Throughout this course, we will model data using random variables. The goal of this lecture is to review relevant definitions and concepts concerning random variables and their distributions.

2.1 Random variables and distributions

A **discrete random variable** X can take a finite, or at most countably infinite, number of possible real values. We often use discrete random variables to model categorical data (for example, the outcome of a dice roll) and count data (for example, how many students are enrolled in S&DS 242).

The distribution of a discrete random variable X can be specified by its **probability mass function (PMF)**: For each possible value x that X can take,

$$f_X(x) = \mathbb{P}[X = x].$$

Then for any subset A of values that X can take,

$$\mathbb{P}[X \in A] = \sum_{x \in A} f_X(x).$$

If \mathcal{X} is the entire space of possible values for X, then $\sum_{x \in X} f_X(x) = \mathbb{P}[X \in \mathcal{X}] = 1$.

A **continuous random variable** X can take any real value. We use continuous random variables to model continuous data (for example, the height or weight of a person). For any single value $x \in \mathbb{R}$, the probability that X is exactly equal to x is zero: $\mathbb{P}[X = x] = 0$. Instead, the distribution of X may be specified by its **probability density function (PDF)** $f_X(x)$. This specifies that for any subset $A \subseteq \mathbb{R}$,

$$\mathbb{P}[X \in A] = \int_A f_X(x) \, dx.$$

The integral over the entire real line satisfies $\int_{-\infty}^{\infty} f_X(x) \, dx = \mathbb{P}[X \in \mathbb{R}] = 1$.

In both cases, when it is clear which random variable is being referred to, we will often simply write $f(x)$ for $f_X(x)$.

The distribution of X can equivalently be specified by its **cumulative distribution function (CDF)**

$$F_X(x) = \mathbb{P}[X \leq x].$$

For discrete random variables, this is given by

$$F_X(x) = \sum_{y : y \leq x} f_X(y).$$
This function $F_X(x)$ is a “staircase” or “step” function, with a jump of size $f_X(x) = \mathbb{P}[X = x]$ at each possible value x for X. For continuous random variables, the CDF is given by

$$F_X(x) = \int_{-\infty}^{x} f_X(y) dy.$$

This function $F_X(x)$ is continuous in x, and the fundamental theorem of calculus implies

$$f_X(x) = \frac{d}{dx} F_X(x).$$

By definition, F_X is always increasing:

$$F_X(x) \leq F_X(y) \text{ if } x \leq y.$$

We always have $F_X(x) = \mathbb{P}[X \leq x] \rightarrow 0$ as $x \rightarrow -\infty$, and $F_X(x) = \mathbb{P}[X \leq x] \rightarrow 1$ as $x \rightarrow \infty$. If F_X is continuous and strictly increasing, meaning

$$F_X(x) < F_X(y) \text{ for all real numbers } x < y,$$

then F_X has a continuous inverse function $F_X^{-1} : (0,1) \rightarrow \mathbb{R}$, which satisfies

$$F_X(F_X^{-1}(t)) = t \quad \text{and} \quad F_X^{-1}(F_X(x)) = x.$$

This inverse function F_X^{-1} is called the quantile function: For any value $t \in (0,1)$, the number $F_X^{-1}(t)$ is the value of x for which $F_X(x) = \mathbb{P}[X \leq x] = t$. This value x is called the t^{th} quantile of the distribution of X. For example, when $t = 0.5$, $F_X^{-1}(0.5)$ is the median of the distribution of X. For $t = 0.25$ and $t = 0.75$, $F_X^{-1}(0.25)$ and $F_X^{-1}(0.75)$ are the first and third quartiles of the distribution of X.

2.2 Expected value and variance

For any random variable X, the expectation or mean of X is its “average value”. If X is discrete with PMF $f_X(x)$, then

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \cdot f_X(x)$$

where the sum is over all possible values of X. If X is continuous with PDF $f_X(x)$, then analogously,

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx.$$

More generally, for any function $g : \mathbb{R} \rightarrow \mathbb{R}$, the mean of $g(X)$ is

$$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) \cdot f_X(x)$$

2-2
for discrete X and
\[
\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx
\]
for continuous X.

A very important property of the expectation is that it is linear: For any random variables X_1, \ldots, X_n (not necessarily independent),
\[
\mathbb{E}[X_1 + \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n],
\]
and for any constant $c \in \mathbb{R}$,
\[
\mathbb{E}[cX] = c \mathbb{E}[X].
\]

The variance of X is defined by the two equivalent expressions
\[
\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}X)^2] = \mathbb{E}[X^2] - (\mathbb{E}X)^2.
\]

It is invariant to translations: For any constant $c \in \mathbb{R}$, $\text{Var}[X + c] = \text{Var}[X]$. If X is centered such that $\mathbb{E}X = 0$, then $\text{Var}[X] = \mathbb{E}[X^2]$.

For any constant $c \in \mathbb{R}$, $\text{Var}[cX] = c^2 \text{Var}[X]$. If X_1, \ldots, X_n are independent (or more generally, pairwise uncorrelated), then
\[
\text{Var}[X_1 + \ldots + X_n] = \text{Var}[X_1] + \ldots + \text{Var}[X_n], \tag{2.1}
\]
If X_1, \ldots, X_n are correlated, then this is not true—for example, we have
\[
\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] + 2 \text{Cov}[X, Y]
\]
where $\text{Cov}[X, Y]$ is the covariance between X and Y. (See Example 2.6 below).

The standard deviation of X is $\sqrt{\text{Var}[X]}$. This has the benefit of being interpretable on the same scale as X, whereas $\text{Var}[X]$ is on the scale of X^2.

2.3 A few examples

Example 2.1. A Bernoulli random variable $X \sim \text{Bernoulli}(p)$ (for $p \in [0, 1]$) is a discrete random variable taking two possible values $\{0, 1\}$. Its PMF is given by
\[
f(x) = \begin{cases}
p & \text{if } x = 1 \\
1-p & \text{if } x = 0. \end{cases}
\]
The mean of X is
\[
\mathbb{E}[X] = 0 \cdot \mathbb{P}[X = 0] + 1 \cdot \mathbb{P}[X = 1] = p.
\]
The variance of X is
\[
\text{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}X)^2 = \mathbb{E}[X] - (\mathbb{E}X)^2 = p - p^2 = p(1-p),
\]
where we have used $X^2 = X$ in the second equality because $X \in \{0, 1\}$.

2-3
Example 2.2. A Binomial random variable $X \sim \text{Binomial}(n, p)$ (for a positive integer n and $p \in [0, 1]$) is a discrete random variable taking values in $\{0, 1, 2, \ldots, n\}$. Its PMF is given by

$$f(x) = \begin{cases} \binom{n}{x} p^x (1 - p)^{n-x} & \text{if } x \in \{0, 1, 2, \ldots, n\} \\ 0 & \text{otherwise} \end{cases}$$

If X_1, \ldots, X_n are independent Bernoulli(p) random variables, then their sum $X = X_1 + \ldots + X_n$ is Binomial(n, p)—hence this represents “the total number of heads in n tosses of a coin that lands heads with probability p”.

Using the above properties of mean and variance, we have

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n] = np, \quad \text{Var}[X] = \text{Var}[X_1] + \ldots + \text{Var}[X_n] = np(1 - p).$$

(It is possible, but more difficult, to derive these also from the definitions of $\mathbb{E}[X]$ and $\text{Var}[X]$ and the above PMF.)

Example 2.3. A Normal random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ (for $\mu \in \mathbb{R}$ and $\sigma^2 > 0$) is a continuous random variable taking any real value. Its PDF is given by

$$f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

whose graph is a bell-shaped curve centered at μ with width proportional to σ.

The mean $\mathbb{E}[X]$ is μ, which may be verified by a calculus exercise:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

$$= \int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} (y + \mu) \cdot \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{y^2}{2\sigma^2}} dy \quad \text{(change of variables } y = x - \mu)$$

$$= \int_{-\infty}^{\infty} y \cdot \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{y^2}{2\sigma^2}} dy + \mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{y^2}{2\sigma^2}} dy.$$

The first integral is 0, because the integrand is an odd function of y, so the integral over $y \in (0, \infty)$ cancels the integral over $y \in (-\infty, 0)$. The second integral is 1 because it is the integral of the $\mathcal{N}(0, \sigma^2)$ PDF over the entire real line. Hence $\mathbb{E}[X] = \mu$.

For the variance,

$$\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$= \int_{-\infty}^{\infty} (x - \mu)^2 \cdot \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} \sigma^2 y^2 \cdot \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{y^2}{2\sigma^2}} \cdot \sigma dy \quad \text{(change of variables } y = (x - \mu)/\sigma)$$

$$= \sigma^2 \int_{-\infty}^{\infty} y^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy.$$
Integration by parts shows that this last integral is 1: Let \(u = y \) and \(v = -\frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \). Then \(du = dy \) and \(dv = y \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy \), so

\[
\int_{-\infty}^{\infty} y^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \int_{-\infty}^{\infty} u dv = uv \bigg|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} v du
\]

\[
= 0 + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = 1.
\]

So \(\text{Var}[X] = \sigma^2 \), and \(X \) has standard deviation \(\sigma \).

\[\Box\]

Example 2.4. A Gamma random variable \(X \sim \text{Gamma}(\alpha, \beta) \) (for \(\alpha, \beta > 0 \)) is a continuous random variable taking positive real values. Its PDF is given by

\[
f(x) = \begin{cases}
\frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & x > 0 \\
0 & x \leq 0
\end{cases}
\]

In the above, \(\Gamma : (0, \infty) \to (0, \infty) \) is the Gamma function, defined by the integral

\[
\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx.
\]

You may think of the Gamma function as extending the factorial function to all positive real numbers: For positive integers \(n \), we have \(\Gamma(n) = (n-1)! \). A calculus exercise (omitted here for brevity) verifies that

\[
\mathbb{E}[X] = \frac{\alpha}{\beta}, \quad \text{Var}[X] = \frac{\alpha}{\beta^2}.
\]

\[\Box\]

2.4 Joint distributions, independence, and covariance

The joint distribution of \(k \) different random variables \(X_1, \ldots, X_k \) may be specified, in the discrete case, by the **joint PMF**

\[
f_{X_1,\ldots,X_k}(x_1, \ldots, x_k) = \mathbb{P}[X_1 = x_1, \ldots, X_k = x_k].
\]

In the continuous case, it may be defined by the **joint PDF** \(f_{X_1,\ldots,X_k}(x_1, \ldots, x_k) \). This specifies that for any subset \(A \subseteq \mathbb{R}^k \),

\[
\mathbb{P}[(X_1, \ldots, X_k) \in A] = \int_A f_{X_1,\ldots,X_k}(x_1, \ldots, x_k) dx_1 \ldots dx_k.
\]

When it is clear which random variables are being referred to, we will write \(f(x_1, \ldots, x_k) \) for \(f_{X_1,\ldots,X_k}(x_1, \ldots, x_k) \).
Example 2.5. \((X_1, \ldots, X_k)\) have a multinomial distribution,

\((X_1, \ldots, X_k) \sim \text{Multinomial} \left(n, (p_1, \ldots, p_k) \right) \),

if these random variables take nonnegative integer values summing to \(n\), with joint PMF

\[
f(x_1, \ldots, x_k) = \begin{cases}
\binom{n}{x_1, \ldots, x_k} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k} & \text{if } x_1, \ldots, x_k \geq 0 \text{ and } x_1 + \ldots + x_k = n \\
0 & \text{otherwise.}
\end{cases}
\]

Here, \(p_1, \ldots, p_k\) are values in \([0,1]\) that satisfy \(p_1 + \ldots + p_k = 1\) (representing the probabilities of \(k\) different mutually exclusive outcomes), and \(\binom{n}{x_1, \ldots, x_k}\) is the multinomial coefficient

\[
\binom{n}{x_1, \ldots, x_k} = \frac{n!}{x_1! x_2! \cdots x_k!}.
\]

The multinomial distribution generalizes the binomial distribution to \(k > 2\) outcomes. It describes the number of samples belonging to each of the \(k\) outcomes, if there are \(n\) total samples, each independently belonging to outcomes 1, \ldots, \(k\) with probabilities \(p_1, \ldots, p_k\).

For example, if we roll a standard six-sided die 100 times and let \(X_1, \ldots, X_6\) denote the number of rolls that yielded 1 to 6, then

\((X_1, \ldots, X_6) \sim \text{Multinomial} \left(100, \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right) \right) \).

Random variables \(X_1, \ldots, X_n\) are independent (in both the discrete and continuous settings) if

\[
f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = f_{X_1}(x_1) \cdot \ldots \cdot f_{X_n}(x_n).
\]

In particular, when \(X_1, \ldots, X_n\) are independent, their joint distribution is fully determined by the individual distributions of \(X_1, \ldots, X_n\).

If \(X_1, \ldots, X_n\) are independent, then this implies that for any subsets \(A_1, \ldots, A_n \subseteq \mathbb{R}\),

\[
P[X_1 \in A_1 \text{ and } \ldots \text{ and } X_n \in A_n] = P[X_1 \in A_1] \cdot \ldots \cdot P[X_n \in A_n].
\]

Furthermore, for any functions \(g_1, \ldots, g_n : \mathbb{R} \to \mathbb{R}\), we also have

\[
\mathbb{E}[g_1(X_1) \cdot \ldots \cdot g_n(X_n)] = \mathbb{E}[g_1(X_1)] \cdot \ldots \cdot \mathbb{E}[g_n(X_n)].
\]

The covariance between two random variables \(X\) and \(Y\) is defined by the two equivalent expressions

\[
\text{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].
\]

In particular, \(\text{Var}[X] = \text{Cov}[X, X]\). Like the variance, this is translation invariant: For any constants \(a, b \in \mathbb{R}\), \(\text{Cov}[X + a, Y + b] = \text{Cov}[X, Y]\). If \(\mathbb{E}X = 0\) and \(\mathbb{E}Y = 0\), then \(\text{Cov}[X, Y] = \mathbb{E}[XY]\).

If \(X\) and \(Y\) are independent, then \(\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]\), so \(\text{Cov}[X, Y] = 0\). However, the converse is not true—Problem 2 of Homework 1 provides a counterexample.
An important property of the covariance is that it is \textit{bilinear}: For any random variables \(X_1,\ldots,X_n\) and \(Y_1,\ldots,Y_m\),

\[
\text{Cov}[X_1 + \ldots + X_n, Y_1 + \ldots + Y_m] = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}[X_i, Y_j],
\]

and for any constants \(a, b \in \mathbb{R}\),

\[
\text{Cov}[aX, bY] = ab \text{Cov}[X, Y].
\]

\textbf{Example 2.6.} This allows us to deduce a general expression for \(\text{Var}[X_1 + \ldots + X_n]\) in the setting where \(X_1,\ldots,X_n\) may be \textit{dependent}:

\[
\text{Var}[X_1 + \ldots + X_n] = \text{Cov}[X_1 + \ldots + X_n, X_1 + \ldots + X_n]
= \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}[X_i, X_j]
= \sum_{i=1}^{n} \text{Cov}[X_i, X_i] + 2 \sum_{i<j} \text{Cov}[X_i, X_j].
\]

The last sum above is over all \(\binom{n}{2}\) pairs of indices \(i, j \in \{1,\ldots,n\}\) where \(i < j\). Identifying \(\text{Var}[X_i] = \text{Cov}[X_i, X_i]\) in this last expression, we arrive at

\[
\text{Var}[X_1 + \ldots + X_n] = \sum_{i=1}^{n} \text{Var}[X_i] + 2 \sum_{i<j} \text{Cov}[X_i, X_j].
\]

If \(X_1,\ldots,X_n\) are independent, then \(\text{Cov}[X_i, X_j] = 0\) for all \(i < j\), so this becomes Eq. \((2.1)\).

The \textbf{correlation} between \(X\) and \(Y\) is their covariance normalized by the product of their standard deviations:

\[
\text{corr}(X, Y) = \frac{\text{Cov}[X, Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}}.
\]

Unlike the covariance, the correlation is dimension-free and invariant to rescaling: For any constants \(a, b > 0\), we have \(\text{corr}(aX, bY) = \text{corr}(X, Y)\). For any random variables \(X\) and \(Y\), we always have \(-1 \leq \text{corr}(X, Y) \leq 1\): This is a consequence of the \textbf{Cauchy-Schwarz inequality}

\[
\text{Cov}[X, Y]^2 \leq \text{Var}[X] \text{Var}[Y].
\]