
S&DS 242/542: Theory of Statistics
Lecture 4: Large-sample approximations, computer simulation



Sampling distributions of statistics

For data X1, . . . ,Xn, a statistic T (X1, . . . ,Xn) is any function of
the data. For example:

(sample mean) X̄ =
X1 + . . . + Xn

n

(sample variance) S2 =
(X1 � X̄ )2 + . . . + (Xn � X̄ )2

n � 1
(sample range) R = max(X1, . . . ,Xn) � min(X1, . . . ,Xn)

If the data X1, . . . ,Xn are random, then this randomness induces a
sampling distribution for the statistic.

If we understand the randomness of X1, . . . ,Xn, how can we
understand the sampling distribution of T (X1, . . . ,Xn)?



Example: Sample mean of normally-distributed data

Suppose X1, . . . ,Xn
IID⇠ N (µ, �2). What is the distribution of the

sample mean

X̄ =
X1 + . . . + Xn

n
?

We have

E[X̄ ] =
EX1 + . . . + EXn

n
= µ

Var[X̄ ] =
VarX1 + . . . + VarXn

n2
=

�2

n
.

From last lecture, any linear combination of independent normal
variables has a normal distribution. So

X̄ ⇠ N
⇣
µ,

�2

n

⌘



The need for approximation

For many (seemingly simple) statistics, its sampling distribution is
di�cult to describe exactly. For example:

1. Suppose X1, . . . ,Xn
IID⇠ Uniform(�1, 1). What is the

distribution of the sample mean X̄?

2. Suppose X1, . . . ,Xn
IID⇠ Bernoulli(12), the outcomes of n tosses

of a fair coin. What is the distribution of

T =
⇣
X̄ � 1

2

⌘2
?

If we compute T from n observed coin tosses and this is too
large compared with typical values from this distribution, then
we have evidence that the coin may not be fair. (This is the
idea of hypothesis testing, which we’ll discuss next class.)

For distributions that are di�cult to study exactly, we can try to
study them via computer simulation or large-sample approximation.



Sample mean of IID uniform

If we know the distribution of the data, then we can simulate the
distribution of any statistic computed from this data.

Here is a snippet of R code that simulates the distribution of the
sample mean X̄ of 100 uniform random variables

X1, . . . ,X100
IID⇠ Uniform(�1, 1):

sample.mean = numeric(10000)

for (i in 1:10000) {

X = runif(100, min=-1, max=1)

sample.mean[i] = mean(X)

}

hist(sample.mean)



Sample mean of IID uniform
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Is the coin fair?

Here is a snippet of R code that plots a histogram of the statistic

T =
⇣
X̄ � 1

2

⌘2

where X̄ is the fraction of heads in 500 tosses of a fair coin.

T = numeric(10000)

for (i in 1:10000) {

S = rbinom(1, size=500, prob=1/2)

T[i] = (S/500 - 1/2)^2

}

hist(T)



Is the coin fair?
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Approximating probabilities and expectations

Suppose we simulate b values T1, . . . ,Tb according to the
distribution of T . If we’re interested in P[T 2 A] for some set
A ✓ R, we may approximate

P[T 2 A] ⇡ # simulations i where Ti 2 A

b

If we’re instead interested in E[f (T )] for some function f : R ! R,
we may approximate

E[f (T )] ⇡ 1

b

bX

i=1

f (Ti ).

These approximations become more accurate as the number of
simulations b increases. These are the simplest examples of
Monte Carlo approximations.



Large-sample approximations

Oftentimes, a good approximation to the distribution of
T = T (X1, . . . ,Xn) emerges when the sample size n is large. We
call such results asymptotic or large-sample approximations.
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Large-sample approximations

Many statistical procedures (for example, tests of independence for
categorical data or confidence intervals for logistic regression) are
based on asymptotic approximations.

In the computer age, some of this need for asymptotic
approximations has been supplanted by the ease of simulation.

Here are two reasons why we still use asymptotic approximations:

1. It’s (much) faster to get an answer.

2. It’s useful to have theoretical understanding.
I What if the Xi ’s are not actually Uniform(�1, 1)? What if I

don’t really know the true distribution of the Xi ’s?
I What if n = 1000 instead of 100? n = 1,000,000 instead of

100? What n do I need so that my estimation error is < 1%?



(Weak) Law of Large Numbers

The large-sample approximations in this course will be based on
two fundamental results from probability theory: The (Weak) Law
of Large Numbers and the Central Limit Theorem.

Theorem (Weak Law of Large Numbers)

Suppose X1, . . . ,Xn are IID, with E[X1] = µ and Var[X1] < 1. Let

X̄ =
X1 + . . . + Xn

n

Then X̄ ! µ in probability, as n ! 1.

This means: For any fixed interval (µ � ", µ + ") around µ, where
" > 0 can be arbitrarily small (not depending on n), the probability
that X̄ belongs to (µ � ", µ + ") approaches 1 as n ! 1.



(Weak) Law of Large Numbers

Example
Let X1, . . . ,Xn

IID⇠ Bernoulli(12) represent n tosses of a fair coin,
where Xi = 1 for heads and Xi = 0 for tails. Then

X̄ =
X1 + . . . + Xn

n

is the fraction of heads among these n tosses.

Consider the interval (0.4, 0.6) around 0.5. For each value of n,
there is some probability that X̄ falls outside (0.4, 0.6). The LLN
guarantees that as n ! 1, this probability goes to 0, and the
probability that X̄ belongs to (0.4, 0.6) goes to 1.

The same guarantee holds for any fixed interval around 0.5:
(0.45, 0.55), (0.49, 0.51), . . .



(Weak) Law of Large Numbers

468 Introduction to Probability

Proof. Fix � > 0. By Chebyshev’s inequality,

P (|X̄n � µ| > �) � �2

n�2
.

As n ! 1, the right-hand side goes to 0, and so must the left-hand side. �

The law of large numbers is essential for simulations, statistics, and science. Consider
generating “data” from a large number of independent replications of an experiment,
performed either by computer simulation or in the real world. Every time we use
the average value in the replications of some quantity to approximate its theoretical
average, we are implicitly appealing to the LLN.

Example 10.2.3 (Running proportion of Heads). Let X1, X2, . . . be i.i.d. Bern(1/2).
Interpreting the Xj as indicators of Heads in a string of fair coin tosses, X̄n is the
proportion of Heads after n tosses. The SLLN says that with probability 1, when
the sequence of r.v.s X̄1, X̄2, X̄3, . . . crystallizes into a sequence of numbers, the se-
quence of numbers will converge to 1/2. Mathematically, there are bizarre outcomes
such as HHHHHH . . . and HHTHHTHHTHHT . . . , but collectively they have zero
probability of occurring. The WLLN says that for any � > 0, the probability of X̄n

being more than � away from 1/2 can be made as small as we like by letting n grow.

As an illustration, we simulated six sequences of fair coin tosses and, for each se-
quence, computed X̄n as a function of n. Of course, in real life we cannot simulate
infinitely many coin tosses, so we stopped after 300 tosses. Figure 10.2 plots X̄n as
a function of n for each sequence.
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FIGURE 10.2

Running proportion of Heads in 6 sequences of fair coin tosses. Dashed lines at 0.6
and 0.4 are plotted for reference. As the number of tosses increases, the proportion
of Heads approaches 1/2.

At the beginning, we can see that there is quite a bit of fluctuation in the running
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Central Limit Theorem

How close to µ should we expect X̄ to actually be? What is the
distribution of X̄ around µ?

Theorem (Central Limit Theorem)

Suppose X1, . . . ,Xn are IID, with E[X1] = µ and Var[X1] = �2.
Let X̄ = 1

n (X1 + . . . + Xn). Then

p
n

✓
X̄ � µ

�

◆
! N (0, 1)

in distribution, as n ! 1. Equivalently,

p
n (X̄ � µ) ! N (0, �2)

This means: For any fixed interval (a, b), the probability that
p
n( X̄�µ

� ) belongs to (a, b) approaches the probability that a
standard normal variable Z ⇠ N (0, 1) belongs to (a, b), as n ! 1.



Central Limit Theorem

More informally, when the sample size n is large:

I The distribution of
p
n( X̄�µ

� ) is approximately N (0, 1).

If we simulate the value of X̄ many times, the histogram of

the values
p
n( X̄�µ

� ) will be close in shape to the standard
normal bell curve.

I The distribution of X̄ is approximately N (µ, �2

n ).
This holds even when X1, . . . ,Xn are not normally distributed.

[Note: It’s formally not correct to say that

X̄ ! N (µ, �2

n )

as n ! 1, because this limit N (µ, �2

n ) depends on n. This is why

we write instead
p
n( X̄�µ

� ) ! N (0, 1) or
p
n(X̄ � µ) ! N (0, �2).]



The di↵erence is in the scaling

The LLN describes the behavior of X̄ on the “constant scale”,
saying that for any interval around µ of constant size (not
depending on n), X̄ belongs to this interval with high probability.
Here is a histogram of simulations of X̄ :
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The di↵erence is in scaling

The CLT describes the behavior of X̄ on the “ 1p
n
scale”, saying

that for an interval around µ whose length is on the order of 1p
n
,

the probability that X̄ belongs to this interval is approximately the
area under a normal bell curve. Here is the same histogram,
zoomed in to a smaller scale:
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Sample mean of IID uniform

Example
Let X1, . . . ,Xn

IID⇠ Uniform(�1, 1). We have E[X1] = 0, and

Var[X1] = E[X 2
1 ] =

Z 1

�1
x2 · 1

2
dx =

1

3
.

By the LLN,
X̄ ! E[X1] = 0

in probability as n ! 1.

By the CLT,

p
3n · X̄ ! N (0, 1) or

p
n · X̄ ! N (0, 1

3)

in distribution. More informally, the distribution of X̄ is
approximately N (0, 1

3n ) for large n.



Sample mean of IID uniform

Histogram of sample.mean
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The red curve corresponds to the PDF of N (0, 1
3n ), for n = 100.



Sample mean of IID uniform

Th CLT tells us that the distribution of X̄ is approximately
N

�
0, 1

3n

�
. How good is this approximation?

Here’s a comparison of CDF values, for sample size n = 10:1

Normal Approximation Exact
0.01 0.009
0.25 0.253
0.50 0.500
0.75 0.747
0.99 0.991

It’s already very close! In general, the accuracy depends on

I Sample size n

I Skewness of the distribution of the Xi ’s

I Heaviness of tails of the distribution of the Xi ’s

1Using www.math.uah.edu/stat/apps/SpecialCalculator.html



Central Limit Theorem

Example
Let’s continue the example X1, . . . ,Xn

IID⇠ Bernoulli(12). We have
E[X1] =

1
2 and Var[X1] =

1
4 . The CLT tells us that

p
4n · (X̄ � 1

2) ! N (0, 1) or
p
n · (X̄ � 1

2) ! N (0, 1
4)

in distribution. More informally, the distribution of X̄ is
approximately N (12 ,

1
4n ) for large n.



Is the coin fair?

Consider our previous example, the statistic

T =
⇣
X̄ � 1

2

⌘2
.

Since the distribution of X̄ � 1
2 is approximately normal, is the

distribution of T approximately the square of a normal?

Yes! This is guaranteed by the Continuous Mapping Theorem.

Theorem (Continuous Mapping)

Let g(x) be a continuous function of x . As n ! 1,

(a) If Tn ! Z in distribution, then g(Tn) ! g(Z ) in distribution.

(b) If Tn ! µ in probability, then g(Tn) ! g(µ) in probability.



Is the coin fair?

By the CLT, p
4n · (X̄ � 1

2) ! N (0, 1).

Then by the Continuous Mapping Theorem,

4n · (X̄ � 1
2)

2 ! �2
1.

Recall that �2
1 is the distribution of Z 2 when Z ⇠ N (0, 1).

More informally, for large n, we’ll say that the distribution of
(X̄ � 1

2)
2 is approximately 1

4n · �2
1.



Is the coin fair?
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The red curve corresponds to the PDF of 1
4n · �2

1, for n = 500.



The standard multivariate normal

Recall that the standard multivariate normal distribution in Rk

is the joint distribution of X1, . . . ,Xk
IID⇠ N (0, 1), with joint PDF

f (x1, . . . , xk) =
1

(2⇡)k/2
e�

1
2 (x

2
1+...+x2k )

This PDF is symmetric under rotations/reflections about the origin.



The general multivariate normal

For general mean vector µµµ 2 Rk and covariance matrix ⌃⌃⌃ 2 Rk⇥k ,
the multivariate normal distribution (X1, . . . ,Xk) ⇠ N (µµµ,⌃⌃⌃) is a
continuous distribution with joint PDF

f (x) =
1p

det(2⇡⌃⌃⌃)
e�

1
2 (x�µµµ)>⌃⌃⌃�1(x�µµµ) where x = (x1, . . . , xk)

I Each coordinate Xi has mean E[Xi ] = µi

I Each coordinate Xi has variance Var[Xi ] = ⌃ii

I Each coordinate pair Xi ,Xj has covariance Cov[Xi ,Xj ] = ⌃ij



Representation by standard multivariate normal

An alternative way to define the distribution X ⇠ N (µ, �2) is via
the representation X = µ + �Z where Z ⇠ N (0, 1). Analogously:

Theorem
If X ⇠ N (µµµ,⌃⌃⌃) is any multivariate normal vector in Rk , then

X = µµµ + VZ

for a standard multivariate normal vector Z 2 Rk and some matrix
V 2 Rk⇥k . This matrix V must satisfy ⌃⌃⌃ = VV>.

Conversely, if X = µµµ + VZ where µµµ,V are any fixed vector/matrix
and Z is a standard multivariate normal vector, then

X ⇠ N (µµµ,⌃⌃⌃) where ⌃⌃⌃ = VV>.

This gives an alternative definition of N (µµµ,⌃⌃⌃).



Individual coordinates and their linear combinations

Suppose X = (X1, . . . ,Xk) has a multivariate normal distribution.
Let a = (a1, . . . , ak) 2 Rk be any fixed vector. Then

a>X = a1X1 + . . . + akXk

has a normal distribution.

Proof:

In particular, coordinates of X have distributions Xi ⇠ N (µi ,⌃ii ).



Linear transformations

Suppose X has a multivariate normal distribution. Let a and B be
any fixed vector/matrix. Then

Y = a+ BX

also has a multivariate normal distribution.

Proof:



Multivariate LLN and CLT

The Law of Large Numbers and Central Limit Theorem extend to
a multivariate setting:

Let X 2 Rk be a random vector with mean µµµ 2 Rk and covariance
⌃⌃⌃ 2 Rk⇥k . This means

E[Xi ] = µi , Var[Xi ] = ⌃ii , Cov[Xi ,Xj ] = ⌃ij for all i 6= j .

Let X1, . . . ,Xn 2 Rk be IID random vectors with the same
distribution as X. Consider X̄ = 1

n (X1 + . . . + Xn) 2 Rk .

Theorem (LLN)

As n ! 1, X̄ converges in probability to µµµ.

Theorem (CLT)

As n ! 1,
p
n (X̄ � µµµ) converges in distribution to the

multivariate normal N (0,⌃⌃⌃).



Example of multivariate CLT

Example
Consider n people sampled independently (with replacement) from
a population. Let Xi be the height and Yi the weight of person i .
Note that Xi may be correlated with Yi , but the pairs (Xi ,Yi ) are
IID across di↵erent people i = 1, . . . , n.

Let X̄ = 1
n (X1 + . . . + Xn) and Ȳ = 1

n (Y1 + . . . + Yn) be their
average height and average weight.

If E[X1] = µX and E[Y1] = µY , then the LLN tells us that

✓
X̄
Ȳ

◆
! µµµ =

✓
µX

µY

◆
in probability, as n ! 1.

This means: For any fixed ball around (µX , µY ) in the plane, the
probability (X̄ , Ȳ ) belongs to this ball approaches 1, as n ! 1.



Multivariate generalizations

Example (Cont’d)

Suppose Var[X1] = �2
X , Var[Y1] = �2

Y , and Cov[X1,Y1] = ⇢�X�Y .
Here �X is the standard deviation of height, �Y is the standard
deviation of weight, and ⇢ is the correlation between height and
weight. Consider the mean vector and 2 ⇥ 2 covariance matrix

µµµ =

✓
µX

µY

◆
⌃⌃⌃ =

✓
�2
X ⇢�X�Y

⇢�X�Y �2
Y

◆

The CLT tells us that

p
n

✓✓
X̄
Ȳ

◆
� µµµ

◆
! N (0,⌃⌃⌃) in distribution, as n ! 1.

Informally: The distribution of (X̄ , Ȳ ) is approximately N (µµµ, 1
n ⌃⌃⌃).

Since height and weight are correlated, the average height X̄ and
average weight Ȳ remain correlated in this normal approximation.


