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Preface

These notes were created as a set of lecture notes for a three-day seminar on the mathematics of music,
intended to introduce topics in this area to the interested reader without assuming strong prerequisites
in mathematics or music theory. They are not intended to be a comprehensive and technically rigorous
exposition, and an attempt is made to introduce the concepts in an elementary way and to avoid technical
details when possible and appropriate. Much has been written on the connections between mathematics and
music; this summary draws on a number of such sources, referenced to in the bibliographic notes.
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Lecture 1

Understanding Musical Sound

1.1 Sound, the human ear, and the sinusoidal wave

1.1.1 Sound waves and musical notation

Music is organized sound, and it is from this standpoint that we begin our study. In the world of Western
music, notation has been developed to describe music in a very precise way. Consider, for instance, the
following lines of music:

A musician who understands this notation would recognize this as the melody of “Twinkle, Twinkle Little
Star” (in the key of A major), and the symbols above encode, to great precision, various aspects of the
sounds that make up this melody.

Sound travels through air, a gaseous medium of molecules that are constantly in motion and exerting
forces against each other. These forces create air pressure—when a large quantity of air molecules are
compressed in a small space, air pressure is high, and when air molecules are spread out at a great distance
from one another, air pressure is low. Physically, sound is a wave of alternating high and low air pressure
that travels through time and space.

To visualize a sound wave, let us consider a chronological sequence of pictures of the compression of air
molecules for a sound wave moving in the rightward direction:
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2 LECTURE 1. UNDERSTANDING MUSICAL SOUND

One should note that each individual air molecule moves only a very small distance and does not travel
far in the rightward direction, but rather that a rippling effect causes the wave to propagate rightwards.
Accompanying these pictures are graphs of the air pressure at each point in space, where we shift our units
so that the horizontal axis indicates normal atmospheric air pressure without the perturbation of sound.
The shape of the functions in these graphs is called the waveform. We have drawn the wave to be periodic,
meaning that it is a repetition of the same pattern across space, and indeed, a musical pitch corresponds to
a periodic sound wave. The distance in space between two repetitions of the pattern is called the wavelength
of the wave or the period of the waveform. If we focus on how the wave moves through a particular point in
space, the number of repetitions of the pattern that move through that point in a single second is called the
frequency of the wave, measured in Hertz (Hz). For waves moving at the same speed, a longer wavelength
implies a longer time for a single repetition of the pattern to move across any given point, and hence it
implies a lower frequency. Indeed, we have the relationship frequency × wavelength = speed of wave. For
this particular waveform, known as the sinusoidal wave, there is a clear maximum and minimum amount of
air pressure achieved by the wave, and the difference between this and normal atmospheric pressure is called
the amplitude of the wave.

Returning to our musical example of “Twinkle, Twinkle Little Star”, we may translate the musical
notation into statements about the physical waves that make up the sound. The first and last notes of the
example are “A above middle C”, which refers to the pitch of the note, a musical term for the frequency of
the sound wave. This A above middle C has a frequency of 440Hz, and it is common to see the marking
“A440” on digital tuners to represent this pitch. Every musical pitch corresponds to a particular frequency—
for instance, the third note of E in the musical example is a frequency of 660Hz—with higher pitches
corresponding to higher frequencies and lower pitches corresponding to lower frequencies. The marking mp
is a dynamic marking to indicate the volume of the sound, which corresponds to the amplitude of the sound
wave. Finally, the stems and heads of the notes indicate the duration of each note, which is the amount of
time a particular sound wave is present before it changes to the next wave.

1.1.2 The human ear and the sinusoidal wave

How does the ear perceive sound and distinguish pitch? A picture of the ear is shown below.

The outer ear, composed of the pinna, concha, and auditory canal, is responsible for amplifying sound and
plays an important role in our ability to perceive the location of a sound source. Sound waves passing through
the auditory canal create oscillations of the tympanic membrane that separates the outer and middle ear.
This membrane is attached to three bones known as the ossicles, which in turn are attached to a liquid-filled
tube called the cochlea in the inner ear. The ossicles transfer the oscillations of the tympanic membrane to
waves in the liquid of the cochlea, and it is the cochlea that plays the main role in pitch perception.
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The above image shows a picture of a cross-section of the uncoiled cochlea. Liquid known as perilymph
is contained in the regions shaded gray, and waves in this liquid induce oscillations of the basilar membrane.
The basilar membrane is thin near the base of the cochlea and thick near the apex of the cochlea, and
high frequency waves induce oscillations of the thin portion of the basilar membrane while low frequency
waves induce oscillations of the thick portion. Some graphs of the magnitude of oscillation along the basilar
membrane for different frequencies of sound are shown below:

Signals from these oscillations are conveyed by auditory nerves to the brain, and the brain is able to distin-
guish pitch based on which region of the basilar membrane is oscillating.

In the previous section, we drew a sinusoidal wave as an example of a sound wave, and we defined
frequency, wavelength, and amplitude based on this picture. The sinusoidal wave is the waveform given by
the function f(x) = A sin(νx + θ). The amplitude and frequency are captured in the parameters A and ν
respectively, and θ corresponds to the phase of the wave, which changes over time to generate wave motion.
The sinusoidal wave corresponds to the idea of a “pure” pitch as perceived by the ear and brain, and the
reason lies in the physics behind the oscillation of the basilar membrane. (To a first order approximation,
we may consider each point of the basilar membrane as an ideal spring. The physical equation governing
the displacement x of an ideal spring is given by F = −kx, where F is the force of the spring and k is the
spring constant. The value of this spring constant k is higher at thicker points of the membrane and lower
at thinner points, and it determines the resonant frequency of oscillation at that point. A pure sinusoidal
wave in the perilymph inside the cochlea provides a sinusoidal driving force that induces strong oscillations
at points of the basilar membrane with resonant frequency close to the frequency of this driving force, and
the strength of the oscillation is weaker as the resonant frequency is farther from the frequency of the driving
force. This creates the graphs of oscillation magnitude displayed above, which the brain perceives as pure
pitches [3].)

1.2 Timbre and resonance harmonics

We have attributed the pitch and volume of a musical sound to the frequency and amplitude of the sound
wave. This does not, however, explain everything that we hear. Suppose that a violin and a flute play the
same pitch at the same volume level, or that an opera singer sings the same note on an “oo” and an “ee”
vowel. It is easy to hear the differences between these sounds, but how are they manifested in the physical
sound waves?

The answer lies in that, even though our brain perceives the sinusoidal wave as a pure musical pitch,
most musical sounds that we hear are not pure pitches. Graphs of the waveforms for a violin, trumpet, and
clarinet all playing the note A at 440Hz are shown below:
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We observe that each waveform is periodic with the same period, but the shapes of the waveforms are
different, and none of them are sinusoidal. Indeed, each wave corresponds to a pure sinusoidal wave of
frequency 440Hz, with various waves of higher frequency added to it. (In vocal singing, one can manipulate
and change the strengths of these higher frequency sounds by shaping the mouth and throat, a technique
that is used in Mongolian and Tibetan overtone singing to allow a single person to sing a melody on top of
a bass drone.) Let us, in this section, explore the causes of these superimposed frequencies from a physical
perspective for the string and wind instruments, and defer a more mathematical treatment to the subsequent
section.

An important group of instruments create sound using a vibrating string. These include the violin, viola,
cello, and stringed bass of the Western orchestra, the versatile piano and guitar, as well as a number of
traditional Chinese instruments including the zheng, qin, pipa, and erhu. In each of these instruments, the
string is stretched taut between two fixed ends, and the middle of the string is allowed to vibrate. This
allows the string to produce certain patterns of standing waves known as modes.

Letting L be the length of the string, the first mode of oscillation corresponds to a wavelength of twice this
length, or 2L. The nth mode corresponds to a wavelength of 2L

n . Translated into frequencies, this implies
that if the frequency corresponding to the first mode of oscillation is f1, then the frequency of the nth mode
is nf1. When a string vibrates to produce a sound, the standing wave of the string is a superposition of any
number of these modes, creating a sound wave that is a superposition of pure sinusoidal waves of varying
frequencies.

A similar treatment can be applied to wind instruments. These include instruments of the woodwind fam-
ily, such as flutes, clarinets, oboes, saxophones, and bassoons, as well as the brass family, such as trumpets,
horns, trombones, and tubas. The model of the wind instrument is also a crude but useful approximation
for the vocal tract of the human voice. Sound in these instruments is shaped by the reverberation of sound



1.3. FOURIER SERIES AND FREQUENCY ANALYSIS 5

waves within a tube, which we will model as a cylinder with open or closed ends. Again, the tube allows for
modes of oscillation corresponding to standing sound waves inside the tube of varying frequencies. An open
end of the tube must correspond to a point of zero pressure difference from normal air pressure, similar to
how a fixed end of a string cannot be displaced. If the tube has a closed end, the endpoint of the tube must
be a point of maximal pressure difference from normal air pressure. (This is due to the condition that the
displacement of the air molecules at the closed end must be fixed at zero and to a relationship between the
pressure and displacement.) Hence, the modes of oscillation for tubes with two open ends, such as the flute,
or tubes with one closed end, such as the clarinet, are those shown below:

In the case of two open ends, the wavelength of the first mode of oscillation is twice the length of the tube,
and the frequency of the nth mode is n times the frequency of the first mode. In the case of one closed end,
the wavelength of the first mode of oscillation is four times the length of the tube, and the frequency of the
nth mode is 2n− 1 times the frequency of the first mode.

The frequency of the first mode of oscillation for a string or tube is known as its fundamental frequency,
or the first harmonic, and the frequency that is n times the fundamental frequency is the nth harmonic.
That the frequencies of the harmonics are integer multiples of the fundamental frequency has important
consequences on scales and temperament in Western music, which we will explore in Lecture 2.

1.3 Fourier series and frequency analysis

There are some questions that the preceding discussion has left unresolved. Why must a string oscillate as
one of the modes previously depicted, or as a superposition of such modes? Supposing that it does oscillate
in this way, how can we examine quantitatively the strength of oscillation of each mode? And if the resulting
sound wave is not a pure sinusoidal wave, how does our ear process this sound? To answer these questions,
we turn to the mathematical theory of Fourier series.

Recall the notion of a vector in R2: It is an ordered pair of real numbers, (x, y), that represents a
point in the plane. We can take two vectors and add them by adding their coordinates individually, e.g.,
(2, 3) + (4, 5) = (2 + 4, 3 + 5) = (6, 8). We can multiply a vector by a number and get a new vector, e.g.,
−2(2, 3) = (−4,−6). The collection of all vectors in R2, with these operations of addition and multiplication
by a real number, forms a vector space.

We have a third operation for vectors in R2 known as the dot product, or inner product :

〈(x1, y1), (x2, y2)〉 = x1x2 + y1y2.

The inner product of two vectors is a number. Taking an inner product of a vector with itself always returns
a nonnegative number, which is the square of the length of that vector. Two vectors are perpendicular if
their inner product is zero. A vector space that also has this type of an inner product operation is called an
inner product space.
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In R2, we may define two special vectors i = (1, 0) and j = (0, 1), and write any vector as a sum of
multiples of these vectors. For instance, (2, 3) = 2i+ 3j. For any vector v, we have that v = 〈v, i〉i+ 〈v, j〉j;
that is, when writing v as a sum of multiples of i and j, the coefficients are given by the inner products of
v with i and j. This property is true because i and j each have length equal to 1 and are perpendicular to
each other, and the same property would be true if we take any two other perpendicular vectors of length 1.
For instance, if we let a = 1√

2
(1, 1) and b = 1√

2
(−1, 1), then a and b have length 1 and are perpendicular,

and so v = 〈v,a〉a + 〈v,b〉b for any vector v. Any pair of such vectors forms an orthonormal basis for R2.
A similar structure holds for R3. Here, a vector is an ordered triple of real numbers. The inner product

is defined by 〈(x1, y1, z1), (x2, y2, z2)〉 = x1x2 + y1y2 + z1z2. The vectors i = (1, 0, 0), j = (0, 1, 0), and
k = (0, 0, 1) form an orthonormal basis for R3, and we have v = 〈v, i〉i + 〈v, j〉j + 〈v,k〉k for any vector v.
The number of vectors in an orthonormal basis for a vector space is the dimension of that space, so R2 is a
2-dimensional space and R3 is a 3-dimensional space.

Consider any periodic waveform with some period, say 2π, given by a function f(x). The periodicity
condition requires that f(0) = f(2π) = f(4π) = . . .. Suppose also that the average value of f(x) over all x is
0. We may multiply f(x) by a number to obtain a new function, or take two such functions f1(x) and f2(x)
and add them to obtain a new function. This new function, in either case, still gives a waveform with period
2π and average value 0. Multiplying by a number corresponds to multiplying the amplitude of the wave by
that number while keeping the shape of the waveform the same. Adding two waveforms corresponds to the
wave obtained by superimposing them on top of each other.

Hence the space of all waveforms with period 2π and average value 0 forms a vector space. That is, the
“vectors” of this vector space are functions. The problem of decomposing a waveform into a superposition of
sinusoidal waves would be solved if the sinusoidal waves, as vectors in this vector space, form an orthonormal
basis under some inner product operation.

The inner product operation we seek is the following:

〈f, g〉 =
1

π

∫ 2π

0

f(x)g(x)dx.

The claim is that, under this inner product, the functions sinx, cosx, sin 2x, cos 2x, sin 3x, cos 3x, . . . form an
orthonormal basis. It is an exercise in calculus to verify that these functions are orthonormal, i.e. the inner
product of each function with itself is 1 and the inner product of any two different functions in this list is 0.
That any periodic function can be expressed as a sum of multiples of these functions is given by the following
theorem.

Theorem 1.3.1. Let f be a smooth function on R with period 2π and average value 0. Let a1(x) = sinx,
a2(x) = sin 2x, a3(x) = sin 3x, etc., and let b1(x) = cosx, b2(x) = cos 2x, b3(x) = cos 3x, etc. Then

f =

∞∑
i=1

(
〈f, ai〉ai + 〈f, bi〉bi

)
,
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where the inner product is given by 〈f, g〉 = 1
π

∫ 2π

0
f(x)g(x)dx.

(Let us note for the sake of correctness that by “smooth”, we mean f is continuously differentiable, and
the equality in the above conclusion holds pointwise. The reader unfamiliar with these terms need not worry
about their precise definitions.) In other words, any function with period 2π and average value 0 can be
written as a sum of sinusoidal functions with periods 2π, 2π

2 , 2π
3 , 2π

4 , and so on. The orthonormal basis, in
this case, is given by the collection of all sine and cosine functions with periods 2π

n for integers n. We note
that, unlike the cases of R2 and R3, the orthonormal basis for this space of periodic waveforms has an infinite
number of vectors, and hence the space of periodic waveforms is an infinite-dimensional inner product space.

This theorem allows us to answer the questions posed at the start of this section. The modes of vibration
of a vibrating string of length L correspond to sinusoidal waveforms with wavelengths 2L, 2L

2 , 2L
3 , etc. The

vibrating string does not “know” to vibrate as a superposition of these modes. The possible motions of the
string are governed by physical laws relating to the tension of the string, under the boundary conditions
that the ends of the string cannot move. These laws require that the displacement of the points of the string
create some waveform with periodicity 2L and that the average displacement over all points of the string
is zero. (To be more precise, the displacement of the string at point x and time t must be of the form
f(x + ct)− f(ct− x), where f is a periodic function of periodicity twice the length of the string and mean
value zero.) The string can oscillate with any such waveform, and the fact that this oscillation can be written
as a superposition of the modes of vibration is a purely mathematical consequence of the above theorem.
Similarly, air in a tube does not “know” to vibrate as a superposition of modes, but the fact that any wave
that satisfies the physical constraints of the tube can be written as such a superposition is a mathematical
truth.

Theorem 1.3.1 also gives us the method for decomposing any sound wave into components corresponding
to the pure sinusoidal frequencies. Revisiting the waveforms of the violin, trumpet, flute, and oboe, we may
use this theorem to determine the amplitude of oscillation (i.e. volume) of each of the first four harmonic
pitches of these instruments.

We see that the waveform of the clarinet consists primarily of the sinusoidal wave at the fundamental
frequency, whereas the waveform of the violin also includes a very strong component at the second harmonic.
The waveform of the trumpet includes a second harmonic that is in fact louder than the fundamental pitch,
as well as strong third and fourth harmonics.

Finally, when any waveform that is a superposition of sine waves of various harmonic frequencies reaches
the cochlea inside the human ear, the different frequency components create oscillations in different portions
of the basilar membrane, and we perceive a mix of pitches. So the human ear performs physically what we
have done mathematically, to separate the sound into its harmonic pitch components.
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1.4 Further topics

1.4.1 Percussion instruments

In Section 1.2, we discussed the modes of oscillation of string and wind instruments, the latter also serving
as an approximation for the human voice. A family of instruments that we did not discuss are the percussion
instruments, which can be classified into the two groups of idiophones, such as xylophones and marimbas,
and membranophones, such as timpani and drums. The physical law that governed the types of oscillations
possible for a vibrating string or a column of air inside a tube was the one-dimensional wave equation, which
resulted in periodic waveforms. However, this law does not govern the types of oscillations possible for these
percussion instruments, and in fact the waveforms of these percussion instruments are non-periodic.

The space of all waveforms permissible for an idiophone or membranophone is still an infinite-dimensional
vector space with an orthonormal basis, but the functions that form this basis are non-periodic and more
complicated than simple sinusoidal waves. (The basis functions for the space of waveforms of idiophones
involve the hyperbolic sine and cosine functions, and those for membranophones involve Bessel functions
of the first kind.) Nonetheless, these basis functions are regular in some way, and it is possible to define
a “frequency” of oscillation for each basis function that corresponds to our perceived notion of pitch. For
an ideal idiophone, the first four harmonic frequencies are 1.000, 2.758, 5.405, and 8.934 times the funda-
mental frequency, respectively. For an ideal membranophone, the first four harmonic frequencies are 1.000,
1.593, 2.136, and 2.653 times the fundamental frequency, respectively. We note that this differs from the
phenomenon observed in string and wind instruments, where the harmonic frequencies are integer multiples
of the fundamental frequency [6].

1.4.2 Psychoacoustic phenomena

A number of interesting phenomena regarding our perception of pitch and sound cannot be explained by
the discussion of the human auditory system provided in this lecture; let us touch on two of them here. The
first phenomenon is that of sum and difference tones. When the ear hears two simultaneous pure pitches
corresponding to sinusoidal waves of frequencies f1 and f2, oftentimes weaker notes can also be heard at the
frequencies f1− f2, f1 + f2, 2f1− f2, 2f2− f1, and other combinations of these two pitches. The perception
of these pitches is fundamentally different from the perception of the harmonic frequencies of the human
voice or a physical instrument, because these pitches are not components of the waveform of the physical
sound wave whereas the harmonic frequencies of a real instrument are.

A second phenomenon is that of the missing fundamental. When the ear hears a waveform composed of
a number of resonance harmonics, it usually attributes the primary pitch of that waveform to be the pitch
at the fundamental frequency of the waveform. However, if the sound is digitally synthesized so that the
fundamental frequency is removed but the other resonance harmonics remain, the ear will still perceive the
primary pitch to be the missing fundamental frequency. This missing fundamental frequency is perceived
even when the second, third, and fourth resonance harmonics are removed, as long as a sufficient number of
higher resonance harmonics are still present.

Some of these auditory phenomena are due to oversimplifications of our model for the cochlea and basilar
membrane. For instance, an explanation for the perception of sum and difference tones lies in nonlinear
oscillations of the basilar membrane in the cochlea that are not governed by simple harmonic motion. Some
of the phenomena, including the missing fundamental, are attributable to psychological causes in the way
our brain processes combinations of pitch and sound. The detailed study of the physiology and psychology
of how we perceive sound is a field known as psychoacoustics.



Lecture 2

Chords, Scales, and the Fundamentals
of Western Music

2.1 Consonance and dissonance

Harmony has been an essential element of Western music for over a millenium, and most music today
contains combinations of pitches sounding simultaneously. Certain combinations of pitches—for instance,
the intervals of the octave and the perfect fifth—sound inherently pleasing, or “consonant”, to the ear, and
these intervals were the first to appear in Western harmony. Other combinations of pitches—for instance,
the tritone and the major seventh—sound rough and jarring, or “dissonant”. The exact characterization of
consonance and dissonance from the music theoretic perspective has changed over time; the intervals of the
major third and major sixth that were considered dissonant in Medieval and early Renaissance music would
be treated as consonant by the time of Bach and Mozart. Consonance and dissonance from the musical
perspective is also dependent on musical context, as the perfect fourth is sometimes treated as a dissonant
interval depending on its musical function.

Nevertheless, it is still reasonable to examine consonance and dissonance from a purely “sensory” per-
spective, irrespective of historical context and musical function, based on how pleasing a combination of
sounds is to the ear. Mathematicians since the time of Pythagoras have noticed that the most consonant
sounds correspond to small integer ratios of frequencies. For instance, the ratio of frequencies for two pitches
an octave apart is 2 : 1, and the ratio of frequencies for two pitches a fifth apart is 3 : 2. They offered
as a reason for our perception of consonance the inherent simplicity of small integer ratios, and this was
the prevalent explanation for a long time. In 1965, Plomp and Levelt put this to the test by conducting a
study in which they played various combinations of two pure pitches (having perfect sinusoidal waveforms)
to people with no musical training, and asked them to rate how “pleasant” the intervals sounded [10]. The
aggregation of results from this study is summarized in the following Plomp-Levelt curve.

The results of Plomp and Levelt’s study show that pitches very close in frequency are perceived not as
dissonant, but rather as a single pitch with the presence of beats. Such beats can be heard, for instance, when
two instruments of a musical ensemble play the same note slightly out of tune from each other. Sensory
dissonance increases quickly as the two pitches are moved farther apart so that they are perceived as a
musical interval, and then decreases and reaches a stable level when the interval becomes large. What may
be surprising, to a trained musician, is that the interval of a tritone is roughly as dissonant as the perfect fifth,

9
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and the interval of a major seventh is roughly as dissonant as the perfect octave. This seems contradictory
to our actual experience and to any music theoretic notions of dissonance.

The reason for the discrepancy lies in that Plomp and Levelt chose to use pure sinusoidal pitches in their
study, whereas the musical sounds that we hear are (usually) produced by real musical instruments. As
we explored in Lecture 1, these instruments produce more complex waveforms, consisting of a number of
superimposed frequencies. The reason that a major seventh sounds dissonant on Western instruments is not
that the interval of the major seventh is fundamentally dissonant, but rather that the second harmonic of
the lower note (which is a perfect octave above its fundamental pitch) is very close to the fundamental pitch
of the higher note, and that a number of higher resonance harmonics of both sounds clash as well. Similarly,
the third harmonic of the lower note clashes against the second harmonic of the higher note in a tritone.
We may test this theory of dissonance using a digital synthesizer, by creating an “instrument” in which the
resonance harmonics of each note are slightly higher than exact integer multiples of the fundamental pitch.
On this digital instrument, perfect octaves and fifths sound very dissonant, but an interval slightly larger
than the perfect octave that matches the harmonics of the instrumental sound becomes consonant.

We can thus modify the Plomp and Levelt dissonance curve in the following way: For any pitch, consider
the sound with that pitch as its fundamental frequency, plus a number of natural resonance harmonics at
integer multiples of that frequency. The dissonance of two notes can then be expressed as the sum of the
dissonances of all pairs of pitches from the two sounds. The resulting graph is shown below, and this time,
the graph corresponds to our intuition with high consonance (low dissonance) at the intervals of the fifth
(3 : 2) and octave (2 : 1).

Since the primary pitch-producing instruments of Western music are string and wind instruments, which
have resonance harmonics at precisely the integer multiples of the fundamental frequency, this curve is a
good model for the concept of consonance and dissonance in the Western musical tradition.

This brings us full circle to the explanation that small integer ratios of frequencies produce consonant
sounds. This is true for string and wind instruments because the strongest resonant frequencies of these
instruments are small integer multiples of the fundamental pitch. Indeed, the relative minima of the above
graph occur when the frequency ratios of the two pitches are expressible as ratios of small integers, and we
may take these ratios to be the definition of the most consonant intervals: the perfect octave is a ratio of
2 : 1, the perfect fifth 3 : 2, the just major sixth 5 : 3, the perfect fourth 4 : 3, the just major third 5 : 4, and
the just minor third 6 : 5.

2.2 Scales and temperament

2.2.1 Continued fractions and the twelve-tone scale

We discussed in Lecture 1 that a pitch is a frequency of oscillation for a sound wave. This frequency can
take on any positive real value, and hence there are an infinite number of possible pitches for sound. Many
physical instruments, however, can play only a finite number of pitches. Let us take, as an example, the
standard modern piano, which can play 88 different pitches. Grouping pitches into their pitch classes, the
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piano can play notes from 12 different pitch classes, corresponding to the seven white keys and five black
keys within any octave.

If we were to design the piano, how can we choose a finite set of pitches that the piano can play? We
would like the piano to be able to play consonant chords, and hence let us use consonance and dissonance as a
starting point. Suppose that we add a pitch with a frequency of 1 unit to the piano. (1 unit can correspond to
440Hz, for instance, so that the pitch is A440.) Since the octave is the most consonant interval, a reasonable
thing to do would be to add all pitches that are octaves away from the starting pitch in some specified range.
The frequency ratio of two pitches in an octave is 2 : 1, so we would have the pitches with frequencies of 2,
4, 8, 16, etc., as well as the pitches with frequencies of 1

2 , 1
4 , 1

8 , etc. If we started with the pitch A440, we
would now have the note A in all octaves.

The second most consonant interval, after the octave, is the perfect fifth at a frequency ratio of 3 : 2. Let
us add the criterion that if we have pitches in a particular pitch class, then we also need the pitches from
the pitch class that is a perfect fifth above it. Starting with the pitch of frequency 1, this would give us a
pitch of frequency 3

2 and all pitches in that pitch class: 3, 6, 12, etc., and 3
4 , 3

8 , 3
16 , etc. We would then need

to add the pitch that is a perfect fifth above this, or 3
2 ×

3
2 = 9

4 , and pitches in this pitch class as well: 9
2 , 9,

18, etc., and 9
8 , 9

16 , etc. We may continue this process infinitely many times. The problem we encounter is
that we will never return to our starting pitch class. That is, multiplying by 3

2 repeatedly will never bring
us to a power of 2, because the only integer solution to the equation ( 3

2 )m = 2n is m = n = 0. Each time
we add a pitch class to our piano, we add one new pitch in the octave between frequencies of 1 and 2 units:
1, 32 ,

9
8 ,

27
16 ,

81
64 ,

243
128 , . . .. This process will never end, so we will end up with an infinite number of pitches to

each octave of the piano.

This seems paradoxical when we consider the actual piano, because each pitch class on the actual piano
has the pitch class that is a fifth above it, and proceeding upwards by the interval of a fifth 12 times brings
us back to our original pitch class. For instance, starting at the note F and proceeding upwards by fifths
12 times, we obtain the sequence F-C-G-D-A-E-B-F]-C]-G]-D]-A]-F, returning to where we started. What
is occurring is that the piano is making an approximation in this last step of the cycle. Let us return to
the sequence of pitches 1, 32 ,

9
8 ,

27
16 ,

81
64 ,

243
128 , . . . in the octave between frequencies of 1 and 2 units obtained by

progressing upwards in fifths, and write this sequence in decimal format: 1, 1.5, 1.125, 1.688, 1.266, 1.898,
1.424, 1.068, 1.602, 1.201, 1.802, 1.352, 1.014.... The 13th pitch in this sequence, 1.014, is extremely close to
the first pitch of 1, so close that we can make the choice of not including this 13th pitch class and, instead,
using the starting pitch class of 1 as the pitch class a fifth above the 12th pitch. This is what is done on
the modern piano, and hence the piano has 12 pitches to each octave. To be musically precise regarding
pitch classes, the pitch class that is a perfect fifth above A] is E], not F, and the sequence proceeds as
A]-E]-B]-F]]-.... The frequency ratio of E] to F, B] to C, or F]] to G is 1.014, and this ratio is called a
Pythagorean comma. Similarly, progressing downwards in fifths from F, we have the pitch classes F-B[-E[-
A[-D[-G[-C[-F[-..., and the frequency ratio of, say, G] to A[ or B to C[ is also 1.014. Pitches that differ by
the Pythagorean comma of 1.014 are called enharmonic, and on most modern instruments, the distinction
between enharmonic pitches is lost.

Looking at the sequence of pitches 1, 1.5, 1.125, 1.688... again, we observe possible places, other than
after the 12th pitch, where we may choose to stop. The sixth pitch of 1.898, when brought down an octave,
is 0.949, which is fairly close to our starting pitch of 1. Hence we may choose to stop after adding only 5
different pitch classes, and the resulting pitches that we obtain form the five notes of the pentatonic scale.
(If we started at F, the notes would be F-C-G-D-A.) A number of traditional Chinese instruments, such as
the zheng and qin, have strings tuned to play exactly the five pitches of the pentatonic scale. The eighth
pitch of 1.068 in our sequence, likewise, is very close to 1, and hence we may also choose to stop after adding
the first 7 pitch classes. The resulting pitches that we obtain form the diatonic major scale. (If we started
at F, we would obtain the seven pitches of the C major scale.)

We may frame this question of how many pitch classes to include mathematically as the question of for

what integers m and n is
( 3
2 )

m

2n approximately equal to 1. Taking the base-two logarithm, this is the question
of when m log2 ( 3

2 ) − n is approximately zero, or equivalently, how to approximate the irrational number
log2 ( 3

2 ) by a rational number n
m . One method of doing this is by the method of continued fractions [3]: We
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may write any irrational number r as

r = a1 +
1

a2 + 1
a3+

1
a4+...

,

where we choose a1 as the largest integer less than r, then a2 as the largest integer less than 1
r−a1 , then a3

as the largest integer less than 1
1

r−a1
−a2

, and so on. We have the following theorem:

Theorem 2.2.1. If

r = a1 +
1

a2 + 1
a3+

1
...

is the continued fraction expansion of r and

pn
qn

= a1 +
1

a2 + 1
a3+

1

...+ 1
an

is the truncation of the expansion to an (with pn and qn relatively prime), then
∣∣∣r − pn

qn

∣∣∣ < 1
q2n

. In addition,
pn
qn

is the closest approximation to r among all fractions p
q with q ≤ qn.

This theorem tells us that we obtain increasingly closer approximations to any irrational number r as we
write out its continued fraction expansion to increasingly more terms. The continued fraction expansion for
log2 ( 3

2 ) is

log2

(
3

2

)
=

1

1 + 1
1+ 1

2+ 1
2+ 1

3+ 1
1+ 1

5+ 1
2+...

.

The first few rational approximations given by this continued fraction expansion are log2( 3
2 ) ≈ 1, 1

2 , 3
5 ,

7
12 , 24

41 , and 31
53 . The approximation of 3

5 indicates that
( 3
2 )

5

23 ≈ 1, i.e. going up by five fifths and then
down by three octaves brings us close to our starting pitch, and this is the rationale for stopping at the

pentatonic scale. The approximation of 7
12 indicates that

( 3
2 )

12

27 ≈ 1, i.e. going up by twelve fifths and then
down by seven octaves brings us close to our starting pitch, and this is the rationale for stopping at twelve
pitch classes for the piano keyboard. These are approximations that we have already discussed. The next
two approximations of 24

41 and 31
53 are even closer approximations to log2 ( 3

2 ) and indicate that, if we are
unsatisfied with treating pitches at a pitch ratio of 1.014 as the same pitch, then 41 or 53 different pitch
classes are the next natural places to stop. Indeed, in 1876, Robert Bosanquet designed a “generalised
keyboard harmonium” with exactly 53 pitches to each octave [3].
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2.2.2 Just intonation, Euclidean lattices, and the fundamental domain

That the piano and many other Western instruments restrict themselves to twelve different pitch classes has
an important consequence: it is impossible to tune such instruments so that every interval is perfectly in
tune. Indeed, we have observed that, moving upwards by fifths twelve times from a starting pitch class, it
is not possible to return to that pitch class unless an approximate fifth is used. One method of tuning the
twelve pitch classes, known as Pythagorean tuning, would be to tune each of these fifths as a perfect 3 : 2
pitch ratio, except for the very last fifth. If we denote the pitch C as a frequency of 1 unit and tune fifths
perfectly starting at F and moving upwards, then this would give the twelve pitches of the octave from C to
C the following frequencies:

The final fifth from A] back to F has frequency ratio 218

311 ≈ 1.480 rather than 3
2 = 1.5 (where 1.5/1.480 = 1.014

is our Pythagorean comma).
One problem with this method of tuning is the lack of a perfectly tuned major triad. We discovered in

Section 2.1 that the frequency ratio of 5 : 4 is a particularly consonant interval, called the just major third,
and this interval can be used along with the perfect fifth to form the just major triad. The pitch ratio of
the root to the just major third above the root to the perfect fifth above the root is 4 : 5 : 6 in the just
major triad, making it a particularly consonant version of the major triad chord that is used ubiquitously
in Western music. The intervals of the major thirds C-E, F-A, and G-B in the above Pythagorean tuning,
on the other hand, have frequency ratio 81 : 64, which differs from the just major third by a factor of
81
80 = 1.0125. This frequency ratio of 1.0125, obtained by moving a pitch class upwards by four perfect fifths
and downwards by one just major third, is called the syntonic comma. It is large enough for the difference
between the just major triad and the major triad under Pythagorean tuning to be clearly audible to the
trained musician.

A number of tuning methods address this problem by making certain intervals of the major third into
just major thirds rather than the Pythagorean major third, and these tuning methods are collectively known
as just intonation. Since the major triads I, IV, and V are particularly important in compositions in a major
key, most just intonation systems ensure that these are just major triads. The pitches in the I, IV, and
V chords include the entire major scale, so most just intonation systems differ only in the remaining five
chromatic pitches. One simple version of just intonation is Euler’s monochord; in the key of C major, it is
given by the following frequencies:

This tuning method has the property that the C major, E major, F major, G major, A major, and B major
triads are all just major triads, and in particular these include the I, IV, and V chords in the key of C major.

Just intonation may be viewed as a mathematical generalization of Pythagorean tuning in the following
way [3]. Suppose that we begin with a pitch class and consider all pitch classes that can be obtained by
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moving upwards and downwards from this pitch class by perfect fifths. We may represent each such pitch
class by a unique signed integer to indicate the number of fifths from the starting pitch class. For instance,
if we begin at C, then the pitch class C is represented as 0, the pitch class G that is a perfect fifth above C
is represented as 1, the pitch class D that is a perfect fifth above G is represented as 2, and so on. The pitch
class F that is a perfect fifth below C is represented as −1, the pitch class B[ that is a perfect fifth below F
is represented as −2, and so on.

The set of all such pitch classes, represented in this way, forms a one-dimensional lattice Z. Pythagorean
tuning follows from the realization that the actual frequency distance of two pitch classes twelve steps from
each other on this lattice is very small, so that we may identify any two pitches separated by twelve steps
as being the same pitch. Making this identification defines what is called an equivalence relation on the
lattice—points that are twelve steps away are “equivalent” pitches. We may take any twelve consecutive
points on this lattice to define our Pythagorean tuning, and any other point on the lattice is equivalent to one
of these twelve points. If we represent C as 0 and take the points −1, 0, 1, . . . , 10, we obtain the Pythagorean
tuning for F, C, G,... A] that was previously discussed.

To extend this idea to just intonation, let us start with a pitch class and consider all pitch classes that
can be obtained by moving upwards and downwards from this pitch class by any combination of perfect
fifths and just major thirds. We may now represent each such pitch class by an ordered pair of integers
(a, b), where a and b are the numbers of perfect fifths and just major thirds that the pitch class lies above
the starting pitch class. For instance, if we begin at C and represent it as (0, 0), then the G that is a perfect
fifth above C is represented as (1, 0), the E that is a just major third above C is represented as (0, 1), and
the B that is a perfect fifth followed by a just major third above C is represented as (1, 1). The set of these
pitch classes now forms a two-dimensional lattice Z2. Just intonation follows from the realization that points
on this lattice separated by the vectors (4,−1) or (12, 0) are very close in frequency—(4,−1) corresponds to
moving up four perfect fifths and down one just major third, which gives the syntonic comma, and (12, 0)
corresponds to moving up twelve perfect fifths, which gives the Pythagorean comma. Identifying pitches that
are separated by syntonic and Pythagorean commas defines an equivalence relation on this two-dimensional
lattice.

If we take our starting pitch of (0, 0) and consider the set of all points equivalent to it, these points form
a sublattice. Any point on this sublattice is a point of the form m(4,−1) + n(12, 0) for some integers m and
n, and hence we say that the vectors (4,−1) and (12, 0) generate the sublattice.

There are many different pairs of vectors, other than (4,−1) and (12, 0), that generate the same sublattice;
for instance, (4,−1) and (0, 3) is another such pair. The parallelogram that is formed by any pair of vectors
that generate the sublattice is called a fundamental domain for the equivalence relation defined by the
sublattice. If we move a fundamental domain parallelogram to anywhere on the two-dimensional plane, any
point on the lattice will be equivalent to exactly one point in the parallelogram. We may take the points
in the parallelogram to define our just tuning system. For instance, if we take the following fundamental
domain formed by the vectors (4,−1) and (0, 3), we obtain Euler’s monochord in C major as previously
discussed.
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We note that under this terminology, the single number 12 generated the sublattice in the one-dimensional
Pythagorean tuning lattice, and any set of 12 consecutive points of the lattice formed a fundamental domain.

Thus, just as we arrived at Pythagorean tuning by considering the single interval of the perfect fifth
and approximating the Pythagorean comma by unison, we may arrive at just intonation by considering the
two intervals of the perfect fifth and just major third and approximating both the Pythagorean comma and
the syntonic comma by unison. If we wish for our tuning system to have another perfect interval, we may
generalize this process to three dimensions. For instance, the dominant seventh chord is another commonly
used chord in Western music, and the most consonant version of this chord has pitch ratios 4 : 5 : 6 : 7. We
may start at any pitch class and consider pitch classes that can be obtained from it by moving in intervals
of the 3 : 2 perfect fifth, 5 : 4 just major third, and 7 : 4 minor seventh. We may represent all such pitch
classes, then, as an ordered triple of integers, which forms a three-dimensional lattice Z3, and we may choose
three vectors that represent pitch ratios close to unison to define an equivalence relation on this lattice and
generate the corresponding sublattice. We may keep the two vectors (0, 3, 0) and (4,−1, 0) from before, and
a natural third vector to use is (2, 0, 1). This corresponds to moving up by two perfect fifths and then a
minor seventh, and the pitch ratio between the (2, 0, 1) and (0, 0, 0) pitch classes is 64

63 ≈ 1.016, known as
the septimal comma. The sublattice generated by these three vectors has a three-dimensional fundamental
domain, and we may take the points within this domain to define our tuning.

We conclude with a theorem that tells us how many lattice points lie within any fundamental domain.

Theorem 2.2.2. Let v1, . . . , vk ∈ Zk be k k-dimensional vectors with integer coordinates. The number of
lattice points contained within the fundamental domain defined by these vectors is given by the unsigned
matrix determinant ∣∣∣∣∣∣

| | |
v1 v2 · · · vk
| | |

∣∣∣∣∣∣ .
Recall that the unsigned determinants of a 2× 2 matrix and 3× 3 matrix are∣∣∣∣ a b

c d

∣∣∣∣ = |ad− bc| and

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = |aei+ bfg + cdh− ceg − bdi− afh|.

Hence we may compute ∣∣∣∣ 12 4
0 −1

∣∣∣∣ = 12,

∣∣∣∣ 0 4
3 −1

∣∣∣∣ = 12, and

∣∣∣∣∣∣
0 4 2
3 −1 0
0 0 1

∣∣∣∣∣∣ = 12.

So each of the fundamental domains that we have considered contains exactly 12 distinct pitch classes, and
hence we may tune according to these domains without introducing additional pitch classes to the piano
keyboard.

2.2.3 Meantone, irregular, and equal temperament

We developed just intonation in the preceding section to ensure that the I, IV, and V chords in a major key
are just major triads. The just minor third is an interval with frequency ratio 6 : 5, and using it we may
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analogously define the just minor triad as the chord composed of a just minor third and a perfect fifth above
the root note. Just as the important major triads are I, IV, and V in a major key, the important minor
triads are ii, iii, and vi. Under Euler’s monochord just intonation in C major, we see that the E minor iii
chord and A minor vi chord are already just minor triads. Ideally, we would like a system of just intonation
in which the ii chord is a just minor triad as well.

Unfortunately, this is not possible. Let us consider the common chord progression I-vi-ii-V-I in C major
and suppose that C has frequency of 1 unit. To make the starting I chord a just major triad, we must tune
E and G to frequencies of 5

4 and 3
2 units. We may then make the A minor vi chord a just minor triad by

tuning A to 5
3 units, and the D minor ii chord a just minor triad by tuning D to 10

9 units and F to 4
3 units.

Unfortunately, the interval between G and D is now no longer a perfect fifth. If we were to re-tune G so that
the G major V chord is a just major triad, we would need to tune it as 40

27 units. To tune the final C major
I chord as a just major triad, we would need to re-tune C as 80

81 units. Hence we have drifted downwards in
pitch by a syntonic comma.

This drift of a syntonic comma along the I-vi-ii-V-I progression is unavoidable in just intonation, in the
same way that the drift of a Pythagorean comma was unavoidable when we followed the circle of fifths twelve
times in Pythagorean tuning. Unfortunately, both the difference of a syntonic comma and the difference
of a Pythagorean comma are large enough to be noticeable to the careful listener, and hence under just
intonation, one of the chords in the I-vi-ii-V-I progression will sound noticeably out of tune. To remedy this
situation, musicians have played with a variety of tuning systems that spread these commas over a number
of different notes, so that the error in tuning is divided into smaller errors across different chords rather
than aggregated in one chord. Methods of tuning that begin with just intonation and spread the syntonic
comma are collectively known as meantone temperaments, and methods of tuning that in addition spread the
Pythagorean comma are known as irregular temperaments. For example, one method of C major meantone
temperament begins with C major just intonation and sets each of the four fifths C-G, G-D, D-A, and A-E
at a quarter of a syntonic comma smaller than the perfect fifth, so that the I-vi-ii-V-I progression returns to
the same C major I chord.

Just intonation, by focusing on the commonly used chords in a particular key, is key specific. C major
just intonation works well for pieces in C major and is useable for pieces in the keys of F and G major
that are nearby on the circle of fifths, but it would sound terribly out of tune for a piece written in, for
instance, C] major. Hence, in practice, just intonation must be re-tuned for each key. Certain irregular
temperaments remedy this situation by spreading the comma across notes in a way that allows for a larger
number of keys to sound in tune. It is most likely that J. S. Bach’s The Well-Tempered Clavier, a collection
of 24 preludes and fugues in all 24 major and minor keys, was written for a particularly versatile version of
irregular temperament. Despite their versatility, irregular and meantone temperaments do not treat all keys
equally, and it is from these differences in tuning that, historically, each key was associated with a particular
“character” or “mood”—D major is the key of triumph and rejoice while D-flat major is a key of grief and
rapture.

Taking this idea of spreading an error across different notes one step further brings us to equal tem-
perament, the tuning system used in most modern-day settings. Under equal temperament, each half-
step has pitch ratio of precisely 21/12 : 1, so that twelve half-steps create a perfect octave. When dis-
cussing equal temperament, it is useful to convert frequency ratios to a logarithmic scale of cents, as
cents = 1200 × log2(frequency ratio). Hence each half-step in equal temperament is exactly 100 cents.
The Pythagorean comma is about 23.46 cents, and the syntonic comma is about 21.51 cents. To elucidate
the difference between C major Pythagorean tuning, C major just intonation, and equal temperament, we
may compute the value in cents of the difference between each note of the C major scale and the tonic pitch
of C:

Equal temperament Pythagorean tuning Just intonation
C 0 0 0
D 200 203.910 203.910
E 400 407.820 386.314
F 500 498.045 498.045
G 700 701.955 701.955
A 900 905.865 884.359
B 1100 1109.775 1088.269
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We see that fifths in equal temperament are very slightly narrower than the perfect fifth, and major
thirds in equal temperament are 13.686 cents wider than the just major third. From equal temperament, we
gain the versatility of having each major and minor key equally in tune, at the cost of making no interval
perfectly consonant.

2.3 The Javanese gamelan

We explained the origins of the Western twelve-tone scale and various temperaments of the scale using the
concepts of consonance and dissonance, and we explained consonance and dissonance using the resonance
harmonics of string and wind instruments. That the scale has twelve tones, that we tune for perfect fifths
and just major and minor thirds—all of this is dependent on the fact that the resonance harmonics of
most pitch-producing instruments have frequencies that are small integer multiples of the frequency of the
fundamental pitch. What would happen if we consider instruments with different resonance harmonics?

Let us take a dive into the world of musicology and consider the gamelan. The gamelan is an ensemble of
mostly percussion instruments found in the Javanese tradition of central Indonesia, typically including the
xylophone-like saron and gambang, the vibraphone-like gender, the kettle-shaped bonang, the gong, and the
drum-like kendang. As discussed in Section 1.4.1, percussion instruments such as these have very different
resonance harmonics from string and wind instruments and hence very different concepts of consonance and
dissonance. Therefore, we would expect that the types of musical scales used in gamelan music differ from
the Western twelve-tone scale as well.

Each Javanese gamelan is tuned differently, but most systems of tuning use some variant of a five-note
slendro scale or seven-note pelog scale. In the same way that many notes of the Western scale fall at or
near points of relative minima on the Plomp-Levelt dissonance curve, we may observe that the notes of the
slendro and pelog scales fall near points of relative minima of appropriately defined dissonance curves as
well. The five notes of the slendro scale fall near minima of the dissonance curve generated by the bonang
and a harmonic sound, whereas the seven notes of the pelog scale fall near minima of the dissonance curve
generated by the saron and a harmonic sound. The harmonic sound, in the case of the gamelan, can be the
human voice or one of several less common harmonic instruments including the lute-like rebab or recorder-
like suling. Hence, in the same way that we may view the Western scale as a method of accommodating
consonant intervals between harmonic sounds, we may view the gamelan scales as methods of accommodating
consonant intervals between a harmonic sound and an inharmonic instrument in the gamelan [11].
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Lecture 3

Musical Structure and Theory

3.1 Musical symmetries and transformations

3.1.1 Groups, generators, and relations

Musical compositions are (usually) not random collections of sound. Oftentimes a single melody line, har-
monic structure, motif, or idea occurs multiple times in a musical work, and it may undergo various trans-
formations as the music progresses. Consider, as an example, the following melody excerpt from Bach’s first
two-part invention for keyboard:

We recognize the pattern of the first seven notes, A-G-F-E-G-F-A, as a melodic unit that repeats multiple
times in this excerpt, in the form F-E-D-C-E-D-F and then again in the form D-C-B-A-C-B-D. If we look
and listen more closely, we may also recognize that the sequences E-G-F-A-G-F-E and C-E-D-F-E-D-C in
the excerpt are this same pattern backwards and upside-down. We obtain these repetitions of the opening
melodic unit by applying musical symmetries or transformations analogous to the geometric symmetries of
“translation” and “reflection”. Accordingly, we may discuss and understand musical transformations such
as these using the mathematical language of symmetry groups [7].

As a simple example of a symmetry group, let us consider the set of twelve distinct pitch classes on the
piano keyboard and place them on the vertices of a regular dodecagon as follows:

The dodecagon has a number of rotational and reflectional symmetries. For instance, we may consider
rotation clockwise by 30◦. This would send the vertex C to C], C] to D, D to D], etc., and corresponds to
musical translation or transposition upwards by a half-step. We may consider rotation counterclockwise by
30◦, which would send C to B, C] to C, D to C], etc., corresponding to musical translation downwards by
a half-step. If we apply the clockwise rotation by 30◦ and then the counterclockwise rotation by 30◦, each

19
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pitch class returns to its original position. We may also consider the reflection about the axis connecting C
and F], shown as the solid line in the above figure, which sends C to itself, C] to B, B to C], D to A], A]
to D, etc. If we apply this reflection twice, we are again back where we started. We may likewise consider
the reflection about the axis between C-C] and F]-G, shown as the dashed line in the above figure, which
sends C to C], C] to C, B to D, D to B, etc. Again, if we apply this reflection twice, we are back where we
started. These musical reflections are known as inversions.

Giving labels to some of these transformations, let us denote the upward translation of a half-step as x
and the inversion about C and F] as y. Let us denote the application of x followed by x as x · x, or x2 for
short. Similarly, let us denote the repeated application of x k times as xk. Let us denote the application of y
followed by x as y·x. We may use this · operation of combining transformations to obtain new transformations
different from x and y. For instance, x · x is a clockwise rotation of 60◦ or translation upwards by a whole
step. We may verify that y · x sends C to C], C] to C, B to D, D to B, and so on. In fact, y · x is precisely
reflection about the axis between C-C] and F]-G that was previously discussed. For any transformation, we
may denote the transformation that undoes it with a superscript −1 symbol. For instance, x−1 would be
the downward translation of a half-step that undoes x. We observe that x−1 = x11, and y−1 = y. Since y ·x
is also a reflection, we know that (y · x)−1 = y · x.

Mathematically, we have constructed a group. A group G is a set of elements together with an operation
that can combine any two elements to give another element. In the above example, the elements of the group
are the set of all symmetry transformations of the regular dodecagon; we labeled two particular elements of
the group as x and y. The operation is the · operation, and any combination of x’s and y’s linked with the ·
operation is also an element of the group. Every group must have an identity element, labeled 1, such that
1 · g = g and g · 1 = g for any element g of the group. In the above example, the identity element is the
“transformation” that simply leaves the dodecagon in place. Finally, every element g of a group must have
an inverse element g−1 in the group such that g · g−1 = 1 and g−1 · g = 1.

The number of distinct elements in a group is called the order of the group. The particular group
of symmetries of the regular dodecagon has 24 distinct elements, 12 corresponding to the rotations of
0◦, 30◦, 60◦, . . . , 330◦ (where the 0◦ rotation is the identity) and 12 corresponding to reflections about the
symmetry axes. This group is called the dihedral group of order 24, denoted as D12. The group of reflection
and rotation symmetries of any regular n-gon is the dihedral group Dn. (In some books, these are denoted
instead as D2n; we will not use this notation.) Dihedral groups are not the first examples of groups we have
encountered. Indeed, the lattices from Section 2.2.2 were also groups. The points of the lattice were the group
elements, the group operation was vector addition, and the identity element was the origin. Whereas the
dihedral groups Dn have a finite number of elements, lattices are groups with infinite numbers of elements.
Other examples of infinite groups in mathematics are the set of all integers with group operation addition,
the set of all real numbers with group operation addition, and the set of all positive numbers with group
operation multiplication. (The set of all real numbers with operation multiplication is not a group because
the number 0 does not have a multiplicative inverse.) Another example of a finite group in mathematics is
the set of all integers modulo some integer n, with group operation addition mod n.

Returning to the group D12 of symmetries of the regular dodecagon with our labeled elements x and
y, we can verify that any of the 24 symmetry elements in the group can be obtained as a composition of
x’s and y’s using the · operation. Such a set of elements, where any group element can be generated as
a combination of things in this set and their inverses using the group operation, is called a generator set
for that group. Hence {x, y} is a generator set for D12. We note that {x} alone is not a generator set for
D12 because we cannot obtain any reflections by using just x, and {y} alone is not a generator set for D12

because we can obtain only the elements y and 1 using just y. In D12, there are a number of relations
involving x and y that hold true—for instance, x12 = 1, y2 = 1, and y · x = x11 · y. (We may verify the last
relation—that reflection using y followed by rotation using x is the same as 11 rotations using x followed
by reflection using y—by checking that it is true when applied to each vertex of the dodecagon.) From
these, we may derive other relations—x−1 = x−1 · 1 = x−1 · x12 = x11, y−1 = y−1 · 1 = y−1 · y2 = y,
y · x · y · x = x11 · y · y · x = x11 · y2 · x = x11 · x = 1, etc. In fact, the generators x and y and the relations
x12 = 1, y2 = 1, and y · x = x11 · y completely define the group D12.

In the remainder of this section, we will follow the method of analysis developed by music theorist David
Lewin of applying the language of symmetry groups to study transformations on various sets of musical
objects.
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3.1.2 Intervallic transformations

The simplest example of a musical transformation group is D12, whose elements are transformations of the
12 pitch classes as discussed in the previous section. In accordance with our previous notation, let x denote
an upwards translation of a half-step, and let y denote inversion about C (or F]). We may view any musical
interval as a transformation on this space of pitch classes that takes one note of the interval to the other, and
any melody line or musical motif as a sequence of such transformations in which we apply a transformation
to each pitch to obtain the next pitch. Consider, for example, the Zauber motif that appears repeatedly in
Wagner’s opera Parsifal :

We may view this motif as a sequence of two minor-thirds and a half step, or in the language of D12, two
applications of x3 and an application of x. The motif presented above begins on the note A[, but it occurs
throughout the opera with different starting pitches. We may view all occurrences of this motif as the same
sequence of elements of D12, applied to these different starting pitches.

Viewing musical intervals as transformations of pitch classes can apply not only to successive notes within
a melody line, but also to successive tonicizations in a musical passage. In the Prelude to the opening act of
Wagner’s same opera, we hear the following passage:

The passage tonicizes, in sequence, the notes A[, C[, D, and E[. The intervals between these temporary
tonic pitches are precisely the intervals of the Zauber motif, corresponding to the same sequence of group
elements: x3, x3, x. Hence the intervallic transformations of the Zauber motif have been manifested at the
very start of the opera, much before the Zauber motif appears in melody form.

3.1.3 Transformations between major and minor triads

Let us consider the set of all 12 major triads and all 12 minor triads. Certain relationships between these
triads have particular musical importance, including the relationship of a major I chord to its dominant V
chord, the relationship of a major I chord to its mediant vi chord, and the relationship of a minor i chord to
its mediant VI chord. We may view these relationships in terms of transformations on the set of triads. Let
us consider a transformation DOM that sends any major triad to its dominant major triad. Thus, DOM
sends C major to G major, F major to C major, etc. We must define the action of DOM on all 24 triads in
our set, including the minor triads, so suppose that DOM sends C minor to G minor, F minor to C minor,
etc. (These minor chord relationships do not have strong musical significance, as the dominant chord to the
tonic i chord in a minor key is the major V chord, not the minor v chord, but we define DOM in this way
so that it is invertible.) Let us also consider a transformation MED that sends a triad to its mediant triad.
So MED sends C major to A minor, G major to E minor, A minor to F major, E minor to C major, etc.



22 LECTURE 3. MUSICAL STRUCTURE AND THEORY

Compositions of DOM and MED generate a group of transformations between these 24 major and minor
triads. We note that applying MED twice to a major or minor chord is the same as applying DOM to that
chord, so MED2 = DOM. This implies that {MED} is a single-element generator set for this group, since
DOM can be generated using MED. Groups that can be generated by a single element are known as cyclic
groups. Repeatedly applying DOM to a major or minor chord cycles through all twelve major or minor
chords along the circle of fifths, so DOM12 = 1. Thus MED24 = 1, and this group is the cyclic group of
order 24, denoted C24.

We may use the elements of this group to label the relationships between harmonies in a musical passage,
as an alternative to using Roman numeral notation. Consider the opening to Beethoven’s First Symphony:

Treating dominant seventh chords for this purpose as simple major chords, we may lay out the chord
progression and highlight the transformational relationships between these chords:

We may do the same for a reduction of the first few measures of the third movement of the symphony:

Here, we have condensed G major-C major-G major-C major to just a single repeat of G major-C major
in the network. (We have also followed the analysis in [7] of omitting a bass C pedal in the first complete
measure of music, understanding the two chords in that measure as F major and G major.) We see that the
underlying chord progressions are very similar variations of a shared transformational network. A similar
harmonic progression in a different key would also yield the same network of elements of the transformation
group, in the same way that it would yield the same traditional Roman numeral analysis.

We may add to the C24 transformation group a third transformation called PAR that sends each major
chord to its parallel minor chord and vice versa, e.g. PAR would send C major to C minor, C minor to C
major, etc. We may verify that the parallel minor chord of a major chord is obtained by repeatedly taking
the mediant eight times, but that the parallel major chord of a minor chord is obtained by repeatedly taking
the mediant sixteen times. Hence the PAR transformation on the entire set of major and minor triads is
not equivalent to any combination of MED transformations, so it does not lie in the C24 group generated
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by MED. If we consider the group generated by {MED,PAR}, we have the additional relations PAR2 = 1
and PAR · DOM = DOM · PAR. This second relation may be written as PAR ·MED2 = MED2 · PAR. We
note that MED · PAR sends any major chord to the major chord whose root is a minor third lower, and
it sends any minor chord to the minor chord whose root is a major third lower. Since moving downwards
by three major thirds or four minor thirds returns to the same pitch class, (MED · PAR)12 = 1 is another
relation. The generators {MED,PAR} and relations MED24 = 1, PAR2 = 1, PAR ·MED2 = MED2 · PAR,
and (MED ·PAR)12 = 1 fully define the group. One can show that any element of this group can be uniquely
written as MEDj(MED · PAR)k for 0 ≤ j < 24 and 0 ≤ k < 11. Hence this group has order 288.

3.1.4 Transformations of motifs and melodic passages

Let us consider a sequence of notes forming a musical motif or melody line, for instance the previously
discussed Zauber motif from Wagner’s Parsifal :

Composers commonly repeat a motif in various forms throughout a work of music, oftentimes transposing
it to different keys, inverting it, or retrograde inverting it. Let us consider here the transformations of
transposition and retrograde inversion. Define the transformation T to shift an entire motif upwards by a
half-step, hence T12 = 1. Define a second transformation RI that sends a motif to its retrograde inversion—
the same motif backwards and upside-down—such that the first note of the retrograde inversion is the
second-to-last note of the original motif. For instance, RI applied to the above Zauber motif is the following:

We note that the sequence of intervals between notes of a retrograde inversion of a motif is the same sequence
of intervals of the original motif in reverse.

T and RI generate a group of transformations between all transpositions and retrograde inversions of the
Zauber motif. We note that applying RI twice to the Zauber motif transposes the motif upwards by the
interval of a minor seventh, or ten half steps. Similarly, applying RI twice to a retrograde inversion of the
Zauber motif transposes that retrograde inversion upwards by ten half steps. Hence RI2 = T10. We also note
that interchanging the order of T and RI does not affect the final result, i.e. T ·RI = RI ·T. The generators
{T,RI} and relations T12 = 1, RI2 = T10, and T · RI = RI · T fully define the group. One can show that
any element of this group can be uniquely written as TjRIk for 0 ≤ j < 12 and 0 ≤ k < 2, so this group has
order 24. We note that in deriving the relation RI2 = T10, we were considering the application of RI2 on
only translations and retrograde inversions of the Zauber motif. If we apply RI2 to a different melody line, it
may correspond to a different interval of transposition; hence the structure of the group of transformations
generated by RI and T is dependent on the melody being transformed. (If we were to consider the group
of transformations between all possible melody lines generated by RI and T, there would be no relation
between RI and T other than RI · T = T · RI. The resulting group would have the same structure as the
2-dimension lattice from Section 2.2.2 and is called the free abelian group with two generators.)

By defining the RI operation such that the first note of the retrograde inversion is the second-to-last
note of the original motif, the last two notes of the motif are always the first two notes of RI of that motif.
Composers use this technique to create chains of RI transformations. Returning to Wagner’s Parsifal, a
passage of Act I (“Vom Bade kehrt...” and the transformation music) has the following sequence of local
tonics:
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We see in this sequence the repeated use of the Zauber motif and its retrograde inversion, linked together in
the following network of T and RI transformations:

As a final example, let us return to the passage from Bach’s first two-part invention mentioned at the
start of this section, and consider the repeated melody unit:

Here, let us consider only the seven distinct pitch classes of the C major scale, rather than all twelve pitch
classes, and let our space be all translations and retrograde inversions of the above melody unit within the
key of C major. Define T to translate all elements of this set upwards by one scale degree, so that T7 = 1.
Define RI of any translation of the melody unit to be its retrograde inversion starting on its second-to-last
note, as before, but define RI of any retrograde inversion of the melody unit to be the original melody unit
starting on its fourth-to-last note. Then applying RI twice to any translation or retrograde inversion of the
melody unit corresponds to a translation downwards by two scale degrees, i.e. RI2 = T−2, and we again
have T · RI = RI · T. The generators {T,RI} and relations T7 = 1, RI2 = T−2, and T · RI = RI · T fully
define a transformation group of order 14. The melody sequence from Bach’s invention makes repeated use
of the melody unit and its retrograde inversion in the following network of transformations:

3.1.5 Symmetries in Debussy’s Feux d’artifice

We have thus far used mathematical transformations to analyze specific passages of music within longer
works. These transformations can form the structural basis of musical works on a larger scale as well. Let us
take Feux d’artifice, the last of Debussy’s twenty-four preludes for piano, as an example [8]. The full piano
score is available in public domain at [1].

The opening measure of Feux d’artifice immediately introduces an inversion transformation—we repeat-
edly hear the sequence of notes F-G-A-B[-A[-G[, where the last three notes are an inversion of the first three
notes. Using our previous analogy of the dodecagon, this inversion is about the symmetry axis between
G-A[, or equivalently, between D[-D. The inversion sends F to B[, G to A[, and A to B[. Let us notate



3.1. MUSICAL SYMMETRIES AND TRANSFORMATIONS 25

this inversion transformation as I. We note, in addition, that the first three notes F-G-A themselves exhibit
a symmetry under inversion about G, and that the last three notes B[-A[-G[ exhibit a symmetry under
inversion about A[. Let us notate inversion about G, or equivalently about D[, as J , and inversion about
A[, or equivalently about D, as K. We will see that these three inversions recur throughout the piece.

Denoting transposition upwards by a half-step as T , we observe that I · K = J · I = T . That is,
transforming any note by I-inversion followed by K-inversion shifts the note upwards by a half-step, and
J-inversion followed by I-inversion also shifts the note upwards by a half-step. Similarly, K ·I = I ·J = T−1.
From these, we may derive the additional relations K = I · T and J = T · I. Hence, as a consequence of the
application of the above inversions, many T and T−1 relations are heard throughout the prelude as well.

We observe this already in the first six notes of the piece—not only are the sets of notes {F,G,A} and
{B[, A[, G[} related by I-inversion, but also the second set is the T -translation of the first set. Indeed,
we note that the set of notes {F,G,A} inverts to itself under J-inversion; let us say that such a set is J-
invariant. Similarly, {B[, A[, G[} is K-invariant, meaning that it inverts to itself under K-inversion. If S is
any J-invariant set, then I applied to S is the same as J · I applied to S, which is T applied to S or I ·K
applied to S. That is, the I-inversion of S is the same set of notes as the T transposition of S, and the
I-inversion of S is also K-invariant. Hence it is not a coincidence that {B[, A[, G[} is both the I-inversion
and T -transposition of {F,G,A}, or that it is K-invariant; these are mathematical statements that may be
derived from the J-invariance of {F,G,A}.

In the context of these inversions, the D and A[ sparks in measures 3-14 have special significance as
the centers of K-inversion. In measures 7-10, the D spark is joined by the additional note C, which sounds
together with the F-G-A sequence. The set of five notes {C,D, F,G,A} forms a pentatonic scale, a sound
commonly employed in Debussy’s compositions, and here it carries additional significance because the set is
J-invariant. The black-key glissando of measure 17 consists of the notes {D[,E[,G[,A[,B[}, which is both
the T -transposition and I-inversion of {C,D,F,G,A}. As such, it is also K-invariant.

Measures 25-46 present three variants of what can be considered the primary “melodic” motif of the
prelude; they are reproduced below:

We hear T -transposition relations in these variants, for instance from {C,A,G} to {C],A],G]} to {D,B,A} in
the first variant, and {F,E[} to {G[,F[} and {B[,G[,F[} to {B,G,F} in the third variant. We may also hear
the shift from {F,D[,C[} to {G,E[,D[} in the second variant as the composition of two T -transpositions. The
harmony of the first variant, measures 25-34, consists primarily of the notes {E,D,C,B[,G}, which is again
a J-invariant set. This set contains G, one of the centers of J-inversion, and is extended to include C], the
other center of J-inversion, in measures 33 and 34. The notes of the harmony undergo two T -transpositions in
measure 30 to match the T -transpositions of the melodic motif. The harmony of the second variant, measures
35-38, consists of the notes {G,D[,E[,F,C[}, which has a distinctive whole-tone sound and can be considered
a transition to measure 39. The harmony of measures 39 and 40 consists of the notes {F,E[,D[,C[,B[,A[,G[},
which is K-invariant, and the K-inversion symmetry is highlighted by the A[ notes in the bass that are a
center of this symmetry. This transitions to a harmony consisting of the notes in the D[ major diatonic scale
in measures 41-43, which actually is invariant under a new symmetry about the notes A and E[. This is the
harmony to the third variant of the melodic motif.

The subsequent section from measure 46 to measure 64 exhibits a number of symmetries. The recurring
note-set {B,A,F],D],C]} in measures 46-48 is the T−1-transposition of the J-invariant note-set {E,D,C,B[,G}
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from measure 25, whereas the note-sets {C],B,G],E],D]} and {A,G,E,C],B} in measures 47 and 48 are its T -
transposition and T−2-transposition. The notes of measures 53-56 form the whole-tone set {A[,B[,C,D,E,F]}
which, being six equally spaced notes of the chromatic scale, is invariant under all inversions. T , T 2, T−1, and
T−2 transpositions are heard in the melody line C]-B]-C]-D-F]-E-F]-G] in measures 57-60. The subsequent
sequences of major triad chords C-F]-E-B[ and E[-A-G-C] in measures 61-64 exhibit K-inversion symmetry,
in the sense that {C,F]} K-inverts to {E,B[} and {E[,A} K-inverts to {G,C]}.

In measures 65-70, we hear a reprise of the melodic motif from measures 25-46, and this is harmonized
by the note-set {D],C],G],B,E]} that is the T -transposition/I-inversion of the J-invariant set {E,D,C,B[,G}
from measure 25. Hence this note-set is K-invariant. The subsequent measures 71-78 transition to a second
reprise of the melodic motif in measures 79-86, which is harmonized by the subset {B[,C,D} of the original
J-invariant set. The build-up of measures 85 and 86 is a sequence of T -transpositions, which explodes into
the double-glissando of measure 87. We note that both the white-note portion of the double-glissando, as
the C major diatonic scale, and the black-note portion of the double-glissando, as the black-key pentatonic
scale, are K-invariant. Measures 88 and 89 of the coda reprise the very opening of the prelude, with its
short-scale I, J , and K inversions. The snippet of the French national anthem, the Marseillaise, in measures
92-94 highlight the notes G and D; G here pairs with the low D[ in the bass as the two centers of J-inversion,
while D pairs with the low A[ in the bass as the two centers of K-inversion. We hear a final T -transposition
in measures 95-96 within the last reprise of the melodic motif, and the piece concludes with D[ sparks that
are the T−1-transposition and I-inversion of the original D sparks in the opening.

This Feux d’artifice prelude is an example of an atonal composition—there is no clear concept of key,
of modulation between keys, or of a tonic. Chord and note relationships are, instead, established by the
I, J , and K inversion symmetries used extensively throughout the piece. The large-scale structure of the
piece is not easily explained by traditional analyses of musical form, but it is a macrocosm of the very first
measure of the prelude and is governed by the same symmetry transformations. In the transition from the
J-invariant note-set in measure 7 to its K-invariant I-inversion in measure 17, from the J-invariant harmony
accompanying the first variant of the melodic motif in measure 25 to itsK-invariant I-inversion accompanying
the third variant of the melodic motif in measure 39 and the reprise of the motif in measure 65, and from the
D[ spark of measure 3 to its I-inversion D spark of measure 97, we see that the same mathematical relations
governing the first six notes of the piece form the basis for the composition’s large-scale structure.

3.2 The geometry of chords

3.2.1 Tori of ordered chords

In Section 3.1, we placed the twelve chromatic pitch classes on the vertices of a regular dodecagon; this
allowed us to visualize the musical symmetries of transposition and inversion as rotations and reflections of
this dodecagon. Recall from Lecture 1, though, that a pitch is simply a frequency of oscillation, and hence
the space of all possible pitch classes is actually a continuous space. It is thus natural to place the twelve
chromatic pitch classes as equally spaced points on a circle. Points on the circle between two labeled pitch
classes then represent the continuous range of pitch classes lying in between the two labeled pitch classes.
This is the starting point from which we will investigate the geometry of chord spaces [13].

The mathematical construction of this pitch class circle relies on the concept of an equivalence relation,
explored in Section 2.2.2. We may represent the space of all musical pitches as the real-number line R, where
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middle C is represented by the value 0, the C] a half-step higher by the value 1, the D a whole-step higher
by the value 2, etc. If we wish to group pitches that are an octave apart into the same pitch class, we impose
the equivalence relation x ∼ x+ 12 for all values x on this line, i.e. each value is equivalent to the value 12
higher. The range of pitches from 0 to 12 thus forms a fundamental domain for this equivalence relation,
and each pitch class is represented by a point in this fundamental domain. If we consider a pitch class that
moves rightwards along this line, it will loop back around to 0 when it reaches 12. Hence we may glue the
points 0 and 12 together to form a circle, and the space of pitch classes is this circle.

What about the space of chords? Musically, we define the type of a chord based on which pitch classes
are present in the chord, ignoring the absolute pitches in the chord and the spacing of the chord. (The C
major triad is a chord consisting of notes from the pitch classes C, E, and G; it does not matter to which
octaves these notes belong.) We would like our space of chords to capture this intuition. Let us consider a
two-note chord. We may represent the absolute pitches of the two note chord as a point (x, y) in the plane
R2, where the coordinates x and y represent the individual pitches. Let us then impose the equivalence
relations x ∼ x + 12 and y ∼ y + 12 for all points (x, y) in the plane. The square 0 ≤ x < 12, 0 ≤ y < 12
forms a fundamental domain for this equivalence relation, and each two-note chord is represented by a point
in this fundamental domain. If we slide the first note of the chord upwards in pitch, our point moves in the
positive x-direction and loops back around to 0 when it reaches 12. Likewise, if we slide the second note
of the chord upwards in pitch, our point moves in the positive y-direction and also loops back around to 0
when it reaches 12. Hence we may glue the left and right edges of this square together to form a cylinder,
and then glue the top and bottom edges of this cylinder together to form a donut.

The space of two-note chords is precisely the space of all points on the surface of this donut. We may
represent each such point as a pair of coordinates from a circle, where the first coordinate represents the
position along the solid circle and the second coordinate represents the position along the dotted circle in
the above picture. These coordinates correspond to the individual pitch classes of the chord.

We may construct the spaces of three-note and four-note chords in a similar way, although they become
more difficult to visualize. The space of three-note chords is obtained by taking the cube 0 ≤ x < 12,
0 ≤ y < 12, and 0 ≤ z < 12, and gluing together the top and bottom faces, the left and right faces, and the
front and back faces. This is only possible to visualize in four-dimensions. The space of four-note chords is
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obtained by taking a four-dimensional hypercube (the space of all points (x, y, z, w) where each coordinate
is in the range from 0 to 12) and again gluing together opposite pairs of faces. Mathematically, the structure
of these spaces is known as a torus. The circle of pitch classes is a one-dimensional torus, denoted T 1. The
donut of two-note chords is a two-dimensional torus, denoted T 2. The space obtained by starting with an
n-dimensional hypercube and gluing together opposite faces is an n-dimensional torus, denoted Tn. The n-
dimensional torus is a space in which, in a small enough region around each point, we may represent points
in that region using n real-valued coordinates. In mathematics, such a space is called an n-dimensional
manifold.

3.2.2 Orbifolds of unordered chords

One problem with these spaces of chords is that they are spaces of ordered pitches. The chord C-E and
the chord E-C are represented by two different points on T 2, because we constructed the space by treating
the ordered pairs (0, 4) and (4, 0) as different points. Likewise, the chords C-E-G, G-C-E, and E-G-C are
different points on T 3. Oftentimes in musical analysis, we do not wish to make the distinction between
these chords, and we wish to label C-E-G, G-C-E, and E-G-C all as simply a “C major chord”. Hence,
mathematically, we need to define a new equivalence relation on our chord spaces. For T 2, we define the
relation that (x, y) is equivalent to (y, x). Visually, this means that each point of the plane R2 is equivalent
to its reflection across the line y = x, and this shrinks the fundamental domain of our equivalence relations
from the square 0 ≤ x < 1 and 0 ≤ y < 1 to the following triangle:

Each chord of two unordered pitches is represented by a point in this triangle. The resulting space of
chords is mathematically denoted T 2/S2. Similarly, we may impose the equivalence relation that (x, y, z) is
equivalent to (x, z, y), (y, x, z), (y, z, x), (z, x, y), and (z, y, x) on T 3—that is, each point is equivalent to its
reflection about the x = y, x = z, and y = z planes. This shrinks the fundamental domain from a cube to a
tetrahedron, and the resulting space of unordered chords is denoted T 3/S3. In general, the space of points of
Tn under the additional equivalence relations of permutations of the coordinates is denoted Tn/Sn. These
spaces are examples of mathematical structures known as orbifolds.

How can we visualize the orbifold T 2/S2, in the same way that we visualized T 2 as the surface of a donut?
We may begin at the above triangular fundamental domain and glue the left and top edges together, in the
same way that we visualized T 2. It turns out that it is, instead, easier to visualize T 2/S2 by beginning with
a different choice of fundamental domain, show as the tilted square in the below figure:
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This fundamental domain can be interpreted by noting that if we take any two-note chord in our space,
then sliding the chord parallel to the line y = x, i.e. in the direction of the vector (1, 1), corresponds to
transposing this chord while keeping the interval between the two notes fixed. On the other hand, the chords
lying on the line y = −x perpendicular to y = x are those whose coordinates sum to 0 modulo 12, and all the
possible intervals between two pitch classes are found along this line. At (0, 0), we have the unison interval C-
C. As we slide the point upwards and to the left along the line y = −x, we obtain increasingly wider intervals
until we reach the tritone A-E[, represented as (−3, 3), and then increasingly narrower intervals until we
return to the unison interval F]-F], represented as (−6, 6). (Any interval wider than a tritone is equivalent
to the octave minus this interval, which is narrower than a tritone.) If we take the line segment from (0, 0)
to (−6, 6) and slide it parallel to the line y = x, we pass over the points representing all transpositions of
possible intervals between two notes. When we reach the line segment from (6, 6) to (0, 12), we note that
the chords on this segment are the same as the chords on our starting segment, and hence the tilted square
bounded by (0, 0), (−6, 6), (0, 12), and (6, 6) forms our fundamental domain. Let us label these points as P ,
Q, R, and S.

We note that the line segments QR and PS are reflective line segments—when we take a point inside
the fundamental domain and slide it across one of these segments, the portion of the path outside of the
fundamental domain is mapped to its reflection across the segment. On the other hand, when we move a
point across RS, it reappears at the segment PQ.

Hence we may glue the segments PQ and RS together, but we note that their orientations are reversed, and
so we must glue them together with a twist. The resulting structure is a Möbius strip, shown above, and
this is the space of unordered two-note chords.

We may visualize the space of unordered three-note chords using a similar procedure. Sliding a chord
parallel to the line x = y = z, i.e. in the direction of the vector (1, 1, 1), corresponds to transposing this
chord while keeping the intervals between the notes of the chord fixed. All possible types of three-note chords
can be found in the plane perpendicular to this line. The unison chords of C-C-C, E-E-E, and G]-G]-G]
form a repeating triangular lattice over this plane, with the chords within each triangle repeated in all of
the triangles.

We obtain a fundamental domain by taking one such triangle and sliding it parallel to the line x = y = z,
until we reach the same set of chords as in our original triangle. This fundamental domain is a triangular
prism.
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The three rectangular faces of the prism are reflecting faces, whereas the top triangular face connects to the
bottom triangular face with a 120◦ twist. Gluing these faces together, the resulting structure is the following:

Likewise, the fundamental domain for the space of unordered four-note chords is a four-dimensional prism
over a tetrahedron with unison chord vertices C-C-C-C, E[-E[-E[-E[, F]-F]-F]-F], and A-A-A-A. The top
and bottom tetrahedral “faces” are connected with a twist that sends C-C-C-C to E[-E[-E[-E[ to F]-F]-F]-
F] to A-A-A-A and back to C-C-C-C, and the remaining “walls” are reflecting. The structure is analogous
in higher dimensions, for chords with more than four notes.

3.2.3 Chromatically descending chord progressions

Considering these geometric spaces of chords gives us a way of visualizing chord progressions. Returning to
the Möbius strip T 2/S2, we see that along the center of the strip lies the interval of the tritone, which divides
the octave into two equal halves. To move from the tritone chord C-F] to the tritone chord B-F that is a
half-step lower by moving one note at a time, we may either first lower C to B and then lower F] to F, or
vice versa. The intermediate chords B-F] or C-F form a square with the original chords C-F] and B-F, and
they are both the interval of a fourth/fifth. We may link a sequence of these squares together at the tritone
chords to form a chain, and a path through this chain corresponds to a progression of two-note chords.

Moving to the orbifold T 3/S3, we see that along the center of the triangular prism lies the augmented
triad, which divides the octave into three equal parts. To move from the augmented triad chord C-E-G]
to the augmented triad chord B-E[-G that is a half-step lower by moving one note at a time, we can lower
each of the three notes C, E, and G] in any order. Lowering any of the three notes yields a major triad,
either C-E-G, A[-C-E[, or E-G]-B. Lowering a second note yields a minor triad, either C-E[-G, G]-B-D], or
E-G-B. These three major triads, three minor triads, and two starting and ending augmented triads C-E-G]
and B-E[-G form a cube, of which the augmented triads are diagonally opposite vertices. We may link a
sequence of these cubes together at the augmented triad chords to form a chain, and a path through this
chain corresponds to a progression of three-note chords.
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Finally, considering the orbifold T 4/S4, along the center of the four-dimensional prism lies the diminished
seventh chord, which divides the octave into four equal parts. To move from the diminished seventh chord
C-E[-G[-B[[ to the chord B-D-F-A[ that is a half-step lower by moving one note at a time, we can lower each
of the four notes C, E[, G[, and B[[ in any order. Lowering one note gives one of four possible dominant
seventh chords. Lowering a second note gives one of four possible minor seventh chords or two possible French
sixth chords. Lowering a third note gives one of four possible half-diminished seventh chords. These start
and end diminished seventh chords are the diagonally opposite vertices of a four-dimensional cube, known
as a tesseract, and these intermediate dominant seventh, minor seventh, French sixth, and half-diminished
seventh chords are the remaining vertices of the tesseract. We may link a sequence of these tesseracts
together at the diminished seventh chords to form a chain, and a path through this chain corresponds to a
progression of four-note chords.

These types of chord progressions, in which chords transition from one to the next by small chromatic
motions in the individual notes, were often used by Romantic composers such as Chopin, Brahms, and
Wagner. Consider the progression of chords from the opening of Chopin’s Prelude in E Minor.
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The chords labeled (a) are a sequence of diminished seventh chords, successively lowered by a half-step.
The transitions between these diminished seventh chords correspond to paths on the tesseract between these
chords. We have labeled as (b) the dominant seventh chords that are obtained by taking a first step along
the tesseract, as (c) the minor seventh and French sixth chords that are obtained by taking a second step
along the tesseract, and as (d) the half-diminished seventh chords that are obtained by taking a third step
along the tesseract. We note that in the chord transitions, Chopin takes one or two steps on the tesseract
chain at a time, and we may visualize the chord progression as a path along the tesseract chain. The order
in which notes are lowered from each diminished seventh chord to the next is somewhat arbitrary, with the
exception of the first step. To move from each diminished seventh chord to the subsequent dominant seventh
chord, Chopin always chooses to lower the note that was the fifth of the previous dominant seventh chord,
which becomes the root of the new dominant seventh chord. Mathematically, this means that the first step
after each diminished seventh chord alternates between the vectors (0, 0,−1, 0) and (−1, 0, 0, 0). Musically,
this means that the sequence of dominant seventh chords appearing in this progression descends by the circle
of fifths.



Bibliographic Notes

The presentation in these notes draws heavily on Dave Benson’s text Music: A Mathematical Offering [3].
This text provides a more detailed discussion of many of the topics covered in these notes, particularly those
from the first two lectures. An overview of resonance harmonics and psychoacoustic phenomena from a less
mathematical perspective can be found in Howard and Angus’s Acoustics and Psychoacoustics [6], and a
more rigorous treatment of the physics of sound, the auditory process, and musical instruments can be found
in [3]. The notes for Lecture 1 draw extensively from these two sources. The proof of Theorem 1.3.1 can be
found in Stein and Shakarchi’s text [12], which is also a good introductory text on Fourier analysis.

The material from Lecture 2 draws from [3] and Sethares’ text [11]. The discussions of continued fractions
and the just intonation lattice come from the former, which also describes in much more detail the various
systems of just intonation and meantone and irregular temperament. The latter provides a more thorough
discussion on the relation between scales and resonance harmonics, and it also provides examples with respect
to the Indonesian gamelan and several other non-Western musical traditions. The proof of Theorem 2.2.1
can be found in Hardy and Wright’s text [5] on elementary number theory.

The material on musical groups and transformations, including the musical examples contained therein,
from Lecture 3 is drawn exclusively from David Lewin’s Generalized Musical Intervals and Transformations
[7], with the analysis of Debussy’s Feux d’artifice highlighting some of the main points from the analytical
essay in [8]. The concepts of groups, equivalence relations, and fundamental domains can be found in
standard texts on abstract algebra, for instance [4] and [2]. In particular, [2] devotes a chapter to discussing
the relationship between groups and symmetry. The material on the geometry of chords and the discussion
of Chopin’s prelude are drawn from Dmitri Tymoczko’s preprint [13], which uses this geometric perspective
to examine principles of voice leading. Some of the geometric ideas are taken from algebraic topology and
can be found in Munkre’s topology text [9].
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