S&DS 242/542: Theory of Statistics

Lecture 3: Probability review Il



Moment generating functions



Moment generating functions

Last lecture we reviewed two ways of describing the distribution of
a random variable:

» The probability mass function (PMF) or probability density
function (PDF)

» The cumulative distribution function (CDF)

Today we discuss a third way to describe this distribution: the
moment generating function (MGF).

For any random variable X (discrete or continuous), its MGF
Mx (t) is defined for all t € R by

Mx(t) = E[e¥]

Here Mx(t) € (0, 0c]. Depending on the distribution of X, it is
possible that Mx(t) = oo for some values of t.



Poisson MGF

Example: Let X ~ Poisson(\) be a Poisson random variable.

Mx(t) = IE[cex]

o A \x
5y
z e

x>0 x

C~

o9 X
s e L et et
N L —’7— “ 6 e < e

20 x !
e wﬂ—d
Z 25" MEF K Plssr())



Standard normal MGF

Example: Let X ~ A(0,1) be a standard normal random variable.

Mx(t) = ’E[e“(_]
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General normal MGF

Example: Let X ~ N (u,0?) be any normal random variable.
Then we may represent X = p + 0Z where Z ~ N(0,1).

Mx(t) = E[cexj
= ]E[efg,u*rz'?]
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Gamma MGF

Example: Let X ~ Gamma(a, ) be a Gamma random variable.
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The MGF encodes the moments of X

Mx(t) is called the Moment Generating Function because its
Taylor expansion encodes the moments of X:

(CINCI,

Mx(t) = E[eX] = E [1+tx+ o .

+]
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t
=1+t E[X] +— E[X?] += E[X’] +...
15t moment 2nd moment 3rd moment
Computing its derivatives:
M (t) = E[X] + t E[X?] + 5 E[X3] +... = M\(0) = E[X]

MY (t) = E[X?] + t E[X7] + 57 E[X“] ... = M%(0) = E[X?]

Theorem
If Mx(t) < oo in an interval around t = 0, then I\/I)(<k)(0) = E[X*].



The MGF determines the distribution

Similarly to the PMF/PDF and CDF, the MGF also uniquely
characterizes the distribution of a random variable.

Theorem
Let X and Y be random variables such that Mx(t) = My (t) < oo
in an interval around t = 0. Then they have the same distribution.

Implication: We may derive the distribution of a statistic by
computing its MGF.

For sums of independent random variables Xi, ..., X,, this is
usually easier than computing the PDF or CDF, because

Mx, 1.4+ x,(t) = E[et(Xat-+X)]

=E[e?™] x ... x E[e™] = My, (t) x ... x Mx,(t)



Sum of 11D Poisson variables

Example: Let Xi,..., X, 0 Poisson(A). What is the distribution
of X1+ ...+ X,,?
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Mean of IID normal variables

Example: Let Xi,..., X, ot N(0,1). What is the distribution of

the sample mean X = Xit=tXe?
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Sum of independent normal variables

Example: Let X; ~ N(u;,a?) for i=1,...,n be independent
normal random variables. For any constants aj,...,a, € R, what
is the distribution of a1 X1 + ...+ apX,?
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Derivation of 2 distribution

Example: Let Xi,..., X, 0 N(0,1). Last lecture, we called the
distribution of X? + ... 4 X2 the chi-squared distribution 2,
and claimed this is a special case of the Gamma distribution. Why?
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Derivation of 2 distribution
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The multivariate normal distribution



The multivariate normal distribution

The multivariate normal distribution in R¥ is a joint distribution of
k continuous random variables (Xi,..., Xk), which generalizes the
normal distribution for a single variable k = 1.

It is parametrized by a mean vector p € R and a symmetric
covariance matrix ¥ € R¥*k and we write the distribution as

(Xl,...,Xk) NN(#,X)



The standard multivariate normal

An important example is the standard multivariate normal
distribution in R*, which describes the joint distribution of

Xi, .., X 2 N(0,1)

We denote the standard multivariate normal by
(X1, Xk) ~N(0,1)

with mean vector 0 € R¥ and identity covariance matrix | € Rk*k,

This distribution has joint PDF

1 1
f(Xl, . ,Xk) = H e_%xfz — 7 e—%(Xf—‘r...—‘,—xf)



Symmetry of the standard multivariate normal

Observe that this joint PDF

1 —L(x X
f(x1,...,xk) = We 2 (< +xf)

depends on x = (x1, ..., xk) only via its length \/x? + ...+ x2.

Thus the standard multivariate normal distribution is symmetric
with respect to rotations/reflections about the origin!



Consequences of symmetry

Let X = (X1,..., Xk) ~N(0,1), and let a € R¥ be any vector
having length 1. Then

a' X ~N(0,1)

because this distribution is the same as for (1,0,...,0)" X = X;.
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Mean of IID normal variables

Example: Let X, ..., X, ot N(0,1). What is the distribution of
the sample mean X = Xit=tXe?
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Consequences of symmetry
Let X = (X1,...,Xx) ~ N(0,1), and let a,b € R¥ be any two
vectors having length 1 that are perpendicular to each other:
a'b=0.

Then a'X and b" X are independent N(0, 1) random variables,
because their joint distribution is the same as that of (X1, X2).




Independence of mean and residuals

Example: Let X1, ..., X, "2 A’(0,1). What is the joint distribution
of X and X7 — X7
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