑

α,β,γ,ρ

(
Παα

tα

Πββ

tβ
Z(γρ)
αβ

)
Vβγ

(
Πγγ

tγ

Πρρ

tρ
Z(αβ)
γρ

)
Wρα +O≺(N1/2).

Recognizing Z(γρ)
αβ Z

(αβ)
γρ = Yαβγρ and applying Lemmas 4.14(c) and 4.22(a), the summation above

is O≺(1). Then I ≺ N1/2.

A similar argument holds for II: Lemma 4.1 yields for fixed α, β

∑

γ /∈{α,β}

Vβγ∆γαWαα ≺ N−1/2.

Then applying (4.64),

II =

∗∑

α,β,γ

(
Παα

tα

Πββ

tβ
Zαβ

)
Vβγ∆γαWαα +O≺(N1/2).

For fixed α, γ, Lemmas 4.14(a) and Lemma 4.19(c) then yield

∑

β/∈{α,γ}

(
Παα

tα

Πββ

tβ
Zαβ

)
VβγWαα ≺ N−1/2,

so applying (4.64) again to approximate ∆γα yields

II =

∗∑

α,β,γ

(
Παα

tα

Πββ

tβ
Zαβ

)
Vβγ

(
Πγγ

tγ

Παα

tα
Zαγ

)
Wαα +O≺(N1/2). (4.68)

Note that ∑

β/∈{α,γ}

Πββ

tβ
G(αβ)
γγ (x′αG

(αβγ)
N xγ)(x′βG

(αβγ)
N xγ)Vβγ ≺ N−1

by Lemmas 4.14(a) and 4.22(c). Then applying (4.67) and Zαγ ≺ N−1/2, we may replace Zαβ by
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Z(γ)
αβ = x′αG

(αβγ)
N xβ in (4.68). Applying the symmetric argument to replace Zαγ by Z(β)

αγ , we obtain

II =

∗∑

α,β,γ

(
Παα

tα

Πββ

tβ
Z(γ)
αβ

)
Vβγ

(
Πγγ

tγ

Παα

tα
Z(β)
αγ

)
Wαα +O≺(N1/2).

Recognizing Z(γ)
αβ Z

(β)
αγ = Yαβγ and applying Lemmas 4.14(b) and 4.22(b),

∗∑

β,γ /∈{α}

(
Παα

tα

Πββ

tβ
Z(γ)
αβ

)
Vβγ

(
Πγγ

tγ

Παα

tα
Z(β)
αγ

)
≺ N−1‖V ‖HS≺ N−1/2.

Then II ≺ N1/2. By symmetry, III ≺ N1/2 also.

For IV, a direct bound using (4.64), |Vββ |≤ 1, and |Wαα|≤ 1 yields

IV =

∗∑

α,β

(
Παα

tα

Πββ

tβ
Zαβ

)2

VββWαα +O≺(N1/2).

Summing first over β, Lemmas 4.14(a) and 4.22(d) yield

∑

β/∈{α}

(
Πββ

tβ

)2

Vββ

(
Z2
αβ − Eβ [Z2

αβ ]
)
≺ N−1/2.

Then summing over α and applying |Wαα|≤ 1,

IV =

∗∑

α,β

(
Παα

tα

Πββ

tβ

)2

Eβ [Z2
αβ ]VββWαα +O≺(N1/2).

Next, summing first over α, Lemmas 4.14(a) and 4.22(e) yield

∑

α/∈{β}

(
Παα

tα

)2

Wαα

(
Eβ [Z2

αβ ]− Eαβ [Z2
αβ ]
)
≺ N−1/2.

Summing over β and applying |Vββ |≤ 1,

IV =

∗∑

α,β

(
Παα

tα

Πββ

tβ

)2

Eαβ [Z2
αβ ]VββWαα +O≺(N1/2).

Finally, let us verify

Eαβ [Z2
αβ ] = N−1∂zm0 +O≺(N−3/2). (4.69)

First note that Eαβ [Z2
αβ ] = N−2 Tr[(G

(αβ)
N )2]. Writing G

(αβ)
N = GN + R, Lemma 4.17(c) implies
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that each entry of R is O≺(N−1). Then Tr[(G
(αβ)
N )2] = TrG2

N + 2 TrGNR+ TrR2. We have

TrGNR =
∑

i

GiiRii+
∑

i6=j

GijRij ≺
∑

i

1 ·N−1 +
∑

i 6=j

N−1/2 ·N−1 ≺ N1/2, TrR2 =
∑

i,j

R2
ij ≺ 1.

Hence Eαβ [Z2
αβ ] = N−2 TrG2

N + O≺(N−3/2). Next, note that N−1 TrG2
N = ∂zmN by the spectral

representation of GN . From Lemma 4.20, mN −m0 ≺ N−1. Applying the same Lipschitz continuity

and Cauchy integral argument as in Section 4.1.1, we obtain ∂zmN−∂zm0 ≺ N−1, and hence (4.69).

Combining these arguments,

Tr ∆V∆W = I + II + III + IV +O≺(1) = N−1(∂zm0)

∗∑

α,β

(
Παα

tα

Πββ

tβ

)2

VββWαα +O≺(N1/2).

Including the α = β case into the sum introduces an O≺(1) error. Then writing
∑
β Vββ(Πββ/tβ)2 =

Tr(V [Id +m0T ]−2) and similarly for W concludes the proof.



Chapter 5

General bulk eigenvalue law

In this chapter, we prove Theorems 2.19 and 2.20, which establish fixed-point equations for the bulk

eigenvalue distribution of Σ̂ for general, unstructured covariances Σ1, . . . ,Σk. Our proof uses the

tools of operator-valued free probability theory, in particular rectangular probability spaces and their

connection to operator-valued freeness developed in [BG09], and the free deterministic equivalents

approach of [SV12]. We first provide an overview of the proof strategy.

Let us write αr in (2.1) as αr =
√
mrGrΣ

1/2
r , where Gr ∈ Rmr×p has i.i.d. N (0, 1/mr) entries.

Then Σ̂ = Y ′BY takes the form

Σ̂ =

k∑

r,s=1

Σ1/2
r G′r(

√
mrmsU

′
rBUs)GsΣ

1/2
s .

We observe the following: If O0, O1, . . . , Ok ∈ Rp×p and Ok+r ∈ Rmr×mr for each r = 1, . . . , k are

real orthogonal matrices, then by rotational invariance of Gr, the eigenvalue measure µΣ̂ remains

invariant in law under the transformations

Σ1/2
r 7→ Hr := O′rΣ

1/2
r O0,

√
mrmsU

′
rBUs 7→ Frs := O′k+r(

√
mrmsU

′
rBUs)Ok+s.

Hence we may equivalently consider the matrix

W =

k∑

r,s=1

H ′rG
′
rFrsGsHs (5.1)

for O0, . . . , O2k independent and Haar-distributed. The families {Frs}, {Gr}, {Hr} are independent

of each other, with each family satisfying a certain joint orthogonal invariance in law (formalized in

Section 5.1).

Following [BG09], we embed the matrices {Frs}, {Gr}, {Hr} into a square matrix space CN×N .

128



CHAPTER 5. GENERAL BULK EIGENVALUE LAW 129

We then consider deterministic elements {frs}, {gr}, {hr} in a von Neumann algebra A with tracial

state τ , such that these elements model the embedded matrices, and {frs}, {gr}, and {hr} are free

with amalgamation over a diagonal sub-algebra of projections in A. We follow the deterministic

equivalents approach of [SV12] and allow (A, τ) and {frs}, {gr}, {hr} to also depend on n and p.

Our proof of Theorem 2.19 consists of two steps:

1. For independent, jointly orthogonally-invariant families of random matrices, we formalize the

notion of a free deterministic equivalent and prove an asymptotic freeness result establishing

validity of this approximation.

2. For our specific model of interest, we show that the Stieltjes transform of w :=
∑
r,s h

∗
rg
∗
rfrsgshs

in the free model satisfies the equations (2.23–2.25).

We establish separately the existence and uniqueness of the fixed point to (2.23–2.24) using a con-

tractive mapping argument and uniqueness of analytic continuation. This implies that the Stieltjes

transform of w in step 2 is uniquely determined by (2.23–2.25), which implies by step 1 that (2.23–

2.25) asymptotically determine the Stieltjes transform of W .

Notation

For a ∗-algebra A and elements (ai)i∈I of A, 〈ai : i ∈ I〉 denotes the sub-∗-algebra generated by

(ai)i∈I . We write 〈{ai}〉 if the index set I is clear from context. If A is a von Neumann algebra,

〈{ai}〉W∗ denotes the generated von Neumann sub-algebra, i.e. the ultraweak closure of 〈{ai}〉, and

‖ai‖ denotes the C∗-norm.

5.1 Operator-valued free probability

5.1.1 Background

We review definitions from operator-valued free probability theory and its application to rectangular

random matrices, drawn from [VDN92, Voi95, BG09].

Definition. A non-commutative probability space (A, τ) is a unital ∗-algebra A over C and

a ∗-linear functional τ : A → C called the trace that satisfies, for all a, b ∈ A and for 1A ∈ A the

multiplicative unit,

τ(1A) = 1, τ(ab) = τ(ba).

For our purposes, A will always be a von Neumann algebra having norm ‖·‖, and τ a positive,

faithful, and normal trace. In particular, τ will be norm-continuous with |τ(a)|≤ ‖a‖.
Following [BG09], we embed rectangular matrices into a larger square space according to the

following structure.
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Definition. Let (A, τ) be a non-commutative probability space and d ≥ 1 a positive integer. For

p1, . . . , pd ∈ A, (A, τ, p1, . . . , pd) is a rectangular probability space if p1, . . . , pd are non-zero

pairwise-orthogonal projections summing to 1, i.e. for all r 6= s ∈ {1, . . . , d},

pr 6= 0, pr = p∗r = p2
r, prps = 0, p1 + . . .+ pd = 1.

An element a ∈ A is simple, or (r, s)-simple, if praps = a for some r, s ∈ {1, . . . , d} (possibly r = s).

Example 5.1. Let N1, . . . , Nd ≥ 1 be positive integers and denote N = N1 + . . . + Nd. Consider

the ∗-algebra A = CN×N , with the involution ∗ given by the conjugate transpose map A 7→ A∗. For

A ∈ CN×N , let τ(A) = N−1 TrA. Then (A, τ) = (CN×N , N−1 Tr) is a non-commutative probability

space. Any A ∈ CN×N may be written in block form as

A =




A11 A12 · · · A1d

A21 A22 · · · A2d

...
...

. . .
...

Ad1 Ad2 · · · Add



,

where Ast ∈ CNs×Nt . For each r = 1, . . . , d, denote by Pr the matrix with (r, r) block equal to IdNr

and (s, t) block equal to 0 for all other s, t. Then Pr is a projection, and (CN×N , N−1 Tr, P1, . . . , Pd)

is a rectangular probability space. A ∈ CN×N is simple if Ast 6= 0 for at most one block (s, t).

In a rectangular probability space, the projections p1, . . . , pd generate a sub-∗-algebra

D := 〈p1, . . . , pd〉 =

{
d∑

r=1

zrpr : zr ∈ C

}
. (5.2)

We may define a ∗-linear map FD : A → D by

FD(a) =

d∑

r=1

prτr(a), τr(a) = τ(prapr)/τ(pr), (5.3)

which is a projection onto D in the sense FD(d) = d for all d ∈ D. In Example 5.1, D consists of

matrices A ∈ CN×N for which Arr is a multiple of the identity for each r and Ars = 0 for each

r 6= s. In this example, τr(A) = N−1
r Trr A where Trr A = TrArr, so FD encodes the trace of each

diagonal block.

The tuple (A,D,FD) is an example of the following definition for an operator-valued probability

space.

Definition. A B-valued probability space (A,B,FB) is a ∗-algebra A, a sub-∗-algebra B ⊆ A
containing 1A, and a ∗-linear map FB : A → B called the conditional expectation satisfying, for
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all b, b′ ∈ B and a ∈ A,

FB(bab′) = bFB(a)b′, FB(b) = b.

We identify C ⊂ A as a sub-algebra via the inclusion map z 7→ z1A, and we write 1 for 1A and z

for z1A. Then a non-commutative probability space (A, τ) is also a C-valued probability space with

B = C and FB = τ .

Definition. Let (A, τ) be a non-commutative probability space and FB : A → B a conditional

expectation onto a sub-algebra B ⊂ A. FB is τττ-invariant if τ ◦ FB = τ .

It is verified that FD : A → D defined by (5.3) is τ -invariant. When B is a von Neumann sub-

algebra of (a von Neumann algebra) A, there exists a unique τ -invariant conditional expectation

FB : A → B, which is norm-continuous and satisfies ‖FB(a)‖≤ ‖a‖. If D ⊆ B ⊆ A are nested von

Neumann sub-algebras with τ -invariant conditional expectations FD : A → D, FB : A → B, then

we have the analogue of the classical tower property,

FD = FD ◦ FB. (5.4)

We note that D in (5.2) is a von Neumann sub-algebra of A, as it is finite-dimensional.

In the space (A, τ), a ∈ A may be thought of as an analogue of a bounded random variable,

τ(a) its expectation, and FB(a) its conditional expectation with respect to a sub-sigma-field. The

following definitions then provide an analogue of the conditional distribution of a, and more generally

of the conditional joint distribution of a collection (ai)i∈I .

Definition. Let B be a ∗-algebra and I be any set. A ∗-monomial in the variables {xi : i ∈ I}
with coefficients in B is an expression of the form b1y1b2y2 . . . bl−1yl−1bl where l ≥ 1, b1, . . . , bl ∈ B,

and y1, . . . , yl−1 ∈ {xi, x∗i : i ∈ I}. A ∗-polynomial in {xi : i ∈ I} with coefficients in B is any

finite sum of such monomials.

We write Q(ai : i ∈ I) as the evaluation of a ∗-polynomial Q at xi = ai.

Definition. Let (A,B,FB) be a B-valued probability space, let (ai)i∈I be elements of A, and let Q
denote the set of all ∗-polynomials in variables {xi : i ∈ I} with coefficients in B. The (joint) B-law

of (ai)i∈I is the collection of values in B

{FB[Q(ai : i ∈ I)]}Q∈Q. (5.5)

In the scalar setting where B = C and FB = τ , a ∗-monomial takes the simpler form zy1y2 . . . yl−1

for z ∈ C and y1, . . . , yl−1 ∈ {xi, x∗i : i ∈ I} (because C commutes with A). Then the collection

of values (5.5) is determined by the scalar-valued moments τ(w) for all words w in the letters

{xi, x∗i : i ∈ I}. This is the analogue of the unconditional joint distribution of a family of bounded

random variables, as specified by the joint moments.
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Finally, the following definition of operator-valued freeness, introduced in [Voi95], has similarities

to the notion of conditional independence of sub-sigma-fields in the classical setting.

Definition. Let (A,B,FB) be a B-valued probability space and (Ai)i∈I a collection of sub-∗-algebras

of A which contain B. (Ai)i∈I are BBB-free, or free with amalgamation over B, if for all m ≥ 1, for

all i1, . . . , im ∈ I with i1 6= i2, i2 6= i3, . . ., im−1 6= im, and for all a1 ∈ Ai1 , . . . , am ∈ Aim , the

following implication holds:

FB(a1) = FB(a2) = . . . = FB(am) = 0⇒ FB(a1a2 . . . am) = 0.

Subsets (Si)i∈I of A are B-free if the sub-∗-algebras (〈Si,B〉)i∈I are.

In the classical setting, the joint law of (conditionally) independent random variables is deter-

mined by their marginal (conditional) laws. A similar statement holds for freeness:

Proposition 5.2. Suppose (A,B,FB) is a B-valued probability space, and subsets (Si)i∈I of A are

B-free. Then the B-law of
⋃
i∈I Si is determined by the individual B-laws of the Si’s.

Proof. See [Voi95, Proposition 1.3].

5.1.2 Free deterministic equivalents and asymptotic freeness

Free deterministic equivalents were introduced in [SV12]. Here, we formalize a bit this definition

for independent jointly orthogonally-invariant families of matrices, and we establish closeness of the

random matrices and the free approximation in a general setting.

Definition 5.3. For fixed d ≥ 1, consider two sequences of N -dependent rectangular probability

spaces (A, τ, p1, . . . , pd) and (A′, τ ′, p′1, . . . , p′d) such that for each r ∈ {1, . . . , d}, as N →∞,

|τ(pr)− τ ′(p′r)|→ 0.

For a common index set I, consider elements (ai)i∈I of A and (a′i)i∈I of A′. Then (ai)i∈I and

(a′i)i∈I are asymptotically equal in DDD-law if the following holds: For any r ∈ {1, . . . , d} and any

∗-polynomial Q in the variables {xi : i ∈ I} with coefficients in D = 〈p1, . . . , pd〉, denoting by Q′

the corresponding ∗-polynomial with coefficients in D′ = 〈p′1, . . . , p′d〉, as N →∞,

|τr[Q(ai : i ∈ I)]− τ ′r[Q′(a′i : i ∈ I)]| → 0. (5.6)

If (ai)i∈I and/or (a′i)i∈I are random elements of A and/or A′, then they are asymptotically equal

in DDD-law a.s. if the above holds almost surely for each individual ∗-polynomial Q.

In the above, τr and τ ′r are defined by (5.3). “Corresponding” means that Q′ is obtained by

expressing each coefficient d ∈ D of Q in the form (5.2) and replacing p1, . . . , pd by p′1, . . . , p
′
d.



CHAPTER 5. GENERAL BULK EIGENVALUE LAW 133

We will apply Definition 5.3 by taking one of the two rectangular spaces to be (CN×N , N−1 Tr)

as in Example 5.1, containing random elements, and the other to be an approximating deterministic

model. (We will use “distribution” for random matrices to mean their distribution as random

elements of CN×N in the usual sense, reserving the term “B-law” for Definition 5.1.1.) Freeness

relations in the deterministic model will emerge from the following notion of rotational invariance

of the random matrices.

Definition 5.4. Consider (CN×N , N−1 Tr, P1, . . . , Pd) as in Example 5.1. A family of random

matrices (Hi)i∈I in CN×N is block-orthogonally invariant if, for any orthogonal matrices Or ∈
RNr×Nr for r = 1, . . . , d, denoting O = diag(O1, . . . , Od) ∈ RN×N , the joint distribution of (Hi)i∈I

is equal to that of (O′HiO)i∈I .

Let us provide several examples. We discuss the constructions of the spaces (A, τ, p1, . . . , pd) for

these examples in Appendix B.2.

Example 5.5. Fix r ∈ {1, . . . , d} and let G ∈ CN×N be a simple random matrix such that the

diagonal block Grr ∈ CNr×Nr is distributed as the GUE or GOE, scaled to have entries of variance

1/Nr. (Simple means Gst = 0 for all other blocks (s, t).) Let (A, τ, p1, . . . , pd) be a rectangular

space with τ(ps) = Ns/N for each s = 1, . . . , d, such that A contains a self-adjoint simple element

g satisfying g = g∗ and prgpr = g, with moments given by the semi-circle law:

τr(g
l) =

∫ 2

−2

xl

2π

√
4− x2 dx for all l ≥ 0.

For any corresponding ∗-polynomials Q and q as in Definition 5.3, we may verify N−1
r Trr Q(G) −

τr(q(g))→ 0 a.s. by the classical Wigner semi-circle theorem [Wig55]. Then G and g are asymptot-

ically equal in D-law a.s. Furthermore, G is block-orthogonally invariant.

Example 5.6. Fix r1 6= r2 ∈ {1, . . . , d} and let G ∈ CN×N be a simple random matrix such

that the block Gr1r2 has i.i.d. Gaussian or complex Gaussian entries with variance 1/Nr1 . Let

(A, τ, p1, . . . , pd) satisfy τ(ps) = Ns/N for each s, such that A contains a simple element g satisfying

pr1gpr2 = g, where g∗g has moments given by the Marcenko-Pastur law:

τr2((g∗g)l) =

∫
xlνNr2/Nr1 (x)dx for all l ≥ 0

where νλ is the standard Marcenko-Pastur density

νλ(x) =
1

2π

√
(λ+ − x)(x− λ−)

λx
1[λ−,λ+](x), λ± = (1±

√
λ)2. (5.7)

By definition of τr and the cyclic property of τ , we also have

τr1((gg∗)l) = (Nr2/Nr1)τr2((g∗g)l).
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For any corresponding ∗-polynomials Q and q as in Definition 5.3, we may verify N−1
r2 Trr2 Q(G)−

τr2(q(g)) → 0 and N−1
r1 Trr1 Q(G) − τr1(q(g)) → 0 a.s. by the classical Marcenko-Pastur theorem

[MP67]. Then G and g are asymptotically equal in D-law a.s., and G is block-orthogonally invariant.

Example 5.7. Let B1, . . . , Bk ∈ CN×N be deterministic simple matrices, say with PriBiPsi = Bi

for each i = 1, . . . , k and ri, si ∈ {1, . . . , d}. Let O1 ∈ RN1×N1 , . . . , Od ∈ RNd×Nd be independent

Haar-distributed orthogonal matrices, define O = diag(O1, . . . , Od) ∈ RN×N , and let B̌i = O′BiO.

Let (A, τ, p1, . . . , pd) satisfy τ(ps) = Ns/N for each s, such that A contains simple elements b1, . . . , bk

satisfying pribipsi = bi for each i = 1, . . . , k, and

N−1
r Trr Q(B1, . . . , Bk) = τr(q(b1, . . . , bk)) (5.8)

for any corresponding ∗-polynomials Q and q with coefficients in 〈P1, . . . , Pd〉 and 〈p1, . . . , pd〉. As

Trr Q(B1, . . . , Bk) is invariant under Bi 7→ O′BiO, (5.8) holds also with B̌i in place of Bi. Then

(B̌i)i∈{1,...,k} and (bi)i∈{1,...,k} are exactly (and hence also asymptotically) equal in D-law, and

(B̌i)i∈{1,...,k} is block-orthogonally invariant by construction.

To study the interaction of several independent and block-orthogonally invariant matrix families,

we will take a deterministic model for each family, as in Examples 5.5, 5.6, and 5.7 above, and

consider a combined model in which these families are D-free:

Definition 5.8. Consider (CN×N , N−1 Tr, P1, . . . , Pd) as in Example 5.1. Suppose

(Hi)i∈I1 , . . . , (Hi)i∈IJ

are finite families of random matrices in CN×N such that:

• These families are independent from each other, and

• For each j = 1, . . . , J , (Hi)i∈Ij is block-orthogonally invariant.

Then a free deterministic equivalent for (Hi)i∈I1 , . . . , (Hi)i∈IJ is any (N -dependent) rectangular

probability space (A, τ, p1, . . . , pd) and families (hi)i∈I1 , . . . , (hi)i∈IJ of deterministic elements in A
such that, as N →∞:

• For each r = 1, . . . , d, |N−1 TrPr − τ(pr)|→ 0,

• For each j = 1, . . . , J , (Hi)i∈Ij and (hi)i∈Ij are asymptotically equal in D-law a.s., and

• (hi)i∈I1 , . . . , (hi)i∈IJ are free with amalgamation over D = 〈p1, . . . , pd〉.

We then have the following asymptotic freeness theorem, which establishes the validity of this

approximation.
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Theorem 5.9. In the space (CN×N , N−1 Tr, P1, . . . , Pd) of Example 5.1, suppose (Hi)i∈I1 , . . .,

(Hi)i∈IJ are independent, block-orthogonally invariant families of random matrices, and let (hi)i∈I1 ,

. . ., (hi)i∈IJ be any free deterministic equivalent in (A, τ, p1, . . . , pd). If there exist constants C, c > 0

such that c < Nr/N for all r and ‖Hi‖< C a.s. for all i ∈ Ij , all Ij , and all large N , then

(Hi)i∈Ij ,j∈{1,...,J} and (hi)i∈Ij ,j∈{1,...,J} are asymptotically equal in D-law a.s.

More informally, if (hi)i∈Ij asymptotically models the family (Hi)i∈Ij for each j, and these

matrix families are independent and block-orthogonally invariant, then a system in which (hi)i∈Ij

are D-free asymptotically models the matrices jointly over j.

The proof of this theorem is contained in Appendix B. The theorem is analogous to [BG09,

Theorem 1.6] and [SV12, Theorem 2.7], which establish similar results for complex unitary invariance.

It permits multiple matrix families (where matrices within each family are not independent), uses

the almost-sure trace N−1 Tr rather than E ◦ N−1 Tr, and imposes boundedness rather than joint

convergence assumptions. This last point fully embraces the deterministic equivalents approach.

We will apply Theorem 5.9 in the form of the following corollary, whose proof we also defer to

Appendix B: Suppose that w ∈ A satisfies |τ(wl)|≤ Cl for a constant C > 0 and all l ≥ 1. We may

define its Stieltjes transform by the convergent series

mw(z) = τ((w − z)−1) = −
∞∑

l≥0

z−(l+1)τ(wl) (5.9)

for z ∈ C+ with |z|> C, where we use the convention w0 = 1 for all w ∈ A.

Corollary 5.10. Under the assumptions of Theorem 5.9, let Q be a self-adjoint ∗-polynomial (with

C-valued coefficients) in (xi)i∈Ij ,j∈{1,...,J}, and let

W = Q(Hi : i ∈ Ij , j ∈ {1, . . . , J}) ∈ CN×N ,

w = Q(hi : i ∈ Ij , j ∈ {1, . . . , J}) ∈ A.

Suppose |τ(wl)|≤ Cl for all N, l ≥ 1 and some C > 0. Then for a sufficiently large constant

C0 > 0, letting D = {z ∈ C+ : |z|> C0} and defining mW (z) = N−1 Tr(W − z IdN )−1 and

mw(z) = τ((w − z)−1),

mW (z)−mw(z)→ 0

pointwise almost surely over z ∈ D.

5.1.3 Computational tools

Our computations in the free model will use the tools of free cumulants, R-transforms, and Cauchy

transforms discussed in [Spe98, NSS02, SV12]. We review some relevant concepts here.
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Let (A,B,FB) be a B-valued probability space and FB : A → B a conditional expectation. For

l ≥ 1, the lth order free cumulant of FB is a map κBl : Al → B defined by FB and certain moment-

cumulant relations over the non-crossing partition lattice; we refer the reader to [SV12] and [Spe98,

Chapters 2 and 3] for details. We will use the properties that κBl is linear in each argument and

satisfies the relations

κBl (ba1, a2, . . . , al−1, alb
′) = bκBl (a1, . . . , al)b

′, (5.10)

κBl (a1, . . . , aj−1, ajb, aj+1, . . . , al) = κBl (a1, . . . , aj , baj+1, . . . , al) (5.11)

for any b, b′ ∈ B and a1, . . . , al ∈ A.

For a ∈ A, the BBB-valued RRR-transform of a is defined, for b ∈ B, as

RBa (b) =
∑

l≥1

κBl (ab, . . . , ab, a). (5.12)

The BBB-valued Cauchy transform of a is defined, for invertible b ∈ B, as

GBa (b) = FB((b− a)−1) =
∑

l≥0

FB(b−1(ab−1)l), (5.13)

with the convention a0 = 1 for all a ∈ A. The moment-cumulant relations imply that GBa (b) and

RBa (b) + b−1 are inverses with respect to composition:

Proposition 5.11. Let (A,B,FB) be a B-valued probability space. For a ∈ A and invertible b ∈ B,

GBa (b−1 +RBa (b)) = b, (5.14)

GBa (b) =
(
b−RBa (GBa (b))

)−1
. (5.15)

Proof. See [Voi95, Theorem 4.9] and also [Spe98, Theorem 4.1.12].

Remark. When A is a von Neumann algebra, the right sides of (5.12) and (5.13) may be under-

stood as convergent series in A with respect to the norm ‖·‖, for sufficiently small ‖b‖ and ‖b−1‖
respectively. Indeed, (5.13) defines a convergent series in B when ‖b−1‖< 1/‖a‖, with

‖GBa (b)‖≤
∑

l≥0

‖b−1‖l+1‖a‖l= ‖b−1‖
1− ‖a‖‖b−1‖ . (5.16)

Also, explicit inversion of the moment-cumulant relations for the non-crossing partition lattice yields

the cumulant bound

‖κBl (a1, . . . , al)‖≤ 16l
l∏

i=1

‖ai‖ (5.17)
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(see [NS06, Proposition 13.15]), so (5.12) defines a convergent series in B when 16‖b‖< 1/‖a‖, with

‖RBa (b)‖≤
∑

l≥1

16l‖a‖l‖b‖l−1=
16‖a‖

1− 16‖a‖‖b‖ .

The identities (5.14) and (5.15) hold as equalities of elements in B when ‖b‖ and ‖b−1‖ are sufficiently

small, respectively.

Our computation will pass between R-transforms and Cauchy transforms with respect to nested

sub-algebras of A. Central to this approach is the following result from [NSS02] (see also [SV12]):

Proposition 5.12. Let (A,D,FD) be a D-valued probability space, let B,H ⊆ A be sub-∗-algebras

containing D, and let FB : A → B be a conditional expectation such that FD ◦ FB = FD. Let

κBl and κDl denote the free cumulants for FB and FD. If B and H are D-free, then for all l ≥ 1,

h1, . . . , hl ∈ H, and b1, . . . , bl−1 ∈ B,

κBl (h1b1, . . . , hl−1bl−1, hl) = κDl (h1F
D(b1), . . . , hl−1F

D(bl−1), hl).

Proof. See [NSS02, Theorem 3.6].

For sub-algebras D ⊆ B ⊆ A and conditional expectations FD : A → D and FB : A → B
satisfying (5.4), we also have for any a ∈ A and invertible d ∈ D (with sufficiently small ‖d−1‖), by

(5.13),

GDa (d) = FD ◦GBa (d). (5.18)

Finally, note that for B = C and FB = τ , the scalar-valued Cauchy transform GC
a (z) is simply

−ma(z) from (5.9). (The minus sign is a difference in sign convention for the Cauchy/Stieltjes

transform.)

5.2 Computation in the free model

We will prove analogues of Theorems 2.19 and 2.20 for a slightly more general matrix model: Fix

k ≥ 1, let p, n1, . . . , nk,m1, . . . ,mk ∈ N, and denoteM =
∑k
r=1mr. Let F ∈ CM×M be deterministic

with F ∗ = F , and denote by Frs ∈ Cmr×ms its (r, s) submatrix. For r = 1, . . . , k, let Hr ∈ Cnr×p

be deterministic, and let Gr be independent random matrices such that either Gr ∈ Rmr×nr with

(Gr)ij
iid∼ N (0,m−1

r ) or Gr ∈ Cmr×nr with Im(Gr)ij ,Re(Gr)ij
iid∼ N (0, (2mr)

−1). Define

W =

k∑

r,s=1

H∗rG
∗
rFrsGsHs ∈ Cp×p,
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with empirical spectral measure µW . Denote y ·H∗H =
∑k
s=1 ysH

∗
sHs, and let D(x) and Trr be as

in Theorem 2.19.

Theorem 5.13. Suppose p, n1, . . . , nk,m1, . . . ,mk → ∞, such that c < mr/p < C, c < nr/p < C,

‖Hr‖< C, and ‖Frs‖< C for all r, s = 1, . . . , k and some constants C, c > 0. Then:

(a) For each z ∈ C+, there exist unique values x1, . . . , xk ∈ C+ ∪ {0} and y1, . . . , yk ∈ C+ that

satisfy, for r = 1, . . . , k, the equations

xr = − 1

mr
Tr
(
(z Idp +y ·H∗H)−1H∗rHr

)
, (5.19)

yr = − 1

mr
Trr

(
[IdM +FD(x)]−1F

)
. (5.20)

(b) µW − µ0 → 0 weakly a.s. for a probability measure µ0 on R with Stieltjes transform

m0(z) = −1

p
Tr
(
(z Idp +y ·H∗H)−1

)
. (5.21)

(c) For each z ∈ C+, the values xr, yr in (a) are the limits, as t → ∞, of x
(t)
r , y

(t)
r computed by

iterating (5.19–5.20) in the manner of Theorem 2.20.

Theorems 2.19 and 2.20 follow by specializing this result to Frs =
√
mrmsU

′
rBUs, nr = p, and

Hr = Σ
1/2
r .

5.2.1 Defining a free deterministic equivalent

Consider the transformations

Hr 7→ O′rHrO0, Frs 7→ O′k+rFrsOk+s

for independent Haar-distributed orthogonal matrices O0, . . . , O2k of the appropriate sizes. The

eigenvalue measure µW remains invariant in law under these transformations. Hence it suffices to

prove Theorem 5.13 with Hr and Frs replaced by these randomly-rotated matrices, which (with a

slight abuse of notation) we continue to denote by Hr and Frs.

Let N = p +
∑k
r=1 nr +

∑k
r=1mr, and embed the matrices W,Hr, Gr, Frs as simple elements

of CN×N in the following regions of the block-matrix decomposition corresponding to CN = Cp ⊕
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Cn1 ⊕ · · · ⊕ Cnk ⊕ Cm1 ⊕ · · · ⊕ Cmk :

W H∗1 · · · H∗k

H1 G∗1
...

. . .

Hk G∗k

G1 F11 · · · F1k

. . .
...

. . .
...

Gk Fk1 · · · Fkk

Denote by P0, . . . , P2k the diagonal projections corresponding to the above decomposition, and by

W̃ , F̃rs, G̃r, H̃r ∈ CN×N the embedded matrices. (For example, P0 = diag(Idp, 0, . . . , 0), and W̃ has

upper-left block equal to W and remaining blocks 0.) Then W̃ , F̃rs, G̃r, H̃r are simple elements of

the rectangular space (CN×N , N−1 Tr, P0, . . . , P2k), and the k+ 2 families {F̃rs}, {H̃r}, G̃1, . . ., G̃k

are independent of each other and are block-orthogonally invariant.

For the approximating free model, consider a second rectangular space (A, τ, p0, . . . , p2k) with

deterministic elements frs, gr, hr ∈ A, such that the following hold:

1. p0, . . . , p2k have traces

τ(p0) = p/N, τ(pr) = nr/N, τ(pk+r) = mr/N for all r = 1, . . . , k.

2. frs, gr, hr are simple elements such that for all r, s ∈ {1, . . . , k},

pk+rfrspk+s = frs, pk+rgrpr = gr, prhrp0 = hr.

3. {frs : 1 ≤ r, s ≤ k} has the same joint D-law as {F̃rs : 1 ≤ r, s ≤ k}, and {hr : 1 ≤ r ≤ k} has

the same joint D-law as {H̃r : 1 ≤ r ≤ k}. I.e., for any r ∈ {0, . . . , 2k} and any non-commutative

∗-polynomials Q1, Q2 with coefficients in 〈P0, . . . , P2k〉, letting q1, q2 denote the corresponding

∗-polynomials with coefficients in 〈p0, . . . , p2k〉,

τr [q1(fst : s, t ∈ {1, . . . , k})] = N−1
r Trr Q1(F̃st : s, t ∈ {1, . . . , k}), (5.22)

τr [q2(hs : s ∈ {1, . . . , k})] = N−1
r Trr Q2(H̃s : s ∈ {1, . . . , k}). (5.23)

4. For each r, g∗rgr has Marcenko-Pastur law with parameter λ = nr/mr. I.e. for νλ as in (5.7),

τr((g
∗
rgr)

l) =

∫
xlνnr/mr (x)dx for all l ≥ 0. (5.24)
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5. The k + 2 families {frs}, {hr}, g1, . . . , gk are free with amalgamation over D = 〈p0, . . . , p2k〉.

The right sides of (5.22) and (5.23) are deterministic, as they are invariant to the random rotations

of Frs and Hr. Also, (5.24) completely specifies τ(q(gr)) for any ∗-polynomial q with coefficients in

D. Then these conditions 1–5 fully specify the joint D-law of all elements frs, gr, hr ∈ A. These

elements are a free deterministic equivalent for F̃rs, G̃r, H̃r ∈ CN×N in the sense of Definition 5.8.

The following lemma establishes existence of this model as a von Neumann algebra. We indicate

the references that establish this type of construction in Appendix B.

Lemma 5.14. Under the conditions of Theorem 5.13, there exists a (N -dependent) rectangular

probability space (A, τ, p0, . . . , p2k) such that:

(a) A is a von Neumann algebra and τ is a positive, faithful, normal trace.

(b) A contains elements frs, gr, hr for r, s ∈ {1, . . . , k} that satisfy the above conditions. Further-

more, the von Neumann sub-algebras 〈D, {frs}〉W∗ , 〈D, {hr}〉W∗ , 〈D, g1〉W∗ , ..., 〈D, gk〉W∗ are

free over D.

(c) There exists a constant C > 0 such that ‖frs‖, ‖hr‖, ‖gr‖≤ C for all N and all r, s.

5.2.2 Computing the Stieltjes transform

We will use twice the following intermediary lemma:

Lemma 5.15. Let (A, τ, q0, q1, . . . , qk) be a rectangular probability space, where A is von Neumann

and τ is positive, faithful, and normal. Let D = 〈q0, . . . , qk〉, let B, C ⊂ A be von Neumann sub-

algebras containing D that are free over D, and let FD : A → D and FC : A → C be the τ -invariant

conditional expectations.

Let brs ∈ B and cr ∈ C for 1 ≤ r, s ≤ k be such that qrbrsqs = brs, qrcr = cr, ‖brs‖≤ C, and

‖cr‖≤ C for some constant C > 0. Define a =
∑k
r,s=1 c

∗
rbrscs and b =

∑k
r,s=1 brs. Then for e ∈ C

with ‖e‖ sufficiently small,

RCa(e) =

k∑

r=1

c∗rcrτr

(
RDb

(
k∑

s=1

τs(csec
∗
s)qs

))
,

where RCa and RDb are the C-valued and D-valued R-transforms of a and b.

Proof. We use the computational idea of [SV12]: Denote by κCl and κDl the C-valued and D-valued

free cumulants. For l ≥ 1 and e ∈ C,

κCl (ae, . . . , ae, a)

= κCl

(
k∑

r,s=1

c∗rbrscse, . . . ,

k∑

r,s=1

c∗rbrscse,

k∑

r,s=1

c∗rbrscs

)
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=

k∑

r1,s1,...,rl,sl=1

κCl (c∗r1br1s1cs1e, . . . , c
∗
rl−1

brl−1sl−1
csl−1

e, c∗rlbrlslcsl)

=

k∑

r1,s1,...,rl,sl=1

c∗r1κ
C
l (br1s1cs1ec

∗
r2 , . . . , brl−1sl−1

csl−1
ec∗rl , brlsl) csl

=

k∑

r1,s1,...,rl,sl=1

c∗r1κ
D
l (br1s1F

D(cs1ec
∗
r2), . . . , brl−1sl−1

FD(csl−1
ec∗rl), brlsl) csl ,

where we applied the definition of a, multi-linearity of κCl , the identities (5.10) and (5.11), and

Proposition 5.12 using freeness of B and C over D.

By the identity cr = qrcr, each csec
∗
r is simple, and we have from (5.3)

FD(csec
∗
r) =





0 if s 6= r

τs(csec
∗
s)qs if s = r.

Furthermore, for any d ∈ D, as d = τ0(d)q0 + . . .+ τk(d)qk, we have c∗rdcs = c∗rcrτr(d) if r = s and 0

otherwise. Hence we may restrict the above sum to s1 = r2, s2 = r3, . . . , sl−1 = rl, sl = r1. Then,

setting

d =

k∑

r=1

τr(crec
∗
r)qr (5.25)

and applying the identity qrbrsqs = brs,

κCl (ae, . . . , ae, a) =

k∑

r1,...,rl=1

c∗r1cr1τr1
(
κDl (br1r2d, . . . , brl−1rld, brlr1)

)
. (5.26)

On the other hand, similar arguments yield

κDl (bd, . . . , bd, b)

=

k∑

r1,s1,...,rl,sl=1

κDl (br1s1d, . . . , brl−1sl−1
d, brlsl)

=

k∑

r1,s1,...,rl,sl=1

qr1κ
D
l (br1s1qs1dqr2 , . . . , brl−1sl−1

qsl−1
dqrl , brlsl) qsl

=

k∑

r1,...,rl=1

qr1κ
D
l (br1r2d, . . . , brl−1rld, brlr1).

Comparing with (5.26), κCl (ae, . . . , ae, a) =
∑k
r=1 c

∗
rcrτr

(
κDl (bd, . . . , bd, b)

)
. Summing over l and
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recalling (5.12), for ‖e‖ sufficiently small,

RCa(e) =
∑

l≥1

k∑

r=1

c∗rcrτr
(
κDl (bd, . . . , bd, b)

)
.

Noting that ‖d‖≤∑k
s=1‖cs‖2‖e‖ and applying (5.17), we may exchange the order of summations on

the right and move the summation over l inside τr by linearity and norm-continuity of τ , yielding

the desired result.

We now perform the desired computation of the Stieltjes transform of w.

Lemma 5.16. Under the conditions of Theorem 5.13, let (A, τ, p0, . . . , p2k) and frs, gr, hr be as in

Lemma 5.14, and let w =
∑k
r,s=1 h

∗
rg
∗
rfrsgshs. Then for a constant C0 > 0, defining D = {z ∈ C+ :

|z|> C0}, there exist analytic functions x1, . . . , xk : D → C+ ∪ {0} and y1, . . . , yk : D → C that

satisfy, for every z ∈ D and for m0(z) = τ0((w − z)−1), the equations (5.19–5.21).

Proof. If Hr = 0 for some r, then we may set xr ≡ 0, define yr by (5.20), and reduce to the case

k − 1. Hence, it suffices to consider Hr 6= 0 for all r.

Define the von Neumann sub-algebras D = 〈pr : 0 ≤ r ≤ 2k〉, F = 〈D, {frs}〉W∗ , G =

〈D, {gr}〉W∗ , and H = 〈D, {hr}〉W∗ . Denote by FD, RD, and GD the τ -invariant conditional expec-

tation onto D and the D-valued R-transform and Cauchy transform, and similarly for F , G, and

H.

We first work algebraically (Steps 1–3), assuming that arguments b to Cauchy transforms are

invertible with ‖b−1‖ sufficiently small, arguments b to R-transforms have ‖b‖ sufficiently small,

and applying series expansions for (b − a)−1. We will check that these assumptions hold and also

establish the desired analyticity properties in Step 4.

Step 1: We first relate the D-valued Cauchy transform of w to that of v =
∑k
r,s=1 g

∗
rfrsgs. We

apply Lemma 5.15 with q0 = p0 +
∑2k
r=k+1 pr, qr = pr for r = 1, . . . , k, C = H, and B = 〈F ,G〉.

Then for c ∈ H,

RHw (c) =

k∑

r=1

h∗rhrτr

(
RDv
( k∑

s=1

psτs(hsch
∗
s)
))

. (5.27)

To rewrite this using Cauchy transforms, for invertible d ∈ D and each r = 1, . . . , k, define

αr(d) = τr
(
hrG

H
w (d)h∗r

)
, (5.28)

βr(d) = τr

(
RDv
( k∑

s=1

psαs(d)
))

. (5.29)
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Then (5.15) and (5.27) with c = GHw (d) imply

GHw (d) =
(
d−RHw

(
GHw (d)

))−1
=
(
d−

k∑

r=1

h∗rhrβr(d)
)−1

. (5.30)

Projecting down to D using (5.18) yields

GDw(d) = FD
((

d−
k∑

r=1

h∗rhrβr(d)
)−1

)
. (5.31)

Applying (5.30) to (5.28),

αr(d) = τr

(
hr

(
d−

k∑

s=1

h∗shsβs(d)
)−1

h∗r

)
. (5.32)

Noting that (p1 + . . .+ pk)v(p1 + . . .+ pk) = v, (5.12) and (5.10) imply RDv (d) ∈ 〈p1, . . . , pk〉 for any

d ∈ D, so we may write (5.29) as

RDv
( k∑

r=1

prαr(d)
)

=

k∑

r=1

prβr(d).

For r = 0 and r ∈ {k+ 1, . . . , 2k}, set βr(d) = 0 and define αr(d) arbitrarily, say by αr(d) = ‖d−1‖.
Since vpr = prv = 0 if r = 0 or r ∈ {k + 1, . . . , 2k}, applying (5.12) and multi-linearity of κDl , we

may rewrite the above as

RDv
( 2k∑

r=0

prαr(d)
)

=

2k∑

r=0

prβr(d).

Applying (5.14) with b =
∑2k
r=0 prαr(d), we get

GDv

( 2k∑

r=0

pr

( 1

αr(d)
+ βr(d)

))
=

2k∑

r=0

prαr(d). (5.33)

The relation between GDw and GDv is given by (5.31), (5.32), and (5.33).

Step 2: Next, we relate the D-valued Cauchy transforms of v and u =
∑k
r,s=1 frs. We apply Lemma

5.15 with q0 =
∑k
r=0 pr, qr = pr+k for r = 1, . . . , k, C = G, and B = F . Then for c ∈ G,

RGv (c) =

k∑

r=1

g∗rgrτr+k

(
RDu
( k∑

s=1

ps+kτs+k(gscg
∗
s )
))

. (5.34)
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To rewrite this using Cauchy transforms, for invertible d ∈ D and all r = 1, . . . , k, define

γr+k(d) = τr+k(grG
G
v (d)g∗r ), (5.35)

δr+k(d) = τr+k

(
RDu
( k∑

s=1

ps+kγs+k(d)
))

. (5.36)

As in Step 1, for r = 0, . . . , k let us also define δr(d) = 0 and γr(d) = ‖d−1‖. Then, noting

(pk+1 + . . . + p2k)u(pk+1 + . . . + p2k) = u, the same arguments as in Step 1 yield the analogous

identities

GDv (d) = FD
((

d−
k∑

s=1

g∗sgsδs+k(d)
)−1

)
, (5.37)

γr+k(d) = τr+k

(
gr

(
d−

k∑

s=1

g∗sgsδs+k(d)
)−1

g∗r

)
, (5.38)

GDu

( 2k∑

r=0

pr

( 1

γr(d)
+ δr(d)

))
=

2k∑

r=0

prγr(d). (5.39)

As g∗rgr has moments given by (5.24), we may write (5.37) and (5.38) explicitly: Denote d =

d0p0 + . . .+ d2kp2k for d0, . . . , d2k ∈ C. As d is invertible, we have d−1 = d−1
0 p0 + . . .+ d−1

2k p2k. For

any x ∈ A that commutes with D,

(d− x)−1 =
∑

l≥0

d−1(xd−1)l =
∑

l≥0

xld−l−1.

So for r = 1, . . . , k, noting that pr = p2
r and that D commutes with itself,

τr
(
(d− x)−1

)
=
N

nr

∑

l≥0

τ(prx
ld−l−1pr)

=
N

nr

∑

l≥0

τ((prx
lpr)(prd

−1pr)
l+1) =

∑

l≥0

τr(x
l)

dl+1
r

.

Noting that g∗sgs commutes with D, applying the above to (5.37) with x =
∑k
s=1 g

∗
sgsδs+k(d), and

recalling (5.24),

τr(G
D
v (d)) =

∑

l≥0

τr((g
∗
rgr)

l)δr+k(d)l

dl+1
r

=

∫ ∑

l≥0

xlδr+k(d)l

dl+1
r

νnr/mr (x)dx
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=

∫
1

dr − xδr+k(d)
νnr/mr (x)dx

=
1

δr+k(d)
GC
νnr/mr

(dr/δr+k(d)), (5.40)

where GC
νnr/mr

is the Cauchy transform of the Marcenko-Pastur law νnr/mr .

Similarly, we may write (5.38) as

γr+k(d) =
nr
mr

τr

((
d−

k∑

s=1

g∗sgsδs+k(d)
)−1

g∗rgr

)

=
nr
mr

∫
x

dr − xδr+k(d)
νnr/mr (x)dx

=
nr
mr

(
− 1

δr+k(d)
+

dr
δr+k(d)2

GC
νnr/mr

(dr/δr+k(d))

)

=
nr
mr

(
− 1

δr+k(d)
+

dr
δr+k(d)

τr(G
D
v (d))

)
, (5.41)

where the first equality applies the cyclic property of τ and the definitions of τr+k and τr, the second

applies (5.24) upon passing to a power series and back as above, the third applies the definition of

the Cauchy transform, and the last applies (5.40). The relation between GDv and GDu is given by

(5.40), (5.41), and (5.39).

Step 3: We compute m0(z) for z ∈ C+ using (5.31), (5.32), (5.33), (5.40), (5.41), and (5.39). Fixing

z ∈ C+, let us write

αr = αr(z), βr = βr(z), dr =
1

αr
+ βr, d =

2k∑

r=0

drpr,

γr = γr(d), δr = δr(d), er =
1

γr
+ δr, e =

2k∑

r=0

erpr.

Applying (5.31) and projecting down to C,

m0(z) = −τ0
((

z −
k∑

r=1

h∗rhrβr

)−1
)
.

Note that h∗rhr commutes with D and p0h
∗
rhrp0 = h∗rhr for each r = 1, . . . , k. Then, passing to a

power series as in Step 2, and then applying (5.23) and the spectral calculus,

m0(z) = −
∑

l≥0

z−(l+1)τ0

(( k∑

r=1

h∗rhrβr

)l)
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= −
∑

l≥0

z−(l+1) 1

p
Tr

(( k∑

r=1

βrH
∗
rHr

)l)

= −1

p
Tr
(
z Idp−

k∑

r=1

βrH
∗
rHr

)−1

. (5.42)

Similarly, (5.32) implies for each r = 1, . . . , k

αr =
1

nr
Tr

((
z Idp−

k∑

s=1

βsH
∗
sHs

)−1

H∗rHr

)
. (5.43)

Now applying (5.40) and recalling (5.33) and the definition of dr, for each r = 1, . . . , k,

αr = τr(G
D
v (d)) =

1

δr+k
GC
νnr/mr

(
1

αrδr+k
+

βr
δr+k

)
.

Applying (5.15) and the Marcenko-Pastur R-transform RC
νλ

(z) = (1− λz)−1, this is rewritten as

βr
δr+k

= RC
νnr/mr

(αrδr+k) =
mr

mr − nrαrδr+k
. (5.44)

By (5.41) and (5.33),

γr+k =
nr
mr

αrβr
δr+k

. (5.45)

We derive two consequences of (5.44) and (5.45). First, substituting for βr in (5.45) using (5.44)

and recalling the definition of er+k yields

er+k =
mr

nrαr
. (5.46)

Second, rearranging (5.44), we get βr/δr+k = 1 + nrαrβr/mr. Inserting into (5.45) yields this time

βr =
mr

n2
rα

2
r

(mrγr+k − nrαr). (5.47)

By (5.39), for each r = 1, . . . , k,

γr+k = τr+k(GDu (e)) = τr+k((e− u)−1).

Passing to a power series for (e− u)−1, applying (5.22), and passing back,

γr+k =
1

mr
Trr+k ( diag (e0 Idp, . . . , e2k Idmk)− F̃ )

−1

=
1

mr
Trr ( diag (ek+1 Idm1 , . . . , e2k Idmk)− F )

−1
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=
1

mr
Trr(D

−1 − F )−1 (5.48)

where the last line applies (5.46) and sets D = diag(D1 Idm1
, . . . , Dk Idmk) for Dr = nrαr/mr.

Noting TrrD = nrαr, (5.47) yields

βr =
1

mrD2
r

Trr[(D
−1 − F )−1 −D]

=
1

mr
Trr[(F

−1 −D)−1] =
1

mr
Trr((IdM −FD)−1F ) (5.49)

where we used the Woodbury identity and TrrDAD = D2
r TrA. (These equalities hold when F is

invertible, and hence for all F by continuity.) Setting xr = −nrαr/mr and yr = −βr, we obtain

(5.19), (5.20), and (5.21) from (5.42), (5.43), and (5.49).

Step 4: Finally, we verify the validity of the preceding calculations when z ∈ D = {z ∈ C+ : |z|> C0}
and C0 > 0 is sufficiently large. Call a scalar quantity u = u(N, z) “uniformly bounded” if |u|< C

for all z ∈ D, all N , and some constants C0, C > 0. Call u “uniformly small” if for any constant

c > 0 there exists C0 > 0 such that |u|< c for all z ∈ D and all N .

As ‖w‖≤ C by Lemma 5.14(c), c = GHw (z) is well-defined by the convergent series (5.13) for

z ∈ D. Furthermore by (5.16), ‖c‖ is uniformly small, so we may apply (5.27). αr(z) as defined by

(5.28) satisfies

αr(z) = τr

(
hr

∞∑

l=0

FH
(
z−1(wz−1)l

)
h∗r

)

=

∞∑

l=0

z−(l+1)τ(pr)
−1τ

(
hrF

H(wl)h∗r
)

=

∞∑

l=0

z−(l+1) N

nr
τ(wlh∗rhr)

for z ∈ D. Since |τ(wlh∗rhr)|≤ ‖w‖l‖hr‖2, αr defines an analytic function on D such that αr(z) ∼
(znr)

−1 Tr(H∗rHr) as |z|→ ∞. In particular, since Hr is non-zero by our initial assumption, αr(z) 6=
0 and Imαr(z) < 0 for z ∈ D. This verifies that xr(z) = −nrαr(z)/mr ∈ C+ and xr is analytic

on D. Furthermore, αr is uniformly small for each r. Then applying (5.12), multi-linearity of κl,

and (5.17), it is verified that βr(z) defined by (5.29) is uniformly bounded and analytic on D. So

yr(z) = −βr(z) is analytic on D.

As βr is uniformly bounded, the formal series leading to (5.42) and (5.43) are convergent for

z ∈ D. Furthermore, dr = 1/αr + βr is well-defined as αr 6= 0, and ‖d−1‖ is uniformly small. Then

c = GGv (d) is well-defined by (5.13) and also uniformly small, so we may apply (5.34). By the same

arguments as above, γr+k(d) as defined by (5.35) is non-zero and uniformly small, and δr+k(d) as

defined by (5.36) is uniformly bounded. Then the formal series leading to (5.40) and (5.41) are

convergent for z ∈ D. Furthermore, er = 1/γr + δr is well-defined and ‖e−1‖ is uniformly small, so
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the formal series leading to (5.48) is convergent for z ∈ D. This verifies the validity of the preceding

calculations and concludes the proof.

5.3 Analyzing the fixed-point equations

To finish the proof of Theorem 5.13, we show using a contractive mapping argument that (5.19–5.20)

have a unique solution in the stated domains, which is the limit of the procedure in Theorem 2.20.

The analysis follows arguments similar to those in [CDS11] and [DL11].

Lemma 5.17 ([CL11]). Let Ω ⊆ C be a connected open set, let E ⊆ Ω be any set with an

accumulation point in Ω, let a, b ∈ C be any two distinct fixed values, and let {fn}∞n=1 be a sequence

of analytic functions fn : Ω → C. If fn(z) /∈ {a, b} for all z ∈ Ω and n ≥ 1, and if limn→∞ fn(z)

exists (and is finite) for each z ∈ E, then {fn}∞n=1 converges uniformly on compact subsets of Ω to

an analytic function.

Proof. The result is originally due to [CL11]. It also follows by the theory of normal families:

{fn}∞n=1 is a normal family by Montel’s fundamental normality test, see e.g. [Sch13, Section 2.7].

Hence every subsequence has a further subsequence that converges uniformly on compact sets to an

analytic function. All such analytic functions must coincide on E, hence they coincide on all of Ω

by uniqueness of analytic extensions, implying the desired result.

In the notation of Theorem 5.13, denote x = (x1, . . . , xk), y = (y1, . . . , yk),

fr(z,y) = − 1

mr
Tr
(
(z Idp +y ·H∗H)−1H∗rHr

)
,

gr(x) = − 1

mr
Trr

(
[IdM +FD(x)]−1F

)
.

Lemma 5.18. Under the conditions of Theorem 5.13:

(a) For all z ∈ C+ and y ∈ (C+)k, z Idp +y ·H∗H is invertible, fr(z,y) ∈ C+∪{0}, and m0(z) ∈ C+

for m0 as defined by (5.21).

(b) For all x ∈ (C+ ∪ {0})k, IdM +FD(x) is invertible and gr(x) ∈ C+.

Proof of Lemma 5.18. For any v ∈ Cp,

Im [v∗(z Idp +y ·H∗H)v] = (Im z)v∗v +
∑

s

(Im ys)v
∗H∗sHsv > 0.

Hence z Idp +y ·H∗H is invertible. Letting T = (z Idp +y ·H∗H)−1,

mrfr(z,y) = −TrTH∗rHr = −TrTH∗rHrT
∗ (z Idp +y ·H∗H)

∗
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= −zTrTH∗rHrT
∗ −

k∑

s=1

ys TrTH∗rHrT
∗H∗sHs.

As TrTRT ∗S is real and nonnegative for any Hermitian positive-semidefinite matrices R and S, the

above implies Im fr(z,y) ≥ 0. In fact, as TrTH∗rHrT
∗ > 0 unless Hr = 0, either Im fr(z,y) > 0 or

fr(z,y) = 0. Similarly,

pm0(z) = −TrT = −zTrTT ∗ −
k∑

s=1

ys TrTT ∗H∗sHs,

and as TrTT ∗ > 0, Imm0(z) > 0. This establishes (a).

For (b), let us first show IdM +FD(x) is invertible. Note if x1 = 0, then by the fact that a block

matrix (
A B

0 C

)

is invertible if and only if A and C are invertible, it suffices to show invertibility of the lower-right

(n2 + . . . + nk) × (n2 + . . . + nk) submatrix. Hence we may reduce to the case where xs 6= 0, i.e.

xs ∈ C+, for all s. Suppose rank(F ) = m and let F † denote the pseudo-inverse of F , so that FF †

is a projection matrix of rank m onto the column span of F . F † is Hermitian, since F is. Let Q

denote the projection orthogonal to FF †, of rank M −m. Then

IdM +FD(x) = Q+ F (F † +D(x)).

For each s = 1, . . . , k, let Ps be the projection of rank ms such that D(x) =
∑k
s=1 xsPs. Then for

any v ∈ CM ,

Im[v∗(F † +D(x))v] = Im[v∗D(x)v] =
∑

s

(Imxs)v
∗Psv > 0,

as v∗F †v and v∗Psv are real and Im as > 0 for each s. Hence F †+D(x) is invertible, so IdM +FD(x)

is of full column rank and thus also invertible.

For the second claim, supposing momentarily that F is invertible and letting J = (F−1+D(x))−1,

mrgr(x) = −Trr J = −Trr

(
J

(
F−1 +

k∑

s=1

xsPs

)∗
J∗

)

= −TrPrJF
−1J∗ −

k∑

s=1

xs TrPrJPsJ
∗.

As TrPrJF
−1J∗ is real and TrPrJPsJ

∗ is real and nonnegative, this implies Im gr(x) ≥ 0. By

continuity in F , this must hold also when F is not invertible, establishing (b).
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Lemma 5.19. Let C,L > 0 and let S denote the space of k-tuples y = (y1, . . . , yk) such that each

yr is an analytic function yr : C+ → C+ and supz∈C+:Im z>L‖y(z)‖≤ C. For sufficiently large C and

L (depending on p, nr,mr and the matrices Hr and Frs in Theorem 5.13):

(a) ρ : S × S → R defined by

ρ(y, ỹ) = sup
z∈C+:Im z>L

‖y(z)− ỹ(z)‖

is a complete metric on S, and

(b) Letting g = (g1, . . . , gk) and f = (f1, . . . , fk) where gr and fr are as above, y 7→ g(f(z,y))

defines a map from S to itself, and there exists c ∈ (0, 1) such that for all y, ỹ ∈ S,

ρ(g(f(z,y)), g(f(z, ỹ))) ≤ cρ(y, ỹ).

Proof. For part (a), ρ is clearly nonnegative, symmetric, and satisfies the triangle inequality. By

definition of S, ρ(y, ỹ) <∞ for all y, ỹ ∈ S. By uniqueness of analytic extensions, ρ(y, ỹ) = 0⇔ y =

ỹ, hence ρ is a metric. If {y(l)}∞l=1 is a Cauchy sequence in (S, ρ), then for each z ∈ C+ with Im z > L,

{y(l)(z)}∞l=1 is Cauchy in (C+)k and hence converges to some y(z) = (y1(z), . . . , yk(z)) ∈ (C+)k.

Then Lemma 5.17 implies each yr(z) has an analytic extension to all of C+, and y
(l)
r → yr uniformly

over compact subsets of C+. This implies yr(z) ∈ C+ for all z ∈ C+ and supz∈C+:Im z>L‖y(z)‖≤ C,

so y ∈ S. Furthermore ρ(y(l),y)→ 0, hence (S, ρ) is complete.

For part (b), clearly if y = (y1, . . . , yk) is a k-tuple of analytic functions on C+, then g(f(z,y))

is as well. Now consider z ∈ C+ with Im z > L and fixed values y ∈ (C+)k with ‖y‖≤ C, and define

T = (z Idp +y ·H∗H)
−1
, R = (IdM +FD(f(z,y)))

−1
, (5.50)

where invertibility of these quantities follows from Lemma 5.18. Since H∗sHs is positive-semidefinite,

[CDS11, Lemma 8] implies ‖T‖≤ (Im z)−1. Then if C,D > 0 (depending on p,mr, nr, Hr, Frs) are

sufficiently large, we have |fr(z,y)|≤ C(Im z)−1, ‖FD(f(z,y))‖< 1/2, ‖R‖< 2, and ‖g(f(z,y))‖≤
C. This establishes that for sufficiently large C,L > 0, if y ∈ S, then g(f(z,y)) ∈ S.

Next, consider also ỹ ∈ (C+)k with ‖ỹ‖≤ C, and define T̃ and R̃ by (5.50) with ỹ in place of y.

For each s = 1, . . . , k, let Ps be the projection such that D(x) =
∑k
s=1 xsPs. Then by the matrix

identity A−1 − (A+ E)−1 = A−1E(A+ E)−1,

fr(z,y)− fr(z, ỹ) =
1

mr
Tr
(
T̃ (T−1 − T̃−1)TH∗rHr

)

=
1

mr

k∑

s=1

(ys − ỹs) Tr
(
T̃H∗sHsTH

∗
rHr

)
,

gr(f(z,y))− gr(f(z, ỹ)) =
1

mr
TrPrR̃(R−1 − R̃−1)RF
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=
1

mr

k∑

s=1

(fs(z,y)− fs(z, ỹ)) TrPrR̃FPsRF.

Then g(f(z,y))− g(f(z, ỹ)) = M (2)M (1)(y− ỹ) for the matrices M (1),M (2) ∈ Ck×k having entries

M (1)
rs =

1

mr
Tr
(
T̃H∗sHsTH

∗
rHr

)
, M (2)

rs =
1

mr
TrPrR̃FPsRF.

For sufficiently large C,L > 0, we have ‖T‖≤ (Im z)−1, ‖T̃‖≤ (Im z)−1, ‖M (1)‖≤ C(Im z)−2,

‖R‖< 2, ‖R̃‖< 2, and ‖M (2)‖≤ C, hence ‖M (2)M (1)‖≤ C2(Im z)−2 ≤ C2L−2. Increasing L if

necessary so that C2L−2 < 1, this yields part (b).

We conclude the proof of Theorem 5.13 using these lemmas, Corollary 5.10, and Lemma 5.16.

Proof of Theorem 5.13. Let C,L > 0 be (p,mr, nr-dependent values) such that the conclusions of

Lemma 5.19 hold. Increasing C if necessary, assume ‖y(0)‖< C where y(0) = (y
(0)
1 , . . . , y

(0)
k ) are

the initial values for the iterative procedure of part (c). Lemma 5.19 and the Banach fixed point

theorem imply the existence of a unique point y ∈ S such that g(f(z,y)) = y. Defining x = f(z,y),

Lemma 5.18 implies x ∈ (C+ ∪ {0})k for each z ∈ C+. Then xr, yr satisfy (5.19) and (5.20)

for each z ∈ C+ by construction, which verifies existence in part (a). For part (c), define the

constant functions ỹ
(0)
r (z) ≡ y

(0)
r over z ∈ C+. Then ỹ(0) = (ỹ

(0)
1 , . . . , ỹ

(0)
r ) ∈ S. Define iteratively

ỹ(t+1) = g(f(z, ỹ(t))). Then Lemma 5.19 implies

cρ(y, ỹ(t)) ≥ ρ(g(f(z,y)), g(f(z, ỹ(t)))) = ρ(y, ỹ(t+1)),

for y the above fixed point and some c ∈ (0, 1). Hence ρ(y, ỹ(t)) → 0 as t → ∞. This implies by

Lemma 5.17 that ỹ(t)(z)→ y(z) for all z ∈ C+, which establishes part (c) upon noting that ỹ
(t)
r (z)

is exactly the value y
(t)
r of the iterative procedure applied at z. Part (c) implies uniqueness in part

(a), since (y
(t)
1 , . . . , y

(t)
k ) would not converge to (y1, . . . , yk) if this iterative procedure were initialized

to a different fixed point. For part (b), Lemma 5.18 verifies that m0(z) ∈ C+ for z ∈ C+. As

y1(z), . . . , yk(z) are analytic, m0(z) is also analytic. Furthermore, as y ∈ S, y1(z), . . . , yk(z) remain

bounded as Im z →∞, so m0(z) ∼ −z−1 as Im z →∞. Then m0 defines the Stieltjes transform of

a probability measure µ0 by [GH03, Lemma 2].

It remains to verify that µ0 approximates µW . Let frs, gr, hr ∈ A be the free deterministic equiv-

alent constructed by Lemma 5.14, and let N = p+
∑
rmr+

∑
r nr. Uniqueness of the solution xr, yr

to (5.19) and (5.20) in the stated domains implies that the analytic functions x1, . . . , xk, y1, . . . , yk

in Lemma 5.16 must coincide with this solution for z ∈ D. Then Lemma 5.16 implies, for z ∈ D,

mw(z) := τ((w − z)−1) =
p

N
m0(z)− N − p

Nz
.
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The conditions of Corollary 5.10 are satisfied by Lemma 5.14, so Corollary 5.10 implies mW̃ (z) −
mw(z)→ 0 as p, nr,mr →∞, pointwise a.s. over D, where W̃ ∈ CN×N is the embedding of W and

mW̃ is its empirical spectral measure. As

mW̃ (z) =
p

N
mW (z)− N − p

Nz
,

we have mW (z) − m0(z) → 0 pointwise a.s. over D. As mW − m0 is uniformly bounded over

{z ∈ C+ : Im z > ε} for any ε > 0, Lemma 5.17 implies mW (z) − m0(z) → 0 pointwise a.s. for

z ∈ C+. Hence µW − µ0 → 0 vaguely a.s. (see, e.g., [BS10, Theorem B.9]). By the conditions

of the theorem, ‖W‖ is almost surely bounded by a constant for all large p, nr,mr. Furthermore,

by Lemma 5.14, we have τ(wl) ≤ ‖w‖l≤ Cl for some constant C > 0 and all l ≥ 0, so mw and

m0 are Stieltjes transforms of probability measures with bounded support. Then the convergence

µW − µ0 → 0 holds weakly a.s., concluding the proof of the theorem.



Appendix A

Marcenko-Pastur model

We collect in this appendix various properties of the Marcenko-Pastur model Σ̂ = X ′FX and

the associated law µ0 defined in Theorem 2.4. Without loss of generality, we assume F = T =

diag(t1, . . . , tM ) is diagonal.

A.1 Density, support, and edges of µ0

Recall the Stieltjes transform m0(z) defined by (3.8), and the inverse function z0(m) from (3.11).

Let

P = {0} ∪ {−t−1
α : tα 6= 0}

denote the poles of z0(m). The following characterization of the density and support of µ0 are from

[SC95]:

Proposition A.1. The limit

m0(x) = lim
η↓0

m0(x+ iη) (A.1)

exists for each x ∈ R \ {0}. At each such x, the law µ0 admits a continuous density given by

f0(x) =
1

π
Imm0(x).

Proof. See [SC95, Theorem 1.1].

Proposition A.2. Let S = {m ∈ R \ P : z′0(m) > 0} and z0(S) = {z0(m) : m ∈ S}. Then

R \ supp(µ0) = z0(S).

Furthermore, z0 : S → R \ supp(µ0) is a bijection with inverse m0 : R \ supp(µ0)→ S.

153
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Proof. See [SC95, Theorems 4.1 and 4.2].

Proposition A.2 implies that µ0 has bounded support:

Proposition A.3. Under Assumption 3.1, supp(µ0) ⊂ [−C,C] for a constant C > 0.

Proof. Proposition A.2 and the behavior of z0(m) as m → 0 implies that µ0 has compact support

for each N . Furthermore, each non-zero boundary point of supp(µ0) is given by z0(m∗) for some

m∗ ∈ R satisfying z′0(m∗) = 0. Rearranging this condition yields

1 =
1

N

M∑

α=1

m2
∗t

2
α

(1 +m∗tα)2
.

Since ‖T‖< C, this condition implies |m∗|> c for a constant c > 0. Furthermore, Cauchy-Schwarz

yields (
1

M

M∑

α=1

tα
1 +m∗tα

)2

≤ 1

M

M∑

α=1

t2α
(1 +m∗tα)2

=
N

Mm2
∗
.

Combining these yields |z0(m∗)|< C for a constant C > 0, so each non-zero boundary point of

supp(µ0) belongs to [−C,C].

We next extend Proposition A.1 to handle the case x = 0 (cf. Proposition A.6 below).

Lemma A.4. Denote m0(C+) = {m0(z) : z ∈ C+}. For any m ∈ R \ P such that z′0(m) < 0, m

cannot belong to the closure of m0(C+).

Proof. z0 defines an analytic function on C\P . For any such m, the inverse function theorem implies

z0 has an analytic inverse in a neighborhood B of m in C\P . If m belongs to the closure of m0(C+),

then B ∩m0(C+) is non-empty. As z0(m0(z)) = z for z ∈ C+ by definition of m0, the inverse of z0

on B is an analytic extension of m0 to z0(B). By the open mapping theorem, z0(B) is an open set

in C containing m. On the other hand, as m0 is the Stieltjes transform of µ0, it permits an analytic

extension only to C \ supp(µ0), and this extension is real-valued and increasing on R \ supp(µ0).

Then z0(B)∩R must belong to R\supp(µ0) and z0 must be increasing on B∩R, but this contradicts

that z′0(m) < 0.

Lemma A.5. Define

g(q) = z0(1/q) = −q +
1

N

M∑

α=1

(
tα −

t2α
q + tα

)
. (A.2)

Then for any c ∈ R, there is at most one value q ∈ R for which g(q) = c and g′(q) ≤ 0.

Proof. Denote by P ′ = {−tα : tα 6= 0} the distinct poles of g, and let I1, . . . , I|P ′|+1 be the intervals

of R \P ′ in increasing order. For any c ∈ R, boundary conditions of g at P ′ imply that g(q) = c has

at least one root q in each interval I2, . . . , I|P ′|, and hence at least |P ′|−1 total roots. In addition,
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every q ∈ R where g(q) = c and g′(q) ≤ 0 contributes two additional roots to g(q) = c, counting

multiplicity. As g(q) = c may be written as a polynomial equation in q of degree |P ′|+1 by clearing

denominators, it can have at most |P ′|+1 total roots counting multiplicity, and hence there is at

most one such q.

Proposition A.6. If rank(T ) > N , then the limit (A.1) exists also at x = 0, and µ0 has continuous

density f0(x) = (1/π) Imm0(x) at x = 0.

If rank(T ) ≤ N , then for any sequence zn → 0 with zn ∈ C+ \ {0}, we have |m0(zn)|→ ∞.

Proof. Suppose rank(T ) > N . Taking imaginary parts of (3.8) yields

Im z =
Imm0(z)

|m0(z)|2

(
1− 1

N

M∑

α=1

|tαm0(z)|2
|1 + tαm0(z)|2

)
. (A.3)

Both Im z > 0 and Imm0(z) > 0 for z ∈ C+, whereas if |m0(zn)|→ ∞ along any sequence zn ∈ C+,

then (
1− 1

N

M∑

α=1

|tαm0(zn)|2
|1 + tαm0(zn)|2

)
→ 1− rank(T )

N
.

When rank(T ) > N , this implies m0(z) is bounded on all of C+. In particular, it is bounded in a

neighborhood of x = 0, and the result follows from the same proof as [SC95, Theorem 1.1].

Suppose now rank(T ) ≤ N . Note (3.8) holds for z ∈ C+\{0} by continuity of m0. If m0(zn)→ m

for some finite m along any sequence zn ∈ C+ \{0} with zn → 0, then z0(m) = limn z0(m0(zn)) = 0,

and m /∈ P . Rearranging (3.8) yields

zm0(z) = −1 +
rank(T )

N
− 1

N

∑

α:tα 6=0

1

1 + tαm0(z)
,

and taking real and imaginary parts followed by zn → 0 yields

1− rank(T )

N
= − 1

N

∑

α:tα 6=0

1 + tα Rem

|1 + tαm|2
, 0 =

1

N

∑

α:tα 6=0

tα Imm

|1 + tαm|2
.

When rank(T ) ≤ N , the first equation implies Rem 6= 0 and
∑
α:tα 6=0 tα/|1 + tαm|2 6= 0, and the

second equation then implies Imm = 0. Thus m ∈ R \ P . But recalling g(q) from (A.2), we have

g(0) = 0 and g′(0) ≤ 0 when rank(T ) ≤ N , so Lemma A.5 implies g′(q) > 0 for every other q where

g(q) = 0. Thus z′0(m) < 0, but this contradicts Lemma A.4. Hence |m0(zn)|→ ∞.

Recall R∗ from (3.10) and the notion of a soft edge from Definition 3.4. We record the following

consequence of the above.

Proposition A.7. If E∗ is a soft edge of µ0 withm-valuem∗, then E∗ ∈ R∗, m0 extends continuously

to E∗, and m0(E∗) = m∗.
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Proof. Recalling g(q) from (A.2), if E∗ = 0 is a soft edge, then g(1/m∗) = 0 and g′(1/m∗) = 0.

Hence Lemma A.5 implies g′(0) > 0, so rank(T ) > N . Thus any soft edge E∗ belongs to R∗.
Propositions A.1 and A.6 then imply continuous extension of m0 to E∗. Considering m ∈ R with

z′0(m) > 0 and m → m∗, Proposition A.2 implies m0(z0(m)) = m, while continuity of z0 and m0

yield z0(m)→ z0(m∗) = E∗ and m0(z0(m))→ m0(E∗). Hence m0(E∗) = m∗.

We now establish the characterization of edges of µ0 given in Proposition 3.3.

Proof of Proposition 3.3. Let g(q) be as in Lemma A.5. If mj is a local minimum (or maximum) of

z0, then qj = 1/mj is a local minimum (resp. maximum) of g, where qj = 0 if mj =∞. Furthermore

these are the only local extrema of g, and they are ordered as q1 < . . . < qn. We have Ej = g(qj)

for each j = 1, . . . , n.

Let P ′ = {−tα : tα 6= 0} be the poles of g, and let I1, . . . , I|P ′|+1 be the intervals of R \ P ′ in

increasing order. Denoting

S′ = {q ∈ R \ P ′ : g′(q) < 0},

Proposition A.2 is rephrased in terms of g as

R \ supp(µ0) = g(S′ \ {0}). (A.4)

(We must remove 0 from S′, as m =∞ is not included in S.) As g′′′(q) > 0 for all q ∈ R\P ′, we have

that g′(q) is convex on each Ij . Together with the boundary conditions g′(q) → ∞ as q → P ′ and

g′(q)→ −1 as q → ±∞, this implies I1 contains the single local extremum q1 (a minimum), I|P ′|+1

contains the single local extremum qn (a maximum), and each Ij for j = 2, . . . , |P ′| contains either

0 or 2 local extrema (a maximum followed by a minimum). Hence S′ is a union of open intervals,

say J1, . . . , Jr, with at most one such interval contained in each Ij . Lemma A.5 verifies

g(Jj) ∩ g(Jk) = ∅ (A.5)

for all j 6= k. Together with (A.4), this verifies that the edges of µ0 are precisely the values g(qj),

with a local maximum qj corresponding to a left edge and a local minimum qj corresponding to a

right edge. If 0 ∈ S′, then it belongs to the interior of some open interval Jj , and supp(µ0) contains

an isolated point at 0 which is not considered an edge. This establishes (a) and (b).

The ordering in part (c) follows from a continuity argument as in [KY17, Lemma 2.5]: Define

for λ ∈ (0, 1]

gλ(q) = −q +
λ

N

M∑

α=1

(
tα −

t2α
q + tα

)
.

Note that g′λ(q) is increasing in λ for each fixed q ∈ R \ P ′. Hence for each local minimum (or

maximum) qj of g, we may define a path qj(λ), continuous and increasing (resp. decreasing) in λ,
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such that qj(1) = qj and qj(λ) remains a local minimum (resp. maximum) of gλ for each λ ∈ (0, 1].

As λ ↘ 0, each qj(λ) converges to a pole −tα in P ′, with gλ(qj(λ)) ↘ tα if qj(λ) ↗ −tα and

gλ(qj(λ))↗ tα if qj(λ)↘ −tα. Hence for sufficiently small λ > 0,

gλ(q1(λ)) > . . . > gλ(qn(λ)).

Lemma A.5 applies to gλ for each fixed λ, implying in particular that gλ(qj(λ)) 6= gλ(qk(λ)) for any

j 6= k. Hence by continuity in λ, the above ordering is preserved for all λ ∈ (0, 1]. In particular it

holds at λ = 1, which establishes (c).

Finally, for part (d), suppose Ej is a soft right edge. Proposition A.7 yields mj ∈ R∗ and

m0(Ej) = mj . The previous convexity argument implies g′′(qj) 6= 0 for any local extremum qj , and

hence z′′0 (mj) 6= 0. Taking x ↗ Ej , continuity of m0 implies m0(x) → mj . As z0 is analytic at mj

and z′0(mj) = 0, a Taylor expansion yields, as x↗ Ej ,

x− Ej = z0(m0(x))− z0(mj) =
z′′0 (mj)

2
(1 + o(1))(m0(x)−mj)

2.

Since Imm0(x) > 0 and Immj = 0, this yields

m0(x)−mj =

√
2

z′′0 (mj)
(x− Ej)(1 + o(1)),

where we take the square root with branch cut on the positive real axis and having positive imaginary

part. Taking imaginary parts and recalling f0(x) = (1/π) Imm0(x) yields (d). The case of a left

edge is similar.

A.2 Behavior of m0(z)

First consider z ∈ Uδ = {z ∈ C : dist(z, supp(µ0)) ≥ δ} for a constant δ > 0. We establish some

basic bounds on m0 and Imm0.

Proposition A.8. Suppose Assumption 3.1 holds. Fix any constant δ > 0. Then for some constant

c > 0, all z ∈ Uδ, and each eigenvalue tα of T ,

|1 + tαm0(z)|> c.

Proof. Note that (2.11) implies |m0(z)|≤ 1/δ. The result then holds for |tα|< δ/2. Since ‖T‖< C0

for a constant C0 > 0, it also holds when |m0(z)|< 1/(2C0). Proposition A.3 shows that supp(µ0)

is uniformly bounded, so there is a constant R > 0 such that |m0(z)|< 1/(2C0) when |z|> R. Thus
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it remains to consider the case

|tα|≥ δ/2, |m0(z)|≥ 1/(2C0), |z|≤ R. (A.6)

For this case, consider first z ∈ Uδ ∩ R, so that m0(z) ∈ R. The result is immediate if tαm0(z) > 0.

Otherwise, note that sign(m0(z)) = sign(−1/tα). Since z /∈ supp(µ0), Proposition A.2 implies

z′0(m0(z)) > 0. By the behavior of z0 at its poles, there exists m∗ ∈ R between m0(z) and −1/tα

such that z′0(m∗) = 0 and z′0(m) > 0 for each m between m∗ and m0(z). Note that |1/tα|> 1/C0, so

|m|> 1/(2C0) for each suchm. Also, differentiating (3.11) yields z′0(m) ≤ 1/m2. So 0 < z′0(m) < 4C2
0

for each such m. Then, since z = z0(m0(z)), we have

|m0(z) + 1/tα|> |m0(z)−m∗|> |z − z0(m∗)|/(4C2
0 ).

Since z0(m∗) is a boundary of supp(µ0) and z ∈ Uδ, we have |z − z0(m∗)|> δ. Multiplying by |tα|
and applying |tα|≥ δ/2 yields the result when z ∈ Uδ ∩ R.

To extend to all z ∈ Uδ satisfying (A.6), note that for any z, z′ ∈ Uδ/2, we have by (2.11)

|m0(z)−m0(z′)|≤
∫ ∣∣∣∣

1

x− z −
1

x− z′
∣∣∣∣µ0(dx) ≤ C|z − z′|.

Thus |1 + tαm0(z)|> c for all z ∈ Uδ in an ε-neighborhood of Uδ/2 ∩ R, for a sufficiently small

constant ε > 0. For all other z ∈ Uδ, we have |Im z|> ε, so the bound |z|< R in (A.6) implies

|Imm0(z)|=
∣∣∣∣
∫

Im z

|x− z|2µ0(dx)

∣∣∣∣ > c.

Then |1 + tαm0(z)|≥ |tα|·|Imm0(z)|> c.

Proposition A.9. Suppose Assumption 3.1 holds. Fix δ,R > 0. Then there exist constants C, c > 0

such that for all z ∈ Uδ,
|m0(z)|< C, |Imm0(z)|≤ C|Im z|,

and for all z ∈ Uδ with |z|< R,

|m0(z)|> c, |Imm0(z)|≥ c|Im z|.

Proof. For each z ∈ Uδ, we have

Imm0(z) =

∫
Im z

|x− z|2µ0(dx), |m0(z)|≤
∫

1

|x− z|µ0(dx) ≤ 1

δ
.

This yields both bounds on Imm0(z) and the upper bound on |m0(z)|. The lower bound on |m0(z)|
follows from (3.8) together with |z|< R, |tα|< C, and |1 + tαm0(z)|> c.
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We now turn to the implications of edge regularity, and prove Propositions 3.6, 3.12, and 3.13.

The arguments are similar to those of [KY17, Appendix A]. We first quantify continuity of m0,

uniformly in N , near a regular edge E∗. In particular this implies that when |z − E∗| is small,

|m0(z)−m∗| is also small.

Lemma A.10. Suppose Assumption 3.1 holds and E∗ is a regular edge with m-value m∗. Then

there exist constants C, δ > 0 such that

(E∗ − δ, E∗ + δ) ⊂ R∗,

and for every z ∈ C+ with |z − E∗|< δ,

|m0(z)−m∗|2< C|z − E∗|.

Proof. Applying Proposition 3.11, take a constant ν > 0 such that |m∗|> ν. Fix a constant c <

min(ν, τ) to be determined later, and define

δN = min
(
c, inf(δ > 0 : |m0(z)−m∗|< c for all z ∈ C+ ∪ R∗ such that |z − E∗|≤ δ)

)
.

As m0(E∗) = m∗, continuity of m0 at E∗ implies δN > 0. Furthermore, if rank(T ) ≤ N so that

0 /∈ R∗, then the divergence of m0 at 0 from Proposition A.6 implies (E∗ − δN , E∗ + δN ) ⊂ R∗. A

priori, δN may depend on N . We will first establish that |m0(z)−m∗|2< C|z−E∗| when |z−E∗|≤ δN .

This will then imply that δN is bounded below by a constant δ.

Consider z ∈ C+ with |z − E∗|≤ δN . Let us write as shorthand m = m0(z). Then

|z − E∗| = |z0(m)− z0(m∗)|

= |m−m∗|
∣∣∣∣∣−

1

mm∗
+

1

N

M∑

α=1

t2α
(1 + tαm)(1 + tαm∗)

∣∣∣∣∣

= |m−m∗|2
∣∣∣∣∣−

1

mm2
∗

+
1

N

M∑

α=1

t3α
(1 + tαm)(1 + tαm∗)2

∣∣∣∣∣ , (A.7)

where the last line adds to the quantity inside the modulus

0 = z′0(m∗) =
1

m2
∗
− 1

N

M∑

α=1

t2α
(1 + tαm∗)2

.

As |m−m∗|< c by definition of δN , we have for each non-zero tα

∣∣∣∣
1

m
− 1

m∗

∣∣∣∣ <
c

ν(ν − c) ,
∣∣∣∣

1

m+ t−1
α

− 1

m∗ + t−1
α

∣∣∣∣ <
c

τ(τ − c) .
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Applying this to (A.7) and recalling γ−2 = |z′′0 (m∗)|/2 yields

|z − E∗|> |m−m∗|2
(
γ−2 − c

ν3(ν − c) −
M

N

c

τ3(τ − c)

)
.

As γ−2 > τ2, this implies |m0(z)−m∗|2< C|z − E∗| when c is chosen sufficiently small, as desired.

By continuity of m0 and definition of δN , either δN = c or there must exist z ∈ C+ such that

|z − E∗|= δN and |m0(z) − m∗|= c. In the latter case, for this z we have c2 = |m0(z) − m∗|2<
C|z − E∗|= CδN , implying δN > c2/C. Thus in both cases δN is bounded below by a constant,

yielding the lemma.

Next we bound the third derivative of z0 near the m-value of a regular edge.

Lemma A.11. Suppose Assumption 3.1 holds and E∗ is a regular edge with m-value m∗. Then

there exist constants C, δ > 0 such that z0 is analytic on the disk {m ∈ C : |m −m∗|< δ}, and for

every m in this disk,

|z′′′0 (m)|< C.

Proof. Proposition 3.11 ensures |m∗|> ν for a constant ν > 0. Taking δ < min(ν, τ), the disk

D = {m ∈ C : |m −m∗|< δ} does not contain any pole of z0, and hence z0 is analytic on D. We

compute

z′′′0 (m) =
6

m4
− 1

N

∑

α:tα 6=0

6

(t−1
α +m)4

,

so |z′′′0 (m)|< C for m ∈ D and sufficiently small δ by the bounds |m∗|> ν and |m∗ + t−1
α |> τ .

Propositions 3.6, 3.12, and 3.13 now follow:

Proof of Proposition 3.12. This follows from Taylor expansion of z′′0 at m∗, the condition |z′′0 (m∗)|=
2γ−2 > 2τ2 implied by regularity, and Lemma A.11.

Proof of Proposition 3.6(a). Let C, δ > 0 be as in Lemma A.10. Reducing δ as necessary and

applying Lemma A.11, we may assume z0 is analytic with |z′′′0 (m)|< C ′ over the disk

D = {m ∈ C : |m−m∗|<
√
Cδ},

for a constant C ′ > 0.

Let E∗ be the closest other edge to E∗, and suppose E∗ ∈ (E∗ − δ, E∗ + δ). Let m∗ be the

m-value for E∗. Then Lemma A.10 implies m∗ ∈ D. Applying a Taylor expansion of z′0,

z′0(m∗) = z′0(m∗) + z′′0 (m∗)(m
∗ −m∗) +

z′′′0 (m)

2
(m∗ −m∗)2
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for some m between m∗ and m∗. Applying 0 = z′0(m∗) = z′0(m∗), |z′′0 (m∗)|= 2γ−2 > 2τ2, and

|z′′′0 (m)|< C ′, we obtain |m∗ −m∗|> 4τ2/C ′. Then Lemma A.10 yields |E∗ −E∗|> c for a constant

c > 0. Reducing δ to c if necessary, we ensure (E∗ − δ, E∗ + δ) contains no other edge E∗. The

condition (E∗ − δ, E∗ + δ) ⊂ R∗ was established in Lemma A.10.

Proof of Propositions 3.13 and 3.6(b). For any constant δ > 0, if η = Im z ≥ δ, then all claims

follow from Propositions A.8 and A.9. Hence let us consider η = Im z < δ.

Taking δ sufficiently small, Lemma A.10 implies |m0(z) − m∗|<
√
Cδ for all z ∈ D0. Then

|m0(z)|� 1 and |1 + tαm0(z)|� 1 by Proposition 3.11. Reducing δ if necessary, by Lemma A.11 we

may also ensure z0 is analytic with |z′′′0 (m)|< C ′ on

D = {m ∈ C : |m−m∗|<
√
Cδ}.

Note z = z0(m0(z)) by (3.8) while E∗ = z0(m∗). Then taking a Taylor expansion of z0 and applying

the conditions z′0(m∗) = 0, z′′0 (m∗) = 2γ−2, and |z′′′0 (m̃)|< C ′ for all m̃ ∈ D, we have

z − E∗ = z0(m0(z))− z0(m∗) = (γ−2 + r(z))(m0(z)−m∗)2 (A.8)

where |r(z)|< C ′
√
Cδ/6. Taking δ sufficiently small, we ensure

|γ−2 + r(z)|� 1, arg(γ−2 + r(z)) ∈ (−ε, ε) (A.9)

for an arbitrarily small constant ε > 0, where arg(z) denotes the complex argument. Taking the

modulus of (A.8) on both sides yields |m0(z)−m∗|�
√
|z − E∗| �

√
κ+ η.

For Imm0(z), suppose E∗ is a right edge. (The case of a left edge is similar.) By Proposition

3.6(a), we may assume (E∗ − δ, E∗) ⊂ supp(µ0) and (E∗, E∗ + δ) ⊂ R \ supp(µ0). First suppose

Im z > 0 and E ≡ Re z ≤ E∗. As Imm0(z) > 0 by definition, (A.8) yields

m0(z)−m∗ =
√

(z − E∗)/(γ−2 + r(z))

where the square-root has branch cut on the positive real axis and positive imaginary part. Applying

arg(z − E∗) ∈ [π/2, π) and (A.9), we have Imm0(z) � Im
√
z − E∗ � |

√
z − E∗|�

√
κ+ η. By

continuity of m0, this extends to z ∈ (E∗ − δ, E∗) on the real axis. Hence Proposition 3.6(b) also

follows, as f0(x) = π−1 Imm0(x).

Now, suppose E ≡ Re z > E∗. Let us write

Imm0(z) =

∫

|λ−E∗|<δ

η

(λ− E)2 + η2
µ0(dλ) +

∫

|λ−E∗|≥δ

η

(λ− E)2 + η2
µ0(dλ) ≡ I + II.

Reducing δ to δ/2, we may assume the closest edge to E is E∗. Then we have II ∈ [0, η/δ2]. For I,
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as µ0 has density f0(x) � √E∗ − x for x ∈ (E∗ − δ, E∗) while (E∗, E∗ + δ) ⊂ R \ supp(µ0),

I �
∫ E∗

E∗−δ

η

(λ− E)2 + η2

√
E∗ − λ dλ =

∫ δ

0

η

η2 + (κ+ x)2

√
x dx.

Considering separately the integral over x ∈ [0, κ + η] and x ∈ [κ + η, δ], we obtain I � η/
√
η + κ.

Then II ≤ C · I, and this yields Imm0(z) � η/√η + κ.

A.3 Proof of local law

We verify that the proof of the entrywise local law in [KY17] does not require positive definite T .

Indeed, Theorem A.13 below, which is a slightly modified version of [KY17, Theorem 3.22], holds in

our setting. We deduce from this Theorems 2.5, 3.7, and 3.16.

We use the following notion of stability, analogous to [KY17, Definition 5.4] and [BEK+14,

Lemma 4.5].

Definition A.12. Fix a bounded set S ⊂ R and a constant a > 0, and let

D = {z ∈ C+ : Re z ∈ S, Im z ∈ [N−1+a, 1]}. (A.10)

For z = E + iη ∈ D, denote

L(z) = {z} ∪ {w ∈ D : Rew = E, Imw ∈ [η, 1] ∩ (N−5N)}.

For a function g : D→ (0,∞), the Marcenko-Pastur equation (3.8) is ggg-stable on D if the following

holds for some constant C > 0: Let u : C+ → C+ be the Stieltjes transform of any probability

measure, and let ∆ : D→ (0,∞) be any function satisfying

• (Boundedness) ∆(z) ∈ [N−2, (logN)−1] for all z ∈ D,

• (Lipschitz) |∆(z)−∆(w)|≤ N2|z − w| for all z, w ∈ D,

• (Monotonicity) η 7→ ∆(E + iη) is non-increasing for each E ∈ S and η > 0.

If z ∈ D is such that |z0(u(w))− w|≤ ∆(w) for all w ∈ L(z), then

|u(z)−m0(z)|≤ C∆(z)

g(z) +
√

∆(z)
. (A.11)

Theorem A.13 (Abstract local law). Suppose Assumption 3.1 holds. Fix a bounded set S ⊂ R
and a constant a > 0, and define D by (A.10). Suppose, for some constants C, c > 0 and a bounded
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function g : D→ (0, C), that (3.8) is g-stable on D, and furthermore

c < |m0(z)|< C, cη < Imm0(z) < Cg(z), |1 + tαm0(z)|> c

for all z = E + iη ∈ D and all α ∈ IM . Then, letting mN (z), G(z),Π(z) be as in (3.16), (3.17), and

(3.19), and denoting

Ψ(z) =

√
Imm0(z)

Nη
+

1

Nη
,

(a) (Entrywise law) For all z ∈ D and A,B ∈ I,

GAB(z)−ΠAB(z)

tAtB
≺a Ψ(z).

(b) (Averaged law) For all z ∈ D,

mN (z)−m0(z) ≺a min

(
1

Nη
,

Ψ(z)2

g(z)

)
.

Proof. The proof is the same as for [KY17, Theorem 3.22], with only cosmetic differences which we

indicate here. The notational identification with [KY17] is T ↔ Σ and tα ↔ σi. (We continue to use

Greek indices for IM and Roman indices for IN , although this is reversed from the convention in

[KY17].) As in [KY17], we may assume T is invertible. The non-invertible case follows by continuity.

We follow [KY17, Section 5], which in turn is based on [BEK+14]. Define

Zi =
∑

α,β∈IM

G
(i)
αβXαiXβi −N−1 TrG

(i)
M , Zα =

∑

i,j∈IN

G
(α)
ij XαiXαj −N−1 TrG

(α)
N ,

[Z] =
1

N

(∑

i∈IN

Zi +
∑

α∈IM

t2α
(1 + tαm0)2

Zα

)
,

Θ = N−1

∣∣∣∣∣
∑

i∈IN

(G−Π)ii

∣∣∣∣∣+M−1

∣∣∣∣∣
∑

α∈IM

(G−Π)αα

∣∣∣∣∣ , ΨΘ =

√
Imm0 + Θ

Nη
,

Λo = max
A6=B∈I

|GAB |
|tAtB |

, Λ = max
A,B∈I

|(G−Π)AB |
|tAtB |

, Ξ = {Λ ≤ (logN)−1}.

These all implicitly depend on an argument z ∈ D. Then the same steps as in [KY17, Section 5]

yield, either for η = 1 or on the event Ξ, for all z ∈ D and A ∈ I,

|ZA|,Λo ≺ ΨΘ, (A.12)

z0(mN (z))− z − [Z] ≺ Ψ2
Θ ≺ (Nη)−1. (A.13)
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(In the argument for η = 1, the use of [KY17, Eq. (4.16)] may be replaced by [KY17, Lemmas 4.8

and 4.9]. Various bounds using σi, for example [KY17, Eqs. (5.4), (5.11)], may be replaced by ones

using the positive quantity |tα|.) Applying (A.12) and the resolvent identities for Gii and Gαα, we

may also obtain on the event Ξ

Θ ≺ |mN −m0|+|[Z]|+(Nη)−1, Λ ≺ |mN −m0|+ΨΘ. (A.14)

The bound (A.12) yields the initial estimate [Z] ≺ ΨΘ ≺ (Nη)−1/2 on Ξ. The conditions of

Definition A.12 hold for ∆ = (Nη)−1/2, so (A.13), the assumed stability of (3.8), and the stochastic

continuity argument of [BEK+14, Section 4.1] yield that Ξ holds with high probability (i.e. 1 ≺ 1{Ξ})
and Λ ≺ (Nη)−1/4 on all of D. Next, applying the fluctuation averaging result of [KY17, Lemma

5.6], we obtain for any c ∈ (0, 1] the implications

Θ ≺ (Nη)−c ⇒ ΨΘ ≺
√

Imm0 + (Nη)−c

Nη
⇒ [Z] ≺ Imm0 + (Nη)−c

Nη
≡ ∆(z).

The conditions of Definition A.12 hold for this ∆(z), so applying (A.13), stability of (3.8), and

1 ≺ 1{Ξ}, we have the implications

Θ ≺ (Nη)−c ⇒ |mN −m0|≺
∆(z)

g(z) +
√

∆(z)
⇒ Θ ≺ ∆(z)

g(z) +
√

∆(z)
+ ∆(z) + (Nη)−1. (A.15)

We bound ∆(z) ≤ C(Nη)−1 and

∆(z)

g(z) +
√

∆(z)
≤ Imm0(z)

Nη g(z)
+ (Nη)−(1+c)/2 < C(Nη)−1 + (Nη)−(1+c)/2,

where this applies Imm0(z) < Cg(z). Hence

Θ ≺ (Nη)−c ⇒ Θ ≺ (Nη)−(1+c)/2.

Initializing to c = 1/4 and iterating, we obtain Θ ≺ (Nη)−1+ε for any ε > 0, so |mN −m0|≤ Θ ≺
(Nη)−1. Applying (A.15) once more with c = 1, we have for c = 1 that ∆(z) ≤ Ψ(z)2 and hence

also |mN −m0|≺ Ψ2/g. This yields both bounds in the averaged law. The entrywise law Λ ≺ Ψ

follows from (A.14).

We now verify the stability condition in Definition A.12 near a regular edge and outside the

spectrum. The proofs are the same as [KY17, Lemmas A.5 and A.8], which are based on [BEK+14,

Lemma 4.5]. For convenience, we reproduce the argument here.

Lemma A.14. Suppose Assumption 3.1 holds.
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(a) Fix any constants δ, a, C0 > 0, and let

D = {z ∈ C+ : Re z ∈ [−C0, C0] \ supp(µ0)δ, Im z ∈ [N−1+a, 1]}.

Then (3.8) is g-stable on D for g(z) ≡ 1.

(b) Let E∗ be a regular edge, and let D be the domain (3.18), depending on constants δ, a > 0. For

z = E + iη ∈ D, denote κ = |E −E∗| and let g(z) =
√
κ+ η. Then, for any constant a > 0 and

any constant δ > 0 sufficiently small, (3.8) is g-stable on D.

Proof. Writing u = u(z), m = m0(z), and ∆0 = ∆0(z) = z0(u(z))− z, we have

∆0 = z0(u)− z0(m) =
m− u
um

(
−1 +

1

N

M∑

α=1

t2αum

(1 + tαu)(1 + tαm)

)

= α(z)(m− u)2 + β(z)(m− u)

for

α(z) = − 1

u
· 1

N

M∑

α=1

t2α
(1 + tαu)(1 + tαm)2

,

β(z) =
1

um

(
−1 +

1

N

M∑

α=1

t2αm
2

(1 + tαm)2

)
= −m

u
z′0(m).

Viewing this a quadratic equation in m− u and denoting the two roots

R1(z), R2(z) =
−β(z)±

√
β(z)2 + 4α(z)∆0(z)

2α(z)
, (A.16)

we obtain m0(z)− u(z) ∈ {R1(z), R2(z)} for each z ∈ D. Note that (A.16) implies

|R1(z)−R2(z)|=
√
|β(z)2 + 4α(z)∆0(z)|

|α(z)| . (A.17)

Also, we have |R1R2|= |∆0/α| and |R1 + R2|= |β/α|. The first statement yields min(|R1|, |R2|) ≤√
|∆0/α| = 2|∆0|/

√
4|α∆0|. The second yields max(|R1|, |R2|) ≥ |β/(2α)|, so the first then yields

min(|R1|, |R2|) ≤ 2|∆0|/|β|. Combining these,

min(|R1(z)|, |R2(z)|) ≤ 4|∆0(z)|
|β(z)|+

√
4|α(z)∆0(z)|

. (A.18)

We first show part (a). Let ∆(z) satisfy the conditions of Definition A.12. We claim that for any

constant ν > 0, there exist constants C0, c > 0 such that
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1. If Im z ≥ ν and |∆0(z)|≤ ∆(z), then

|m0(z)− u(z)|≤ C0∆(z). (A.19)

2. If |∆0(z)|≤ ∆(z) and |m0(z)− u(z)|< (logN)−1/2, then

min(|R1(z)|, |R2(z)|) ≤ C0∆(z), |R1(z)−R2(z)|≥ c. (A.20)

Indeed, if Im z ≥ ν and |∆0(z)|≤ ∆(z) ≤ (logN)−1, then Im z0(u(z)) ≥ ν/2. In particular z0(u(z)) ∈
C+, so m0(z0(u(z))) = u(z) as Theorem 2.4 guarantees this is the unique root m ∈ C+ to the

equation z0(m) = z0(u(z)). Applying |m′0(z)|≤ 1/(Im z)2, we obtain

|m0(z)− u(z)|= |m0(z)−m0(z0(u(z)))|≤ (4/ν2)|∆0(z)|≤ (4/ν2)∆(z),

and hence (A.19) holds for C0 = 4/ν2. On the other hand, if |m0(z) − u(z)|< (logN)−1/2, then

Propositions A.9 and A.8 imply |α(z)|< C and |β(z)|< C. Taking imaginary parts of (3.8) as in

(A.3), we also have |u(z)m(z)β(z)|≥ (Im z)|m0(z)|2/Imm0(z) > c, so |β(z)|> c. Applying this to

(A.17) and (A.18), and increasing C0 if necessary, we obtain (A.20).

A continuity argument now concludes the proof of part (a): Consider any z ∈ D with |∆0(w)|≤
∆(w) for all w ∈ L(z). If Im z ≥ ν, the result follows from (A.19). If Im z < ν, let w ∈ L(z) be

such that Im z < Imw ≤ Im z + N−5. Suppose inductively that we have shown (A.19) holds at w.

Applying |u′(z)|≤ 1/(Im z)2 ≤ N2 for any Stieltjes transform u(z) and z ∈ D, we obtain

|m0(z)− u(z)|≤ C0∆(w) + 2N−3 < (logN)−1/2.

So (A.20) implies max(|R1(z)|, |R2(z)|) > c/2. Then |m0(z) − u(z)|= min(|R1(z)|, |R2(z)|), so

(A.20) also shows that (A.19) holds at z. Starting the induction at Im z ≥ ν, we obtain (A.19) for

all w ∈ L(z), and in particular at w = z. This establishes part (a).

For part (b), let g(z) =
√
κ+ η. We claim that when δ > 0 is sufficiently small, there exist

constants ν, C0, C1 > 0 such that

1. If Im z ≥ ν and |∆0(z)|≤ ∆(z), then

|m0(z)− u(z)|≤ C0∆(z)

g(z) +
√

∆(z)
. (A.21)

2. If Im z < ν, |∆0(z)|≤ ∆(z), and |m0(z)− u(z)|< (logN)−1/3, then

min(|R1(z)|, |R2(z)|) ≤ C0∆(z)

g(z) +
√

∆(z)
, (A.22)
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C−1
1 (g(z)−

√
∆(z)) ≤ |R1(z)−R2(z)|≤ C1(g(z) +

√
∆(z)). (A.23)

We verify the second claim first: If Im z < ν and |m0(z) − u(z)|< (logN)−1/3, then for ν and δ

sufficiently small, Lemma A.10 implies

|m0(z)−m∗|< C
√
ν + δ, |u(z)−m∗|< C

√
ν + δ (A.24)

for a constant C > 0 independent of ν, δ. We have

m∗z
′′
0 (m∗)

2
= − 1

m2
∗

+
1

N

M∑

α=1

t3αm∗
(1 + tαm∗)3

= − 1

N

M∑

α=1

t2α
(1 + tαm∗)3

,

where the second equality applies the identity 0 = z′0(m∗). Comparing the right side with u(z)α(z),

and applying (A.24) together with the bounds |m∗|� 1, |z′′0 (m∗)|� 1, and |1 + tαm∗|� 1 from

Proposition 3.11, we obtain c < |α(z)|< C for constants C, c > 0 and sufficiently small ν, δ. Next,

applying again 0 = z′0(m∗), we have

z′0(m) =

∫ m

m∗

z′′0 (x)dx = (m−m∗)z′′0 (m∗) +

∫ m

m∗

∫ x

m∗

z′′′0 (y)dy dx.

Applying (A.24), |z′′0 (m∗)|� 1 from Proposition 3.11, |m0(z)−m∗|�
√
κ+ η from Proposition 3.13,

and |z′′′0 (y)|< C from Lemma A.11, we obtain cg(z) < |β(z)|< Cg(z) for ν, δ sufficiently small.

Applying these bounds and |∆0(z)|≤ ∆(z) to (A.18) and (A.17) yields (A.22) and (A.23). Letting

ν be small enough such that this holds, for Im z ≥ ν, the same argument as in part (a) implies

|m0(z)− u(z)|≤ (4/ν2)∆(z). Noting g(z) ≥ √ν and increasing C0 if necessary, we obtain (A.21).

We again apply a continuity argument to conclude the proof: Consider any z ∈ D with |∆0(w)|≤
∆(w) for all w ∈ L(z). If Im z ≥ ν, the result follows from (A.21). If Im z < ν, suppose first that

C0∆(z)

g(z) +
√

∆(z)
+ 2N−3 < (2C1)−1(g(z)−

√
∆(z)). (A.25)

Note that by monotonicity of ∆, the left side is decreasing in Im z while the right side is increasing

in Im z. Thus if (A.25) holds at z, then it holds at all w ∈ L(z). Let w ∈ L(z) be such that

Im z < Imw ≤ Im z +N−5, and suppose inductively that we have established (A.21) at w. Then

|m0(z)− u(z)|≤ C0∆(w)

g(w) +
√

∆(w)
+ 2N−3 < (logN)−1/3.

Then (A.23) and (A.25) imply |m0(z)−u(z)|= min(|R1(z)|, |R2(z)|), so (A.22) implies (A.21) holds

at z. Starting the induction at Im z ≥ ν, this establishes (A.21) if z satisfies (A.25).

If z does not satisfy (A.25), then rearranging (A.25) and applying ∆(z) > N−3 yields g(z)2 ≤
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C∆(z) for a constant C > 0. Then

C0∆(z)

g(z) +
√

∆(z)
+ C1(g(z) +

√
∆(z)) ≤ C2∆(z)

g(z) +
√

∆(z)

for a constant C2 > 0. We claim

|m0(z)− u(z)|≤ C2∆(z)

g(z) +
√

∆(z)
. (A.26)

Indeed, let w ∈ L(z) be such that Im z < Imw ≤ Im z+N−5, and suppose inductively that we have

established (A.26) at w. This implies in particular |m0(z)− u(z)|< (logN)−1/3 as before, so (A.26)

holds at z by (A.22) and (A.23). Starting the induction at the value w ∈ L(z) satisfying (A.25)

which has the smallest imaginary part, this concludes the proof in all cases.

We now verify Theorems 2.5, 3.7, and 3.16.

Proof of Theorem 2.5. By the bound ‖Σ̂‖≤ ‖T‖‖X‖2, we may take C0 > 0 sufficiently large such

that ‖Σ̂‖≤ C0 with probability at least 1−N−D. Define

D = {z ∈ C+ : Re ∈ [−C0, C0] \ supp(µ0)δ, Im z ∈ [N−2/3, 1]}.

Then Propositions A.8, A.9, and Lemma A.14(a) check the conditions of Theorem A.13 for g(z) ≡ 1

over D.

Applying the second bound of Theorem A.13(b), |mN (z)−m0(z)|≺ Ψ(z)2 � N−1 + (Nη)−2 for

any z ∈ D. Taking η = N−2/3 and applying also Imm0(z) � η, we obtain ImmN (z) ≺ N−2/3 <

1/(2Nη). As the number of eigenvalues of Σ̂ in [E−η,E+η] is at most 2Nη · ImmN (z), this implies

Σ̂ has no eigenvalues in this interval with probability 1−N−D for all N ≥ N0(D). The result follows

from a union bound over a grid of values E ∈ [−C0, C0] \ supp(µ0)δ of cardinality at most CN2/3,

together with the bound ‖Σ̂‖≤ C0.

Proof of Theorem 3.7. The argument follows [PY14, Eq. (3.4)]. Consider the case of a right edge

E∗. (A left edge is analogous.) For each E ∈ [E∗+N−2/3+ε, E∗+ δ], denoting κ = E−E∗, consider

z = E + iη for

η = N−1/2−ε/4κ1/4 ∈ [N−2/3, 1],

where the inclusion holds for all large N because κ ∈ [N−2/3+ε, δ]. Proposition 3.13 implies

Imm0(z) ≤ Cη√
κ+ η

≤ Cη√
κ

= C(Nη)−1N−ε/2.

Also by Proposition 3.13 and Lemma A.14(b), we may apply Theorem A.13 with g(z) =
√
κ+ η.
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The above bound on Imm0(z) yields Ψ(z)2 ≤ C/(Nη)2, and hence Theorem A.13(b) implies

|mN (z)−m0(z)|≺ 1

(Nη)2
√
κ+ η

≤ 1

(Nη)2
√
κ

=
1

N3+ε/2η4
≤ (Nη)−1N−ε/2,

where the last bound uses η ≥ N−2/3. Thus we obtain

ImmN (z) ≺ C(Nη)−1N−ε/2.

Then Σ̂ has no eigenvalues in [E − η,E + η] with probability 1−N−D for all N ≥ N0(D), and the

result follows from a union bound over a grid of such values E.

Proof of Theorem 3.16. This follows from Theorem A.13 applied with g(z) =
√
κ+ η, and Proposi-

tion 3.13 and Lemma A.14(b).



Appendix B

Free deterministic equivalents

In this appendix, we prove the asymptotic freeness results of Chapter 5 and establish the existence

of the approximating free deterministic equivalent model.

B.1 Proof of asymptotic freeness

We prove Theorem 5.9 and Corollary 5.10. To ease subscript notation, throughout this section we

denote by M [i, j] the (i, j) entry of a matrix M .

Let Q be a ∗-polynomial in (xi)i∈Ij ,j∈{1,...,J} with coefficients in 〈P1, . . . , Pd〉, and let q denote

the corresponding ∗-polynomial with coefficients in 〈p1, . . . , pd〉. For Theorem 5.9, we wish to show

for any r, almost surely as N →∞,

∣∣N−1
r Trr Q (Hi : i ∈ Ij , j ∈ {1, . . . , J})− τr (q (hi : i ∈ Ij , j ∈ {1, . . . , J}))

∣∣→ 0. (B.1)

The high-level strategy of the proof is the same as [BG09, Theorem 1.6], and follows these steps:

1. By applying linearity of Tr and τ , we may reduce to the case Q =
∏K
k=1Qk, where each Qk is a

simple-valued polynomial of a single family (Hi : i ∈ Ijk).

2. By “centering” each Qk and inducting on K, it suffices to consider the case where j1 6= j2, j2 6=
j3, . . . , jK 6= j1 and each Qk satisfies TrQk(Hi : i ∈ Ijk) = 0.

3. The main technical ingredient is Lemma B.2 below, which establishes the result for suchQ. We use

orthogonal invariance in law of (Hi : i ∈ Ijk) to introduce independently random block-orthogonal

matrices, and then condition on the Hi’s to reduce to a statement about Haar-orthogonal and

deterministic matrices.

The last step above uses an explicit computation of the trace, together with basic properties of the

joint moments of Haar-orthogonal matrices. We follow an approach inspired by [HP00, Theorem

170
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2.1], but which (we believe) fills in an omission in the proof and also extends the combinatorial

argument to deal with rectangular matrices and the orthogonal (rather than unitary) case.

Proof of Theorem 5.9. To show (B.1), by linearity of Tr and τ , it suffices to consider the case where

Q is a ∗-monomial, which we may always write as a product of Q1, . . . , QK where each Qk depends

only on the variables of a single family Ijk . Writing Qk = (P1 + . . .+Pd)Qk(P1 + . . .+Pd) and again

applying linearity of Tr and τ , it suffices to consider the case where each Qk is simple-valued, i.e.

PrkQkPsk = Qk for some rk, sk ∈ {1, . . . , d}. If sk 6= rk+1 for any k (with the cyclic identification

rK+1 = r1), then (B.1) is trivial as both quantities on the left are 0. If sk = rk+1 for all k, then it

suffices to consider r = r1 and to replace N−1
r Trr by N−1 Tr and τr by τ . The result then follows

from Lemma B.1 below.

Lemma B.1. Under the assumptions of Theorem 5.9, fix K ≥ 1, j1, . . . , jK ∈ {1, . . . , J}, and

r1, . . . , rK ∈ {1, . . . , d}. For each k = 1, . . . ,K, let Qk be a ∗-polynomial with coefficients in

〈P1, . . . , Pd〉 of the variables (xi)i∈Ijk of the single family Ijk , such that PrkQkPrk+1
= Qk (with the

identification rK+1 := r1). Let q1, . . . , qK denote the corresponding ∗-polynomials with coefficients

in 〈p1, . . . , pd〉. Then, almost surely as N →∞,

∣∣∣∣∣
1

N
Tr

K∏

k=1

Qk (Hi : i ∈ Ijk)− τ
(

K∏

k=1

qk (hi : i ∈ Ijk)

)∣∣∣∣∣→ 0. (B.2)

Proof. We induct on K. For K = 1, (B.2) holds by the assumption that (hi)i∈Ij1 and (Hi)i∈Ij1 are

asymptotically equal in D-law a.s.

For K ≥ 2, assume inductively that (B.2) holds for each value 1, . . . ,K − 1 in place of K. Let

tk =
1

τ(prk)
τ (qk (hi : i ∈ Ijk)) ,

and define the “centered” ∗-polynomials

Dk = Qk − tkPrk , dk = qk − tkprk .

We clarify that tk ∈ C is a fixed constant (evaluated at the hi’s, not at the arguments xi’s of

these ∗-polynomials), and thus Dk and dk are still ∗-polynomials of (xi)i∈Ijk with coefficients in

〈P1, . . . , Pd〉 and 〈p1, . . . , pd〉. We have tk = 0 if rk 6= rk+1, because qk is simple. Denoting by SK
the collection of all subsets of {k : rk = rk+1} and applying a binomial expansion,

1

N
Tr

K∏

k=1

Qk (Hi : i ∈ Ijk) =
∑

S∈SK

Q(S)
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where

Q(S) :=
∏

k∈S

tk ·
1

N
Tr

∏

k∈{1,...,K}\S

Dk (Hi : i ∈ Ijk) .

Each Dk still satisfies PrkDkPrk+1
= Dk. Hence, for every S 6= ∅, applying the induction hypothesis,

∣∣∣∣∣∣
Q(S)−

∏

k∈S

tk · τ


 ∏

k∈{1,...,K}\S

dk (hi : i ∈ Ijk)



∣∣∣∣∣∣
→ 0. (B.3)

For S = ∅, if jk = jk+1 for some k ∈ {1, . . . ,K} (or jK = j1), then combining DkDk+1 into a single

polynomial (and applying cyclic invariance of Tr and τ if jK = j1), the induction hypothesis still

yields (B.3).

The remaining case is when S = ∅ and jk 6= jk+1 for each k = 1, . . . ,K. Note, by definition of

dk, that

τ (prdk (hi : i ∈ Ijk) pr) = 0

for each r and k, so by freeness of (hi)i∈I1 , . . . , (hi)i∈Ik with amalgamation over 〈p1, . . . , pd〉,

τ

(
K∏

k=1

dk (hi : i ∈ Ijk)

)
= 0.

Thus, it remains to show that Q(∅) → 0. Note first that the definition of the free deterministic

equivalent and the condition Nr/N > c imply, almost surely as N →∞,

∣∣∣∣
N

Nrk
− 1

τ(prk)

∣∣∣∣→ 0,

∣∣∣∣
1

N
Tr (Qk (Hi : i ∈ Ijk))− τ (qk (hi : i ∈ Ijk))

∣∣∣∣→ 0.

Hence |tk − Tk|→ 0 a.s. for

Tk =
1

Nrk
TrQk (Hi : i ∈ Ijk) .

Then it suffices to show

M(∅) :=
1

N
Tr

K∏

k=1

Mk → 0

for the matrices

Mk = Qk (Hi : i ∈ Ijk)− TkPrk ,

as we may replace in Q(∅) each tk by Tk and bound the remainders using the operator norm.

Finally, let us introduce random matrices (Oj,r)j∈N ,r∈{1,...,d} that are independent of each other

and of the Hi’s, such that each Oj,r is orthogonal and Haar-distributed in RNr×Nr . For each j ∈ N ,

define the block diagonal matrix Oj = diag(Oj,1, . . . , Oj,d). By orthogonal invariance in law of
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(Hi)i∈Ijk , we have the equality in law

M(∅) L
=

1

N
Tr

K∏

k=1

OjkMkO
−1
jk
.

Write M̌k ∈ RNrk×Nrk+1 as the non-zero block of Mk. Then the above may be written as

M(∅) L
=

1

N
Tr

K∏

k=1

Ojk,rkM̌kO
−1
jk,rk+1

IdNrk+1
. (B.4)

Conditional on the Hi’s, M̌k are deterministic matrices satisfying ‖M̌k‖≤ C for some constant C > 0

and all large N a.s., and if rk = rk+1 then Tr M̌k = TrMk = 0 by definition of Tk. Furthermore,

recall that we are in the case jk 6= jk+1 for each k.

The claim M(∅)→ 0 follows from the following lemma:

Lemma B.2. Fix d,K ≥ 1, l1, . . . , lK ∈ N , r1, . . . , rK ∈ {1, . . . , d}, and e1, . . . , eK ∈ {−1, 1}. For

N1, . . . , Nd ≥ 1, let {Ol,r}l∈N ,r∈{1,...,d} be independent random matrices such that each Ol,r is a

Haar-distributed orthogonal matrix in RNr×Nr . Let D1 ∈ CNr1×Nr2 , D2 ∈ CNr2×Nr3 , . . . , DK ∈
CNrK×Nr1 be deterministic matrices such that, for each k = 1, . . . ,K (and cyclically identifying

lK+1 := l1, etc.), if (lk, rk, ek) = (lk+1, rk+1,−ek+1), then TrDk = 0.

Let N = N1 + . . . + Nd, and suppose there exist constants C, c > 0 such that, as N → ∞,

Nr/N > c for each r = 1, . . . , d and ‖Dk‖< C for each k = 1, . . . ,K. Then, almost surely,

N−1 Tr
(
Oe1l1,r1D1O

e2
l2,r2

D2 . . . O
eK
lK ,rK

DK

)
→ 0.

(We emphasize that the matrices Ol,r and Dk are N -dependent, while (lk, rk, ek, k = 1, . . . ,K)

remain fixed as N grows.)

Assuming this lemma for now, write the right side of (B.4) in the form

N−1 Tr
(
Oe1l1,r1D1O

e2
l2,r2

D2 . . . O
e2K
l2K ,r2K

D2K

)
,

by making the identifications

(l2k−1, r2k−1, e2k−1, D2k−1)← (jk, rk, 1, M̌k)

(l2k, r2k, e2k, D2k)← (jk, rk+1,−1, IdNrk+1
).

Then Lemma B.2 implies M(∅)→ 0 a.s. conditional on the Hi’s, and hence unconditionally as well.

Thus (B.3) holds for all S ∈ SK .
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Finally, reversing the binomial expansion,

∑

S∈SK

∏

k∈S

tk · τ


 ∏

k∈{1,...,K}\S

dk (hi : i ∈ Ijk)


 = τ

(
K∏

k=1

qk (hi : i ∈ Ijk)

)
.

This establishes (B.2), completing the induction.

To conclude the proof of Theorem 5.9, it remains to establish the above Lemma B.2. We require

the following fact about joint moments of entries of Haar-orthogonal matrices:

Lemma B.3. Let O ∈ RN×N be a random Haar-distributed real orthogonal matrix, let K ≥ 1 be

any positive integer, and let i1, j1, . . . , iK , jK ∈ {1, . . . , N}. Then:

(a) There exists a constant C := CK > 0 such that

E[|O[i1, j1]O[i2, j2] . . . O[iK , jK ]|] ≤ CN−K/2.

(b) If there exists i ∈ {1, . . . , N} such that ik = i for an odd number of indices k ∈ {1, . . . ,K} or

jk = i for an odd number of indices k ∈ {1, . . . ,K}, then E[O[i1, j1] . . . O[iK , jK ]] = 0.

Proof. [CŚ06, Eq. (21) and Theorem 3.13] imply E[O[i1, j1]2 . . . O[iK , jK ]2] ≤ CN−K for a constant

C := CK > 0. Part (a) then follows by Cauchy-Schwarz. Part (b) follows from the fact that the

distribution of O is invariant to multiplication of row i or column i by −1, hence if ik = i or jk = i

for an odd number of indices k, then E[O[i1, j1] . . . O[iK , jK ]] = −E[O[i1, j1] . . . O[iK , jK ]].

Proof of Lemma B.2. Define Vk = Oeklk,rk (which is O′lk,rk if ek = −1). Expanding the trace,

Tr

[
K∏

k=1

VkDk

]
=
∑

i,j

V (i, j)D(i, j), (B.5)

where the summation is over all tuples (i, j) := (i1, j1, i2, j2, . . . , iK , jK) satisfying

1 ≤ ik, jk ≤ Nrk (B.6)

for each k = 1, . . . ,K, and where we have defined (with the identification iK+1 := i1)

V (i, j) =

K∏

k=1

Vk[ik, jk], D(i, j) =

K∏

k=1

Dk[jk, ik+1].

Denote

E = E



∣∣∣∣∣N
−1 Tr

(
K∏

k=1

VkDk

)∣∣∣∣∣

2

 = N−2

∑

i,j

∑

i′,j′

D(i, j)D(i′, j′)E[V (i, j)V (i′, j′)], (B.7)
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where the second equality uses that each Vk is real and each Dk is deterministic. By the Borel-

Cantelli lemma, it suffices to show E ≤ CN−2 for some constant C := CK > 0.

Let R be the set of distinct pairs among (lk, rk) for k = 1, . . . ,K, corresponding to the set of

distinct matrices Ol,r that appear in (B.5). By independence of the matrices Ol,r,

E[V (i, j)V (i′, j′)] =
∏

(l,r)∈R

E


 ∏

k:(lk,rk)=(l,r)

Vk[ik, jk]Vk[i′k, j
′
k]


 . (B.8)

Since Ol,r is invariant in law under permutations of rows and columns, each expectation on the

right side above depends only on which indices are equal, and not on the actual index values. (For

example, denoting O := Ol,r,

O[1, 2]O−1[2, 3]O[1, 4]O−1[3, 3]
L
= O[8, 7]O−1[7, 6]O[8, 5]O−1[6, 6] (B.9)

where the equality in law holds by permutation of both the rows and the columns of O.) We

therefore analyse E by decomposing the sum in (B.7) over the different relevant partitions of (i, j, i′, j′)

specifying which indices are equal.

More precisely, let

I = (ik, jk, i
′
k, j
′
k : k = 1, . . . ,K)

be the collection of all indices, with cardinality |I|= 4K. For each (l, r) ∈ R, let

I(l, r) = (ik, jk, i
′
k, j
′
k : k such that lk = l, rk = r).

These sets I(l, r) form a fixed partition of I. For each (l, r), denote by Q(l, r) any further partition

of the indices in I(l, r), and let

Q =
⊔

(l,r)∈R

Q(l, r) (B.10)

be their combined partition of I. Denoting by Ql,r = |Q(l, r)| the number of elements of Q that

partition I(l, r), we may identify

Q ≡ {(l, r, q) : (l, r) ∈ R, q ∈ {1, . . . , Ql,r}}.

We say that (i, j, i′, j′) induces Q if, for every two indices belonging to the same set I(l, r), they are

equal in value if and only if they belong to the same element ofQ.1 Then E[V (i, j)V (i′, j′)] is the same

for all (i, j, i′, j′) that induce the same partition Q. Thus we may define E(Q) = E[V (i, j)V (i′, j′)]

1For example, if K = 2, in display (B.9), both (i1, j1, i2, j2, i′1, j
′
1, i
′
2, j
′
2) = (1, 2, 2, 3, 1, 4, 3, 3) and (8, 7, 7, 6, 8, 5, 6, 6)

induce
Q(l, r) = {{i1, i′1}, {j1, i2}, {j2, i′2, j′2}, {j′1}} with Ql,r = 4.

.
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for any such (i, j, i′, j′) and write

E = N−2
∑

Q
E(Q)

∑

i,j,i′,j′|Q

D(i, j)D(i′, j′),

where the first sum is over all partitions Q of the form (B.10), and the second is over all (i, j, i′, j′)

satisfying (B.6) and inducing Q.

Applying Lemma B.3(a) and the bound Nr/N > c to (B.8), we have |E(Q)|≤ CN−K for a

constant C := CK > 0 and all partitions Q. Thus

E ≤ CN−2−K
∑

Q:E(Q)6=0

|D(Q)| (B.11)

where

D(Q) :=
∑

i,j,i′,j′|Q

D(i, j)D(i′, j′) =
∑

i,j,i′,j′|Q

K∏

k=1

Dk[jk, ik+1]

K∏

k=1

Dk[j′k, i
′
k+1].

For fixed Q, we may rewrite D(Q) as follows: Denote L = 2K, Mk = Dk, and MK+k = Dk. Let

q, q′ : {1, . . . , L} → Q be the maps such that q(k), q′(k), q(K + k), q′(K + k) are the elements of Q
containing jk, ik+1, j

′
k, i
′
k+1, respectively. Then

D(Q) =
∑

α

L∏

`=1

M`[αq(`), αq′(`)],

where
∑
α denotes the summation over all maps α : Q → N such that α(l, r, q) ∈ {1, . . . , Nr} for

each (l, r, q) ∈ Q and α(l, r, q) 6= α(l, r, q′) whenever q 6= q′. (So α gives the index values, which

must be distinct for elements of Q corresponding to the same (l, r) ∈ R.)

We may simplify this condition on α by considering the following embedding: Let

Ñ =
∑

(l,r)∈R

Nr,

and consider the corresponding block decomposition of CÑ with blocks indexed by R. (So the (l, r)

block has size Nr.) For each ` = 1, . . . , L, if q(`) = (l, r, q) and q′(`) = (l′, r′, q′), then note that M`

is of size Nr × Nr′ . Let M̃` ∈ CÑ×Ñ be its embedding whose (l, r) × (l′, r′) block equals M` and

whose remaining blocks equal 0. Then

D(Q) =
∑

α

L∏

`=1

M̃`[αq(`), αq′(`)],

where
∑
α now denotes the summation over all maps α : Q → {1, . . . , Ñ} such that each α(l, r, q)
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belongs to the (l, r) block of {1, . . . , Ñ}, and the values α(l, r, q) are distinct across all (l, r, q) ∈ Q.

Extending the range of summation of each α(l, r, q) to all of {1, . . . , Ñ} simply adds 0 by the definition

of M̃`, so we finally obtain

D(Q) =

∗∑

α1,...,αQ

L∏

`=1

M̃`[αq(`), αq′(`)] (B.12)

where Q = |Q| and the sum is over all tuples of Q distinct indices in {1, . . . , Ñ}.
We must bound |D(Q)| for any Q such that E(Q) 6= 0. By Lemma B.3(b) and the expression

(B.8) for E(Q), if E(Q) 6= 0, then for each (l, r) ∈ R and each index value i ∈ {1, . . . , Nr}, there

must be an even number of indices in I(l, r) equal in value to i, i.e. each element S ∈ Q must have

even cardinality. Furthermore, if exactly two indices in I(l, r) equal i, then they must both be row

indices or both be column indices for Ol,r. In particular, if S ∈ Q has cardinality |S|= 2, and if

S = {jk, ik+1} or S = {j′k, i′k+1}, then this implies (lk, rk, ek) = (lk+1, rk+1,−ek+1). The condition

of the lemma ensures in this case that TrDk = 0, so also Tr M̃k = Tr M̃K+k = 0.

We pause to formulate a lemma which provides the bound for |D(Q)| that we need.

Lemma B.4. Fix integers L,Q ≥ 1 and a constant B > 0. Let i, j : {1, . . . , L} → {1, . . . , Q} be two

fixed maps. Let M1, . . . ,ML ∈ CN×N be such that ‖Ml‖≤ B for all l. Call an index q ∈ {1, . . . , Q}
“good” if both of the following hold:

• Exactly two of i(1), . . . , i(L), j(1), . . . , j(L) are equal to q.

• If i(`) = j(`) = q for some `, then TrM` = 0.

Let T be the number of good indices q ∈ Q.

Denote by
∑∗
α1,...,αQ

the sum over all tuples of Q indices α1, . . . , αQ ∈ {1, . . . , N} with all values

distinct. Then, for some constant C := C(L,Q,B) > 0,

∣∣∣∣∣∣

∗∑

α1,...,αQ

L∏

`=1

M`[αi(`), αq′(`)]

∣∣∣∣∣∣
≤ CNQ−T/2. (B.13)

Assuming this lemma for now, we can complete the proof of Lemma B.2. We saw that any S ∈ Q
of cardinality |S|= 2 is good, for if S = {q(`), q′(`)}, then either S = {jk, ik+1} or S = {j′k, i′k+1} and

so Tr M̃` = 0. Letting T be the number of elements of Q with cardinality 2, we have 2T +4(Q−T ) ≤
4K. But T is also the number of good indices q, so Lemma (B.13) implies

|D(Q)|≤ CÑQ−T/2 ≤ CÑK . (B.14)

Noting that Ñ/N and the number of distinct partitions Q are also both bounded by a K-dependent

constant, and combining with (B.11), we obtain E ≤ CN−2 as desired, and hence Lemma B.2.
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Proof of Lemma B.4. Denote [L] = {1, . . . , L} and [Q] = {1, . . . , Q}. We will show the following

claim by induction on t: For any L,Q ≥ 1 and B > 0, if the number of good indices T satisfies

T ≥ t, then there exists a constant C := C(L,Q,B, t) > 0 for which

∣∣∣∣∣∣

∗∑

α1,...,αQ

L∏

l=1

Ml[αq(l), αq′(l)]

∣∣∣∣∣∣
≤ CNQ−t/2. (B.15)

The desired result follows from this claim applied with t = T and C = maxQt=0 C(L,Q,B, t).

For the base case t = 0, the left side of (B.15) is bounded by CNQ for C = BL, regardless of T ,

as each entry of Ml is bounded by B.

For the inductive step, let t ≥ 1, suppose the number T of good indices satisfies T ≥ t, and

suppose the inductive claim holds for t− 1, t− 2, . . . , 0. We consider two cases corresponding to the

two possibilities for goodness of an index q:

Case 1: There exists a good index q and some l ∈ [L] such that q(l) = q′(l) = q and TrMl = 0.

For notational convenience, assume without loss of generality that q = Q and l = L. Summing first

over α1, . . . , αQ−1 and then over αQ, and noting that no other q(l) or q′(l) equals Q for l ≤ L − 1

because Q is good, the left side of (B.15) may be written as

LS :=

∣∣∣∣∣∣∣∣∣

∗∑

α1,...,αQ−1

(
L−1∏

l=1

Ml[αq(l), αq′(l)]

)
N∑

αQ=1

αQ /∈{α1,...,αQ−1}

ML[αQ, αQ]

∣∣∣∣∣∣∣∣∣
.

Then applying TrML = 0, if Q = 1, then LS vanishes and there is nothing further to do. If Q > 1,

we get

LS =

∣∣∣∣∣∣

∗∑

α1,...,αQ−1

(
L−1∏

l=1

Ml[αq(l), αq′(l)]

) ∑

αQ∈{α1,...,αQ−1}

ML[αQ, αQ]

∣∣∣∣∣∣

≤
Q−1∑

k=1

∣∣∣∣∣∣

∗∑

α1,...,αQ−1

(
L−1∏

l=1

Ml[αq(l), αq′(l)]

)
ML[αk, αk]

∣∣∣∣∣∣
.

We may apply the induction hypothesis to each of the Q − 1 terms of the above sum: Define

q̃, q̃′ : [L] → [Q − 1] by q̃(l) = q(l) and q̃′(l) = q′(l) for l ∈ [L − 1] and q̃(L) = q̃′(L) = k. Each

q ∈ [Q− 1] that was good for i, j remains good for ĩ, j̃, except possibly q = k. Thus the number of

good indices for q̃, q̃′ is at least ť := max(t− 2, 0). The induction hypothesis implies

LS ≤ (Q− 1) · C(L,Q− 1, B, ť)NQ−1−ť/2 ≤ (Q− 1) · C(L,Q− 1, B, ť)NQ−t/2.

Case 2: There exists a good index q and distinct l 6= l′ ∈ [L] such that one of q(l), q′(l) and
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one of q(l′), q′(l′) equal q. For notational convenience, assume without loss of generality that q = Q,

l = L−1, and l′ = L. By possibly replacing ML−1 and/or ML by M ′L−1 and/or M ′L, we may further

assume q′(L− 1) = q(L) = Q.

Summing first over α1, . . . , αQ−1 and then over αQ as in Case 1, and noting that no q(l) or q′(l)

equals Q for l ≤ L− 2 because Q is good, the left side of (B.15) may be written as

LS :=

∣∣∣∣∣∣∣∣∣

∗∑

α1,...,αQ−1

(
L−2∏

l=1

Ml[αq(l), αq′(l)]

)
N∑

αQ=1

αQ /∈{α1,...,αQ−1}

ML−1[αq(L−1), αQ]ML[αQ, αq′(L)]

∣∣∣∣∣∣∣∣∣
.

Define M = ML−1ML. Then ‖M‖≤ B2, and

LS =

∣∣∣∣∣
∗∑

α1,...,αQ−1

(
L−2∏

l=1

Ml[αq(l), αq′(l)]

)(
M [αq(L−1), αq′(L)]

−
∑

αQ∈{α1,...,αQ−1}

ML−1[αq(L−1), αQ]ML[αQ, αq′(L)]

)∣∣∣∣∣

≤

∣∣∣∣∣∣

∗∑

α1,...,αQ−1

(
L−2∏

l=1

Ml[αq(l), αq′(l)]

)
M [αq(L−1), αq′(L)]

∣∣∣∣∣∣

+

Q−1∑

k=1

∣∣∣∣∣∣

∗∑

α1,...,αQ−1

(
L−2∏

l=1

Ml[αq(l), αq′(l)]

)
ML−1[αq(L−1), αk]ML[αk, αq′(L)]

∣∣∣∣∣∣
.

We may again apply the induction hypothesis to each term of the above sum: For the first term,

each original good index q ∈ [Q − 1] remains good, except possibly k := q(L − 1) = q′(L) if k was

originally good but now TrM 6= 0. Hence for this first term there are still at least ť := max(t− 2, 0)

good indices. The other Q−1 terms are present only if Q > 1. For each of these terms, each original

good index q ∈ [Q − 1] remains good, except possibly q = k—hence there are also at least ť good

indices. Then the induction hypothesis yields, similarly to Case 1,

LS ≤
(
C(L− 1, Q− 1, B2, ť) + (Q− 1) · C(L,Q− 1, B, ť)

)
NQ−t/2.

This concludes the induction in both cases, upon setting C(L,Q,B, t) = C(L − 1, Q − 1, B2, ť) +

(Q− 1) · C(L,Q− 1, B, ť).

This concludes the proof of Theorem 5.9. Finally, we prove Corollary 5.10 which establishes the

approximation at the level of Stieltjes transforms.

Proof of Corollary 5.10. Under the given conditions, there exists a constant C0 > 0 such that

|τ(wl)|≤ Cl0 for all N and l ≥ 0, and also |N−1 TrW l|≤ ‖W‖l≤ Cl0 a.s. for all l ≥ 0 and
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all sufficiently large N . Fix z ∈ C+ with |z|> C0. Then mw(z) = −∑∞l=0 z
−(l+1)τ(wl) and

mW (z) = −N−1 Tr(z −W )−1 = −∑∞l=0 z
−(l+1)N−1 TrW l define convergent series for all large N .

For any ε > 0, there exists L such that

∣∣∣∣∣
∞∑

l=L+1

z−(l+1)N−1 TrW l

∣∣∣∣∣ < ε,

∣∣∣∣∣
∞∑

l=L+1

z−(l+1)τ(wl)

∣∣∣∣∣ < ε

for all large N , while by Theorem 5.9, as N →∞
∣∣∣∣∣
L∑

l=0

z−(l+1)N−1 TrW l − z−(l+1)τ(wl)

∣∣∣∣∣→ 0.

Hence lim supN→∞|mW (z)−mw(z)|≤ 2ε a.s., and the result follows by taking ε→ 0.

B.2 Constructing free approximations

We construct the spaces (A, τ, p1, . . . , pd) in Examples 5.5, 5.6, 5.7, and point the reader to the

relevant references that establish Lemma 5.14.

Lemma B.5. Rectangular probability spaces (A, τ, p1, . . . , pd) satisfying the properties of Examples

5.5, 5.6, and 5.7 exist, such that in each example, A is a von Neumann algebra and τ is a positive,

normal, and faithful trace.

Proof. In Examples 5.5 and 5.6, let (Ω,P) be a (classical) probability space and let A be the von

Neumann algebra of d× d random matrices with entries in L∞(Ω,P), the bounded complex-valued

random variables on Ω. (A acts on the Hilbert space H of length-d random vectors with elements

in L2(Ω,P), endowed with inner-product v, w 7→ E〈v, w〉.) Defining τ(a) = N−1E[
∑d
r=1Nrarr], τ

is a positive and faithful trace. As a 7→ E[arr] is weakly continuous and hence σ-weakly continuous

for each r = 1, . . . , d, τ is normal. Letting pr ∈ A be the (deterministic) matrix with (r, r) entry

1 and remaining entries 0, (A, τ, p1, . . . , pd) is a rectangular probability space, and τ(pr) = Nr/N

for each r = 1, . . . , d. For Example 5.5, the element g ∈ A may be realized as the random matrix

with (r, r) entry equal to X and all other entries 0, where X ∈ L∞(Ω,P) is a random variable with

standard semi-circle distribution on [−2, 2]. For Example 5.6, the element g ∈ A may be realized as

the matrix with (r1, r2) entry equal to X and all other entries 0, where X ∈ L∞(Ω,P) is the square

root of a random variable having the Marcenko-Pastur distribution (5.7) with λ = Nr2/Nr1 .

For Example 5.7, we may simply take (A, τ, p1, . . . , pd) to be the rectangular probability space of

deterministic N ×N matrices from Example 5.1. (A is the space B(H) for H = CN , and τ is clearly

positive, faithful, and normal as H is finite-dimensional.) We may take the elements b1, . . . , bk ∈ A
to be the original matrices B1, . . . , Bk.
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The sub-∗-algebrasD in the three examples above are isomorphic. They are also finite-dimensional,

hence σ-weakly closed, so each is a von Neumann sub-algebra of A.

Proof of Lemma 5.14. For each r = 1, . . . , k, let (A(r), τ (r), p0, . . . , p2k) be the space constructed

as in Lemma B.5 corresponding to Example 5.6 and containing the element gr, satisfying condi-

tions 1, 2, and 4. Let (A(k+1), τ (k+1), p0, . . . , p2k) and (A(k+2), τ (k+2), p0, . . . , p2k) be the spaces

constructed as in Lemma B.5 corresponding to Example 5.7 and containing the families {hr} and

{frs}, respectively, satisfying conditions 1, 2, and 3. D = 〈p0, . . . , p2k〉 is a common (up to isomor-

phism) (2k + 1)-dimensional von Neumann sub-algebra of each A(r), and each τ (r) restricts to the

same trace on D. Then the construction of the finite von Neumann amalgamated free product of

(A(1), τ (1)), . . . , (A(k+2), τ (k+2)) with amalgamation over D [Voi85, Pop93] yields a von Neumann

algebra A with a positive, faithful, and normal trace τ such that:

• A contains (as an isomorphically embedded von Neumann sub-algebra) each A(r), where A(r)

contains the common sub-algebra D.

• Letting F : A → D and F(r) : A(r) → D denote the τ -invariant and τ (r)-invariant conditional

expectations, F|A(r)≡ F(r).

• τ = τ (r) ◦ F for any r, so in particular, τ |A(r)= τ (r).

• The sub-algebras A(1), . . . ,A(k+2) of A are free with amalgamation over D in the D-valued

probability space (A,D,F).

(For more details about the amalgamated free product construction, see the Introduction of [Dyk95]

and also Section 3.8 of [VDN92].) Since τ restricts to τ (r) on each A(r), conditions 1–4 continue

to hold for the elements pr, frs, gr, hr in A. The generated von Neumann algebra 〈D, gr〉W∗ is

contained in A(r) and similarly for 〈D,h1, . . . , hk〉W∗ and 〈D, f11, f12, . . . , fkk〉W∗ , so D-freeness of

these algebras is implied by the D-freeness of the sub-algebras A(r). The elements frs, gr, hr have

bounded norms in the original algebras A(1), . . . ,A(k+2) and hence also in the free product.
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