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Random variables and distributions

Throughout our course, we will model data using random variables.

I Discrete random variables
I Can take a finite or countably infinite number of values

I Describe categorical data, e.g. outcome of a dice roll

X 2 {1, 2, 3, 4, 5, 6}

and count data, e.g. number of students in S&DS 242

X 2 {0, 1, 2, 3, . . .}

I Continuous random variables
I Can take a continuum of values on the real line, e.g.

X 2 R or X 2 (0,1) or X 2 (0, 1)

I Describe continuous data, e.g. height or weight of a person

The distribution or law of X describes P[X 2 A] for any set A ✓ R.



Probability mass functions

For discrete X , its distribution may be specified by its probability
mass function (PMF): For each possible value x that X can take,

f (x) = P[X = x ]

Then for any set of values A, P[X 2 A] =
X

x2A
f (x).

If X is the space of all possible values for X , then
P

x2X f (x) = 1.

All figures are from Introduction to Probability by Blitzstein and Hwang



Bernoulli and Binomial distributions

Example: A Bernoulli random variable X ⇠ Bernoulli(p) takes two
possible values {0, 1}. Its PMF is

f (x) =

(
p if x = 1

1� p if x = 0

Example: A Binomial random variable X ⇠ Binomial(n, p) takes
values in {0, 1, 2, . . . , n}. Its PMF is

f (x) =

✓
n

x

◆
px(1� p)n�x

for each x 2 {0, 1, 2, . . . , n}

If X1, . . . ,Xn
IID⇠ Bernoulli(p), then

X1 + . . .+ Xn ⇠ Binomial(n, p)

This representation is often more useful than the PMF.



Poisson and Negative Binomial distributions

Example: A Poisson random variable X ⇠ Poisson(�) takes
nonnegative integer values. Its PMF is

f (x) =
e���x

x!
for each x 2 {0, 1, 2, . . .}

Example: A Negative Binomial random variable

X ⇠ NegBin(r , p) also takes nonnegative integer values. Its PMF is

f (x) =

✓
x + r � 1

r � 1

◆
pr (1� p)x for each x 2 {0, 1, 2, . . .}

This represents the number of failures before the r th success in a

sequence of independent Bernoulli(p) trials.

Both are common models for count data. NegBin(r , p) has two
parameters, allowing for more flexible modeling of mean/variance.



Probability density functions

For continuous X , its distribution may be specified by its

probability density function (PDF): a function f (x) such that

for any set A ✓ R,

P[X 2 A] =

Z

A
f (x)dx

The integral over the whole real line is
R1
�1 f (x)dx = 1.



Normal and Gamma distributions

Example: A Normal (or Gaussian) random variable X ⇠ N (µ,�2
)

takes any real value. Its PDF is

f (x) =
1p
2⇡�2

e�
(x�µ)2

2�2

The normal distribution appears ubiquitously throughout statistics,

due to the Central Limit Theorem.

Example: A Gamma random variable X ⇠ Gamma(↵,�) takes
positive real values. Its PDF is

f (x) =
�↵

�(↵)
x↵�1e��x

for x > 0

Here �(↵) =
R1
0 x↵�1e�xdx . (This extends the factorial function

to all positive reals, with �(n) = (n � 1)! for positive integers n.)



Chi-squared distribution

Example: A chi-squared random variable X ⇠ �2
(n) is a special

case of a Gamma random variable, Gamma(n/2, 1/2). Its PDF is

f (x) =
1

2n/2�(n/2)
xn/2�1e�x/2

for x > 0

The parameter n is called the “degrees of freedom”.

If X1, . . . ,Xn
IID⇠ N (0, 1), then

X 2
1 + . . .+ X 2

n ⇠ �2
(n)

(We’ll show this next class.)

These representations are more useful than the PDF.



Cumulative distribution functions

The distribution of X can also be specified by its cumulative
distribution function (CDF)

F (x) = P[X  x ]

Discrete: F (x) =
X

y : yx

f (y) Continuous: F (x) =

Z x

�1
f (y)dy

When X is continuous, the derivative of F (x) is the PDF f (x).



Quantile functions

By definition, the CDF F (x) is non-decreasing:

F (x)  F (y) for all x  y

If F : R ! (0, 1) is continuous and strictly increasing, then it has a

continuous inverse function F�1
: (0, 1) ! R, which satisfies

F (x) = t () F�1
(t) = x

F�1
is called the quantile function of X . For any t 2 (0, 1),

x = F�1
(t) is the tth quantile of the distribution of X , satisfying

P[X  x ] = t

F�1
(0.5) is the median, F�1

(0.25) and F�1
(0.75) are the first and

third quartiles.



Expectation

The expectation or mean of X is its “average value”.

If X is discrete with PMF f (x), then

E[X ] =

X

x2X
x · f (x)

If X is continuous with PDF f (x), then analogously,

E[X ] =

Z 1

�1
x · f (x)dx

More generally, for any function g : R ! R, the mean of g(X ) is

E[g(X )] =

X

x2X
g(x) · f (x) or E[g(X )] =

Z 1

�1
g(x) · f (x)dx



Poisson expectation

Example: Let X ⇠ Poisson(�).

E[X ] =



Gamma expectation

Example: Let X ⇠ Gamma(↵,�).

E[X ] =



Linearity of expectation

A very important property of expectation is that it is linear: For
any random variables X1, . . . ,Xn (not necessarily independent),

E[X1 + . . .+ Xn] = E[X1] + . . .+ E[Xn]

For any constant c 2 R,

E[cX ] = c E[X ]

Consequently, also

E[c1X1 + . . .+ cnXn] = c1E[X1] + . . .+ cnE[Xn]

Example: Let X ⇠ Binomial(n, p). Recalling X = X1 + . . .+ Xn

where Xi
IID⇠ Bernoulli(p), we may compute E[X ] as

E[X ] = E[X1] + . . .+ E[Xn] = np



Variance and standard deviation

The variance of X is defined by the two equivalent expressions

Var[X ] = E
⇥
(X � EX )

2
⇤
= E[X 2

]� (EX )
2

If X is centered such that EX = 0, then Var[X ] = E[X 2
].

Variance is translation-invariant: For any constant c 2 R,

Var[X + c] = Var[X ]

Also variance scales quadratically: For any constant c 2 R,

Var[cX ] = c2 Var[X ]

The standard deviation of X is
p
Var[X ], which is interpretable

on the scale of X rather than X 2
.



Variance of independent sums

If X1, . . . ,Xn are independent (or more generally, pairwise

uncorrelated), then

Var[X1 + . . .+ Xn] = Var[X1] + . . .+ Var[Xn]

Example: Let X ⇠ Binomial(n, p). Recalling X = X1 + . . .+ Xn

where Xi
IID⇠ Bernoulli(p),

Var[X ] = Var[X1] + . . .+ Var[Xn]

= (p � p2) + . . .+ (p � p2) = np(1� p)

If X1, . . . ,Xn are correlated, then this is not true. For example,

Var[X1 + X2] = Var[X1] + Var[X2] + 2Cov[X1,X2]

and we will see later a more general expression.



Chi-squared expectation and variance

Example: Let X ⇠ �2
(n). Recall that X = X 2

1 + . . .+ X 2
n where

X1, . . . ,Xn
IID⇠ N (0, 1).

E[X ] =

Var[X ] =



Joint distributions

The joint distribution of k random variables (X1, . . . ,Xk) may be

specified, in the discrete case, by the joint PMF

f (x1, . . . , xk) = P[X1 = x1, . . . ,Xk = xk ]

and in the continuous case, by the joint PDF f (x1, . . . , xk) which
satisfies, for any A ✓ Rk

,

P[(X1, . . . ,Xk) 2 A] =

Z
. . .

Z

A
f (x1, . . . , xk)dx1 . . . dxk .



Multinomial distribution

Example: The multinomial distribution generalizes the binomial to

k > 2 outcomes: For n total samples, each independently

belonging to outcomes 1, . . . , k with probabilities p1, . . . , pk , the
total number of samples for each outcome is

(X1, . . . ,Xk) ⇠ Multinomial

⇣
n, (p1, . . . , pk)

⌘

E.g., if we roll a standard six-sided die 100 times and (X1, . . . ,X6)

are the numbers of rolls 1 to 6, then

(X1, . . . ,X6) ⇠ Multinomial

⇣
100, (16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)

⌘
.

The joint PMF is

f (x1, . . . , xk) =

✓
n

x1, . . . , xk

◆
px11 px22 . . . pxkk

for all x1, . . . , xk � 0 such that x1 + . . .+ xk = n



Marginal distributions

Given a joint distribution of (X ,Y ), the marginal distribution of

X is its individual distribution ignoring Y .

If (X ,Y ) are discrete with joint PMF fXY (x , y), then the marginal

PMF of X is

fX (x) =
X

y2Y
fXY (x , y)

where the sum is over all possible values of Y.

If (X ,Y ) are continuous with joint PDF fXY (x , y), then the

marginal PDF of X is

fX (x) =

Z 1

�1
fXY (x , y)dy



Marginal distributions



Conditional distributions

Given a joint distribution of (X ,Y ), the conditional distribution
of Y given X = x is its distribution after observing X = x .

If (X ,Y ) are discrete with joint PMF fXY (x , y) and X has

marginal PMF fX (x), the conditional PMF of Y given X = x is

fY |X (y |x) = P[Y = y | X = x ] =
P[X = x ,Y = y ]

P[X = x ]
=

fXY (x , y)

fX (x)

If (X ,Y ) are continuous with joint PDF fXY (x , y) and X has

marginal PDF fX (x), the conditional PDF of Y given X = x is also

fY |X (y |x) =
fXY (x , y)

fX (x)



Conditional distributions



Independence of random variables

Random variables X1, . . . ,Xn are independent when their PMFs

or PDFs satisfy

f (x1, . . . , xn) = f (x1)⇥ . . .⇥ f (xn)

Thus their joint distribution is fully specified by the marginal

distributions of the individual variables X1, . . . ,Xn.

If X1, . . . ,Xn are independent, then for any A1, . . . ,An ✓ R,

P[X1 2 A1, . . . , Xn 2 An] = P[X1 2 A1]⇥ . . .⇥ P[Xn 2 An]

Furthermore, for any functions g1, . . . , gn : R ! R,

E[g1(X1) . . . gn(Xn)] = E[g1(X1)]⇥ . . .⇥ E[gn(Xn)].



Covariance

The covariance between two random variables X and Y is defined

by the two equivalent expressions

Cov[X ,Y ] = E [(X � EX )(Y � EY )] = E[XY ]� E[X ]E[Y ]

In particular, Cov[X ,X ] = Var[X ]. If X and Y are centered so that

EX = 0 and EY = 0, then Cov[X ,Y ] = E[XY ].

If X ,Y are independent, then E[XY ] = E[X ]E[Y ] so

Cov[X ,Y ] = 0

However, the converse is not true: Cov[X ,Y ] = 0 does not imply

that X ,Y are independent.



Bilinearity of covariance

Covariance is translation invariant: For any constants a, b 2 R,

Cov[X + a,Y + b] = Cov[X ,Y ]

Furthermore, covariance is bilinear: For any random variables

X1, . . . ,Xn and Y1, . . . ,Ym (not necessarily independent),

Cov[X1 + . . .+ Xn, Y1 + . . .+ Ym] =

nX

i=1

mX

j=1

Cov[Xi ,Yj ]

For any constants a, b 2 R, Cov[aX , bY ] = ab Cov[X ,Y ].

Consequently, also

Cov[a1X1+. . .+anXn, b1Y1+. . .+bmYm] =

nX

i=1

mX

j=1

aibj Cov[Xi ,Yj ]



Bilinearity of covariance

Example: This allows us to derive a general expression for

Var[X1 + . . .+ Xn] when X1, . . . ,Xn may be dependent:



Correlation

The correlation between (X ,Y ) is their covariance normalized by

the product of standard deviations:

corr(X ,Y ) =
Cov[X ,Y ]p

Var[X ]
p
Var[Y ]

Correlation is both translation and scale invariant: For any

a, b 2 R and c , d > 0,

corr(aX + b, cY + d) = corr(X ,Y )

The Cauchy-Schwarz inequality says that for any (X ,Y ),

Cov[X ,Y ]
2  Var[X ] Var[Y ]

Consequently, we always have corr(X ,Y ) 2 [�1, 1].


