S&DS 242/542: Theory of Statistics

Lecture 2: Probability review |



Teaching staff and office hours

Course manager: Bella Bao (bella.bao@yale.edu)

Course TAs:

Johanna Dammann  Neil Mathew Arjun Verma
Xinyang Hu Selma Mazioud Brian Xiang
Langchen Liu Max Lovig Grant Zhang
Linghai Liu Matthew Ross Bronson Zhou

Ivan Sinyavin

My office hours are Mondays 4-5PM in KT1101.

TA office hours will start next week, with times/locations posted
to the course webpage.



S&DS DSAC groupme

The S&DS DSAC has created a new groupme to use as a hub for
communication for S&DS majors, certificates, and interested
students. Join here for news about merch handouts, student
events, and class/bluebooking advice:

https://groupme.com/join_group/103331993/SFgZGZMT



Random variables and distributions

Throughout our course, we will model data using random variables.
» Discrete random variables

» Can take a finite or countably infinite number of values
» Describe categorical data, e.g. outcome of a dice roll

X €{1,2,3,4,5,6}
and count data, e.g. number of students in S&DS 242
X €{0,1,2,3,...}

» Continuous random variables
» Can take a continuum of values on the real line, e.g.

XeR or Xe(0,00) or X€(0,1)

» Describe continuous data, e.g. height or weight of a person
The distribution or law of X describes P[X € A] for any set A C R.



Probability mass functions

For discrete X, its distribution may be specified by its probability
mass function (PMF): For each possible value x that X can take,

f(x) =P[X =x]

PMF
00 01 02 03 04 05

Then for any set of values A, P[X € A] = Z f(x).
X€EA

If X is the space of all possible values for X, then ) . f(x) = 1.

All figures are from Introduction to Probability by Blitzstein and Hwang



Bernoulli and Binomial distributions

Example: A Bernoulli random variable X ~ Bernoulli(p) takes two
possible values {0,1}. Its PMF is

if x=1
=42 27
1—p ifx=0

Example: A Binomial random variable X ~ Binomial(n, p) takes

values in {0,1,2,...,n}. Its PMF is

f(x) = (n> p*(1— p)"* for each x € {0,1,2,...,n}
X
If X1, ..., X, "2 Bernoulli(p), then

X1+ ...+ X, ~ Binomial(n, p)

This representation is often more useful than the PMF.



Poisson and Negative Binomial distributions

Example: A Poisson random variable X ~ Poisson(\) takes
nonnegative integer values. lts PMF is

—A)\x

f(x) = ——— foreach x € {0,1,2,.. .}

X!

Example: A Negative Binomial random variable
X ~ NegBin(r, p) also takes nonnegative integer values. Its PMF is

-1
f(x) = <X—r|_:1 )pr(l—p)X for each x € {0,1,2,...}

This represents the number of failures before the rth success in a
sequence of independent Bernoulli(p) trials.

Both are common models for count data. NegBin(r, p) has two
parameters, allowing for more flexible modeling of mean/variance.



Probability density functions

For continuous X, its distribution may be specified by its
probability density function (PDF): a function f(x) such that
for any set A C R,

P[X € Al = / f(x)dx
A

The integral over the whole real line is [*_ f(x)dx = 1.
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Normal and Gamma distributions

Example: A Normal (or Gaussian) random variable X ~ N (u, 0?)
takes any real value. Its PDF is

F(x) 1 _ (x—gf
= 20
X V2o ¢

The normal distribution appears ubiquitously throughout statistics,
due to the Central Limit Theorem.

Example: A Gamma random variable X ~ Gamma(«, 3) takes
positive real values. Its PDF is

BO[

f(x) = ——

(%) (o)

x* L P for x > 0

Here () = [¢~ x*~te™dx. (This extends the factorial function
to all positive reals, with ['(n) = (n — 1)! for positive integers n.)



Chi-squared distribution

Example: A chi-squared random variable X ~ x2(n) is a special
case of a Gamma random variable, Gamma(n/2,1/2). Its PDF is

1
- = .n/2-1_—x/2
f(x) = 2”/2I'(n/2)x e for x >0

The parameter n is called the “degrees of freedom".
If Xq,..., Xy 22 N(0,1), then

X?+...+ X2~ x3(n)
(We'll show this next class.)

These representations are more useful than the PDF.



Cumulative distribution functions

The distribution of X can also be specified by its cumulative
distribution function (CDF)

F(x) =P[X < x]

X
Discrete: F(x) = Z f(y) Continuous: F(x) :/ f(y)dy
yiy<x -
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When X is continuous, the derivative of F(x) is the PDF f(x).



Quantile functions

By definition, the CDF F(x) is non-decreasing:
F(x) < F(y) forall x <y

If F:R — (0,1) is continuous and strictly increasing, then it has a
continuous inverse function F~1: (0,1) — R, which satisfies

F(x)=t <> F(t)=x

F~1is called the quantile function of X. For any t € (0,1),
x = F71(t) is the t'h quantile of the distribution of X, satisfying

PIX <x]=t

F~1(0.5) is the median, F~1(0.25) and F~1(0.75) are the first and
third quartiles.



Expectation

The expectation or mean of X is its “average value”.

If X is discrete with PMF f(x), then

E[X] =) x-f(x)

xXeX

If X is continuous with PDF f(x), then analogously,

E[X] = /Oo x - F(x)dx

—00

More generally, for any function g : R — R, the mean of g(X) is

o0

Elg(X)] =) g(x)-f(x) or IE[g(X)]Z/ g(x) - f(x)dx

XEX o



Poisson expectation

Example: Let X ~ Poisson(\).

E[X] = % i e_%\_x
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Gamma expectation

Example: Let X ~ Gamma(a, ).

E[X] = So x‘/r% Xw(e ‘[’xjx (y’(zx)
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Linearity of expectation

A very important property of expectation is that it is /inear. For
any random variables Xi, ..., X, (not necessarily independent),

EXi+...+ Xs] = E[X1] + ... + E[X}]
For any constant ¢ € R,
E[cX] = cE[X]
Consequently, also
ElaXi + ...+ cnXn] = aE[Xi] + ... + cE[ X))

Example: Let X ~ Binomial(n, p). Recalling X = X1 + ...+ X,
where X; "2 Bernoulli(p), we may compute E[X] as

EX]=E[Xi]+ ...+ E[X,] = np



Variance and standard deviation

The variance of X is defined by the two equivalent expressions
Var[X] = E[(X — EX)?] = E[X?] — (EX)?
If X is centered such that EX = 0, then Var[X] = E[X?].
Variance is translation-invariant: For any constant ¢ € R,
Var[X + c] = Var[X]
Also variance scales quadratically: For any constant ¢ € R,
Var[cX] = ¢? Var[X]

The standard deviation of X is y/Var[X], which is interpretable
on the scale of X rather than X2.



Variance of independent sums

If X1,...,X, are independent (or more generally, pairwise
uncorrelated), then

Var[X1 + ...+ X,] = Var[Xq] + ... + Var[X]]

Example: LetX Binomial(n p). Recalling X = X1 +...+ X,
where X; 2 Bernoulli(p \/”[)(] EN)- (IEX) “p /07-

Var[X] = Var[Xy] + ...+ Var[X,]  %{" :;ii .

—(p— )+t (p—p?) = np(1—p)
If X1,...,X, are correlated, then this is not true. For example,
Var[X1 -+ X2] = Var[Xl] + Var[Xz] + 2 COV[Xl, X2]

and we will see later a more general expression.



Chi-squared expectation and variance

Example: Let X ~ x?(n). Recall that X = X2 + ... + X2 where
Xi,..., X0 "2 N(0,1).

BIX] = E[XPekt] s B ELX] = m
VarlX] = Voo (e oK) = Vo X ¢t L LK) = e DX
VoL LX) (RXT) = 3-(=2

= Vu/[x]= 2n



Joint distributions

The joint distribution of k random variables (Xi, ..., Xx) may be
specified, in the discrete case, by the joint PMF

f(xt, ..., xk) =P[X1 =x1,..., Xk = xk]

and in the continuous case, by the joint PDF f(xi,..., xx) which
satisfies, for any A C R,

P[(X1,...,Xk) € A] =//A f(x1, ..., xx)dxy ... dxg.
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Multinomial distribution

Example: The multinomial distribution generalizes the binomial to
k > 2 outcomes: For n total samples, each independently
belonging to outcomes 1,..., k with probabilities p1, ..., px, the
total number of samples for each outcome is

(X1,...,Xk) ~ Multinomial (n, (p1,- - .,pk)>

E.g., if we roll a standard six-sided die 100 times and (Xi, ..., Xs)
are the numbers of rolls 1 to 6, then

(X1, ..., X6) ~ Multinomial (100,(%, 1111 %)).
The joint PMF is

n X X X
f(xt,. . xk) = (Xl Xk>P11P22---Pkk

forall x1,...,xx > 0suchthat xy +...+xx =n



Marginal distributions

Given a joint distribution of (X, Y), the marginal distribution of
X is its individual distribution ignoring Y.

If (X, Y) are discrete with joint PMF fxy(x,y), then the marginal

PMF of X is
A(x) = fry(xy)
yey

where the sum is over all possible values of ).

If (X,Y) are continuous with joint PDF fxy(x,y), then the
marginal PDF of X is

fx(X) = /OO fxy(X,y)dy

—0o0






Conditional distributions

Given a joint distribution of (X, Y), the conditional distribution
of Y given X = x is its distribution after observing X = x.

If (X,Y) are discrete with joint PMF fxy(x,y) and X has
marginal PMF fx(x), the conditional PMF of Y given X = x is

PIX =x,Y =y] fxy(x,y)
PX=x] fx(x)

fY\X(Y\X) =P[Y=y|X=x]=

If (X,Y) are continuous with joint PDF fxy(x, y) and X has
marginal PDF fx(x), the conditional PDF of Y given X = x is also

fXY(Xay)

fY|X(y’X) = fX(X)



Conditional distributions




Independence of random variables

Random variables X3, ..., X, are independent when their PMFs
or PDFs satisfy

f(x1,...,xn) = f(x1) X ... X f(xn)

Thus their joint distribution is fully specified by the marginal
distributions of the individual variables Xi,...,X,.

If X1,...,X, are independent, then for any Ay,..., A, CR,
P[X; € A1, ..., Xph € A)] =P[X1 € A1] x ... x P[X, € Aj]
Furthermore, for any functions gi1,...,g,: R = R,

Elg1(X1) - - gn(Xn)] = E[g1(X1)] x ... x E[gn(X,)]-



Covariance

The covariance between two random variables X and Y is defined
by the two equivalent expressions

Cov[X, Y] = E[(X — EX)(Y — EY)] = E[XY] — E[X]E[Y]

In particular, Cov[X, X] = Var[X]. If X and Y are centered so that
EX =0and EY =0, then Cov[X, Y] = E[XY].

If X, Y are independent, then E[XY] = E[X]E[Y] so
Cov[X,Y]=0

However, the converse is not true: Cov[X, Y] = 0 does not imply
that X, Y are independent.



Bilinearity of covariance

Covariance is translation invariant: For any constants a, b € R,
Cov[X + a, Y + b] = Cov[X, Y]
Furthermore, covariance is bilinear. For any random variables
Xi,...,Xp and Yi,..., Yn (not necessarily independent),
n m
Cov[X1 + ...+ Xn, it .4 V] =D ) Cov[X;, Y]]
i=1 j=1
For any constants a, b € R, Cov[aX, bY] = abCov[X, Y].
Consequently, also

n m
CovlarXi+...+anXn, b1Y1+...4bmYml =D > ajb; Cov[X;, Y]]
i=1 j=1



Bilinearity of covariance

Example: This allows us to derive a general expression for
Var[X1 + ...+ X,] when Xi,..., X, may be dependent:

Vo DX <X )= CosCXitoX, Xt eK])
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Ay U

z ZCW [)é, ){,]f ZZ; Co/[’(_,)gj
2 Vel ]e 2 2 Gl i ]

e —
«0 (€ XW)C,.W




Correlation

The correlation between (X, Y) is their covariance normalized by
the product of standard deviations:

X, Y
corr(X,Y) = Cov[X, Y]
V/Var[X]/Var[Y]
Correlation is both translation and scale invariant: For any
a,beRand c,d >0,

corr(aX + b,cY + d) = corr(X, Y)
The Cauchy-Schwarz inequality says that for any (X, Y),
Cov[X, Y]? < Var[X] Var[ Y]

Consequently, we always have corr(X, Y) € [-1,1].



