
S&DS 242/542: Theory of Statistics

Lecture 1: Course introduction, survey sampling



2024 presidential election forecast

(Source: consensus forecast from 270towin.com, 4 November 2024)



Estimating the support for a candidate

What percentage of registered voters in Connecticut support
Kamala Harris?

Let

I N = 2,317,657 (number of registered voters)

I ✓ = fraction who support Harris

I 1� ✓ = fraction who support a di↵erent candidate

✓ 2 [0, 1] is an unknown parameter.

Possible questions of interest:
1.) Is ✓ > 0.5?
2.) What is our best estimate of ✓?
3.) How much uncertainty is there in this estimate?
4.) Given a new voter, can we predict if they support Harris?



Survey sampling

These questions are typically answered by survey sampling or
polling. Possible sampling methods:

I Survey every registered voter in Connecticut. This is very
expensive and usually infeasible.

I Survey a subset of “representative” voters in Connecticut, as
determined and selected by the investigator.

I Survey a subset of voters in Connecticut selected at random.

Random sampling was popularized by British statistician Arthur
Lyon Bowley (1869 – 1957), who recognized several advantages:

I Guards against conscious or unconscious biases that may be
introduced by the investigator. (What if the selected
“representative” voters are not representative in some way?)

I Enables mathematical quantification of the uncertainty and
magnitudes of error in inferences drawn from the data.



Simple random sample

Suppose we poll a simple random sample of n = 1000 people
from Connecticut. This means:

I Person 1 is chosen at random (equally likely) from all N
registered voters in Connecticut. Then person 2 is chosen at
random from the remaining N � 1 people. Then person 3 is
chosen at random from the remaining N � 2 people, etc.

I Or equivalently, all
�N
n

�
= N!

n!(N�n)! possible sets of n people
are equally likely to be chosen as our sample.

Then we can estimate

✓ =
# voters who support Harris

N

by

✓̂ =
#sampled voters who support Harris

n



Simple random sample

Say 540 of the 1000 people surveyed support Harris, so ✓̂ = 0.54.

What can we infer about ✓?

Let’s call our data X1, . . . ,Xn:

Xi =

(
1 if person i supports Harris

0 if person i does not support Harris

Then ✓̂ =
X1 + X2 + . . .+ Xn

n
.

The data X1, . . . ,Xn are random, because we took a random
sample. Therefore ✓̂ is a random variable.



The sampling distribution of ✓̂

✓̂ is a value computed from our observed data. Such a quantity is
called a statistic. The probability distribution of ✓̂ is called its
sampling distribution.

We may be interested in its following properties:

I What is the mean of ✓̂? If the mean is equal to ✓, then ✓̂ is an
unbiased estimator for ✓. Otherwise, ✓̂ is biased.

I What is the standard deviation of ✓̂? This quantifies the
variability of our estimate ✓̂, known as the standard error.

I What are the quantiles of ✓̂? This information can allow us to
create a confidence interval for ✓.



Understanding the bias

For each i = 1, . . . , n, by symmetry, the i th person sampled is
equally likely to be each of the N individuals.

Then the probability that this person supports Harris is N✓
N = ✓.

So Xi ⇠ Bernoulli(✓) and E[Xi ] = ✓.

Recall that expectation is linear:

E[X + Y ] = E[X ] + E[Y ], E[cX ] = cE[X ] if c is constant.

So

E[✓̂] =

The mean of ✓̂ is ✓, so ✓̂ is unbiased. (If we were to repeat the
survey many times, on average the value of ✓̂ would be ✓.)



Understanding the variability

Unbiasedness doesn’t tell us how far o↵ ✓̂ is from ✓, for a single

survey. For this, let’s consider the standard deviation
q
Var[✓̂].

Consider first a simpler setting, where we sample n = 1000
individuals with replacement from the population of size N.

Then the random variables X1, . . . ,Xn would be independent:
The event that the i th sampled individual supports Harris is
independent of all other samples.



Understanding the variability

Recall that

Var[cX ] = c2 Var[X ] if c is a constant.

If X and Y are independent, then also

Var[X + Y ] = Var[X ] + Var[Y ]

So Var[✓̂] =



Understanding the variability

In our setting, the n = 1000 individuals are sampled without
replacement. Then the previous calculation is not exactly correct,
because sampling without replacement introduces dependence
between the Xi ’s:

Suppose X1 = 1, i.e. person 1 supports Harris. Conditional on
X1 = 1, the probability that X2 = 1 is now N✓�1

N�1 , instead of ✓. So
X1 and X2 are dependent.

Let’s compute Var[✓̂] a di↵erent way: Recall the definition of
variance,

Var[✓̂] = E[✓̂2]� (E✓̂)2

Here, the second term is (E✓̂)2 = ✓2.



Understanding the variability

For the first term,

E[✓̂2] =



Understanding the variability



Understanding the variability

Putting all of this together,

Var[✓̂] =
✓(1� ✓)

n

⇣
1� n � 1

N � 1

⌘
.

The factor 1� n�1
N�1 corrects for sampling without replacement.

For N = 2,317,657, n = 1000, and ✓̂ = 0.54, the standard error is

q
Var[✓̂] ⇡ 0.016

It’s “not unlikely” for ✓ ⇡ 0.52, and “highly unlikely” that
✓ ⇡ 0.45.



Understanding the sampling distribution

To make “not unlikely” and “highly unlikely” more precise, let’s
look at the distribution of ✓̂. We can simulate X1, . . . ,Xn from a
population of N people, N✓ of whom support Harris (supposing
✓ = 0.54) and then compute ✓̂.

Here’s a histogram of the values of ✓̂ that we obtain:
Histogram of theta_hat
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Understanding the sampling distribution

The histogram of ✓̂ looks like a normal bell curve, with mean 0.54
and standard deviation 0.016. Why?

Again, first suppose that we sampled with replacement. Then
X1, . . . ,Xn are independent. By the Central Limit Theorem, if n
is large, then the distribution of

p
n(✓̂�✓) =

p
n
⇣X1 + . . .+ Xn

n
�✓

⌘
=

(X1 � ✓) + . . .+ (Xn � ✓)p
n

is approximately N (0, ✓(1� ✓)).

So the distribution of ✓̂ � ✓ is approximately N (0, ✓(1�✓)
n ), and the

distribution of ✓̂ is approximately N (✓, ✓(1�✓)
n ).



A confidence statement

For sampling without replacement, the same normal approximation
is still correct, provided that the sample size n is large but much
smaller than the population size N.

Recall that roughly 95% of the probability density of a normal
distribution is within 2 standard deviations of its mean. Then,
applying this normal approximation,

(0.54� 2⇥ 0.016, 0.54 + 2⇥ 0.016) = (0.508, 0.572)

is a 95% confidence interval for ✓. In particular, we are more
than 95% confident that ✓ > 0.5.



A confidence statement

“It can be shown that if quantities are distributed according to
almost any curve of frequency satisfying simple and common
conditions, the average of successive groups of say, 10, 20, 100,
. . . n of these conform to a normal curve (the more and more
closely as n is increased) whose standard deviation diminishes in
inverse ratio to the number in each sample.... If we can apply this
method—and for clearness I give an example immediately—we are
able to give not only a numerical average, but a reasoned estimate
for the real physical quantity of which the average is a local or
temporary instance.”

—A. L. Bowley, 1906.



Some extensions

I Today, usually a combination of targeted and random
sampling called stratified sampling is used.

Suppose there are two demographics of people in Connecticut,
each of population size N/2, who have very di↵erent
tendencies to support Harris vs. Trump. Using a random
sample of 500 individuals from each demographic can yield
smaller variability for ✓̂.

I Our calculations were based on the strong assumption that we
have a simple random sample. If sampling is not uniform
across the population, small sampling biases in large samples
can yield highly misleading confidence statements.



The randomized view of data

In much of statistical analysis, it is assumed that

Data is a realization of a random process

Why? Possible reasons:

1. We introduced randomness in our experimental design (for
example: polling, clinical trials, A/B testing)

2. We are studying an actually random phenomenon (for
example: coin tosses or dice rolls)

3. Randomness is a modeling assumption for something we don’t
understand (for example: errors or “noise” in measurements)

Treating our data as random allows us to perform statistical
inference and quantify uncertainty.



Statistical inference

Statistical inference = Probability
�1

Probability: For a specified probability distribution, what are the
properties of data from this distribution?

Example: X1, . . . ,X10
IID⇠ N (2.3, 1). What is P[X1 > 5]? What is

the distribution of 1
10(X1 + . . .+ X10)?

Statistical inference: From a realization of random data, what
can we learn about its probability distribution?

Example: X1, . . . ,X10
IID⇠ N (✓, 1) for some ✓. We observe

X1 = 3.67, X2 = 2.24, etc. What is ✓?



Inference questions

In this course, we’ll focus on the following inferential questions:

I Hypothesis testing: Asking a “yes” or “no” question about
the distribution. (Is ✓ > 0.5?)

I Estimation: Determining the distribution, or some parameter
about the distribution. (What is ✓?)

I Uncertainty quantification: Understanding the possible errors
of our estimates. (What is a range of values to which we’re
reasonably confident ✓ belongs?)

I Prediction: Predicting the outcome for a new sample. (Does a
new voter support Harris?)



Goals

In statistical inference, there is usually not a single right approach
or a single right answer.

I For inferential questions that commonly arise in applications:
What are the statistical methods that are often used to answer
these questions? Why are these the methods of choice?

I In what ways can we compare di↵erent methods for answering
the same question? In what settings should we prefer one
method over another?

I How can we quantify the errors/uncertainties in our answers,
and how do they depend on our modeling assumptions?

I For new inferential questions, when there are not existing
statistical methods and tools, what are some principles/ideas
that can guide us in developing new methods?



Intended audience and pre-requisites

Intended audience:

I Students studying statistics, data science, machine learning,
and AI, who want to learn about the foundations and
principles of statistical inference.

I Students/researchers in areas where statistics is commonly
applied, who want a mathematical one-semester course on
statistical methods and ideas.

Pre-requisites:

I Probability theory (S&DS 241/541 or equivalent)

I Multivariable calculus, with some matrix algebra (Math 120 or
equivalent)

I Willingness to learn a little bit of computer programming



Di↵erences with other courses at Yale

I We’ll provide a more mathematical treatment of statistical
methods and inference than S&DS 220/520 and 230/530.

I S&DS 238 covers both statistics and probability in one
semester—our course is designed to be taken after a separate
course in probability (S&DS 241/541). We’ll have less
emphasis on Bayesian methods.

I We’ll cover a broader set of topics, with less depth, than
S&DS 410/610. I’ll often emphasize conceptual ideas over
mathematical rigor, and provide heuristic explanations instead
of formal proofs.



Course website

stat.yale.edu/~zf59/sds242

All course information (syllabus, o�ce hours), lecture notes/slides,
and homeworks will be posted here.

Homework solutions, practice exams, and restricted content will be
posted to Canvas.



Homework

Approximately weekly, due Wednesdays 1PM on Gradescope. First
homework is posted, and due next Wednesday, January 22.

Homework assignments will include computing exercises asking you
to perform small simulations, create histograms and plots, and
analyze data. Guidance will be provided in the programming
language R, although you may choose to use any other language.
You will be graded on your results, not on the quality of your code.



Policies

You are allowed a total of 8 late days over the semester, with at
most 4 late days for a single assignment. Additional late
assignments will incur a 20% penalty per day it is late.
Assignments more than 4 days late will not be accepted.

(For homework due Wednesday 1PM, submission before Thursday
1PM is 1 late day, before Friday 1PM is 2 late days, etc.)

You are encouraged to discuss homework problems with your
classmates, but you must submit your own individual write-up,
using your own code for the programming exercises. Use of
generative AI tools (e.g. ChatGPT, Claude, Gemini, Llama) is not
permitted, unless otherwise noted.

Please indicate at the top of your assignment the number of late
days used, and the names of your collaborators.



Exams and grading

There will be two (closed-book) in-class exams:

Midterm: An evening the week of Feb 24–28, date/time TBD
Final: Tuesday May 6, 9AM

Your final grade will be the maximum of the following two
weightings:

30%⇥ homework + 35%⇥midterm + 35%⇥ final

30%⇥ homework + 20%⇥midterm + 50%⇥ final



Piazza

For all questions about course material, lectures, homework,
exams, and logistics, Piazza is the fastest and best way to get an
answer from me and the teaching sta↵.

You are encouraged to help answer other students’ questions, and
to use Piazza to find and form study groups.



Auditing

Auditors are welcome! Please register on Canvas and Piazza to
receive our course announcements and gain access to course
materials.

Due to demands on our course teaching sta↵, I ask that auditors
please do not submit homeworks to Gradescope or participate in
the course exams.



Course schedule

I Unit 0: Introduction and tools. Review of probability theory,
limit theorems, introduction to computer simulation.

I Unit 1: Hypothesis testing. Test statistics, p-values,
parameteric and nonparametric tests, power, experimental
design, multiple testing.

I Unit 2: Parametric models. Method of moments, maximum
likelihood estimation, Bayesian inference, confidence intervals,
the “bootstrap”.

I Unit 3: Predictive inference. Linear regression, logistic
regression, classification models, cross-validation and
conformal prediction.



Lecture material and textbooks

Lecture slides will be posted to the course webpage.

Accompanying readings are from:

I John A. Rice, Mathematical Statistics and Data Analysis, 3rd
edition. (You don’t need the CD.)

I Gareth James, Daniela Witten, Trevor Hastie, Robert
Tibshirani, An Introduction to Statistical Learning (with
Applications in R)



A thought from Larry Wasserman

“Students who analyze data, or who aspire to develop new
methods for analyzing data, should be well grounded in basic
probability and mathematical statistics. Using fancy tools like
neural nets, boosting, and support vector machines without

understanding basic statistics is like doing brain surgery before
knowing how to use a band-aid.” — L. Wasserman

I hope this course will teach you how to use the band-aid.


