
S&DS 242/542: Theory of Statistics
Lecture 3: Probability review II



Moment generating functions



Moment generating functions

Last lecture we reviewed two ways of describing the distribution of
a random variable:

I The probability mass function (PMF) or probability density
function (PDF)

I The cumulative distribution function (CDF)

Today we discuss a third way to describe this distribution: the
moment generating function (MGF).

For any random variable X (discrete or continuous), its MGF
MX (t) is defined for all t 2 R by

MX (t) = E[etX ]

Here MX (t) 2 (0,1]. Depending on the distribution of X , it is
possible that MX (t) = 1 for some values of t.



Poisson MGF

Example: Let X ⇠ Poisson(�) be a Poisson random variable.

MX (t) =



Standard normal MGF

Example: Let X ⇠ N (0, 1) be a standard normal random variable.

MX (t) =



General normal MGF

Example: Let X ⇠ N (µ,�2) be any normal random variable.
Then we may represent X = µ+ �Z where Z ⇠ N (0, 1).

MX (t) =



Gamma MGF

Example: Let X ⇠ Gamma(↵,�) be a Gamma random variable.

MX (t) =



The MGF encodes the moments of X

MX (t) is called the Moment Generating Function because its
Taylor expansion encodes the moments of X :
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Computing its derivatives:

M 0
X (t) = E[X ] + t E[X 2] +

t2
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Theorem
If MX (t) < 1 in an interval around t = 0, then M(k)

X (0) = E[X k ].



The MGF determines the distribution

Similarly to the PMF/PDF and CDF, the MGF also uniquely
characterizes the distribution of a random variable.

Theorem
Let X and Y be random variables such that MX (t) = MY (t) < 1
in an interval around t = 0. Then they have the same distribution.

Implication: We may derive the distribution of a statistic by
computing its MGF.

For sums of independent random variables X1, . . . ,Xn, this is
usually easier than computing the PDF or CDF, because

MX1+...+Xn(t) = E[et(X1+...+Xn)]

= E[etX1 ]⇥ . . .⇥ E[etXn ] = MX1(t)⇥ . . .⇥MXn(t)



Sum of IID Poisson variables

Example: Let X1, . . . ,Xn
IID⇠ Poisson(�). What is the distribution

of X1 + . . .+ Xn?



Mean of IID normal variables

Example: Let X1, . . . ,Xn
IID⇠ N (0, 1). What is the distribution of

the sample mean X̄ = X1+...+Xn
n ?



Sum of independent normal variables

Example: Let Xi ⇠ N (µi ,�2
i ) for i = 1, . . . , n be independent

normal random variables. For any constants a1, . . . , an 2 R, what
is the distribution of a1X1 + . . .+ anXn?



Derivation of �2
n distribution

Example: Let X1, . . . ,Xn
IID⇠ N (0, 1). Last lecture, we called the

distribution of X 2
1 + . . .+ X 2

n the chi-squared distribution �2
n,

and claimed this is a special case of the Gamma distribution. Why?



Derivation of �2
n distribution



The multivariate normal distribution



The multivariate normal distribution

The multivariate normal distribution in Rk is a joint distribution of
k continuous random variables (X1, . . . ,Xk), which generalizes the
normal distribution for a single variable k = 1.

It is parametrized by a mean vector µµµ 2 Rk and a symmetric
covariance matrix ⌃⌃⌃ 2 Rk⇥k , and we write the distribution as

(X1, . . . ,Xk) ⇠ N (µµµ,⌃⌃⌃)



The standard multivariate normal

An important example is the standard multivariate normal
distribution in Rk , which describes the joint distribution of

X1, . . . ,Xk
IID⇠ N (0, 1)

We denote the standard multivariate normal by

(X1, . . . ,Xk) ⇠ N (0, I)

with mean vector 0 2 Rk and identity covariance matrix I 2 Rk⇥k .

This distribution has joint PDF

f (x1, . . . , xk) =
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Symmetry of the standard multivariate normal

Observe that this joint PDF

f (x1, . . . , xk) =
1
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depends on x = (x1, . . . , xk) only via its length
q
x21 + . . .+ x2k .

Thus the standard multivariate normal distribution is symmetric
with respect to rotations/reflections about the origin!



Consequences of symmetry

Let X = (X1, . . . ,Xk) ⇠ N (0, I), and let a 2 Rk be any vector
having length 1. Then

a>X ⇠ N (0, 1)

because this distribution is the same as for (1, 0, . . . , 0)>X = X1.



Mean of IID normal variables

Example: Let X1, . . . ,Xn
IID⇠ N (0, 1). What is the distribution of

the sample mean X̄ = X1+...+Xn
n ?



Consequences of symmetry

Let X = (X1, . . . ,Xk) ⇠ N (0, I), and let a,b 2 Rk be any two
vectors having length 1 that are perpendicular to each other:

a>b = 0.

Then a>X and b>X are independent N (0, 1) random variables,
because their joint distribution is the same as that of (X1,X2).



Independence of mean and residuals

Example: Let X1, . . . ,Xn
IID⇠ N (0, 1). What is the joint distribution

of X̄ and X1 � X̄?


