
S&DS 242/542: Theory of Statistics
Lecture 5: Null hypotheses, test statistics, and p-values



Testing a simple null hypothesis

Observed dataDistribution or model

Probability

Statistical inference

Today: Does my observed data come from a specified distribution?

Example: We roll a 6-sided die n times, and observe
1, 3, 1, 6, 4, 2, 5, 3, . . . Is this a fair die?



Example: Einstein’s theory of Brownian motion

Motion of a tiny (radius ⇡ 10�4 cm) particle suspended on the
surface of water:



Example: Einstein’s theory of Brownian motion

Albert Einstein (1905): Suppose the particle is at position Pt 2 R2

at time t. Then at time t +�t, its position Pt+�t is random, and
has a bivariate normal distribution around Pt . The change in
position Pt+�t � Pt is independent of the trajectory before time t.

Explanation: In the time period (t, t +�t), the particle is
bombarded by water molecules on all sides. Each time a water
molecule hits the particle, it moves the particle by a little bit, in a
random direction. These collisions are independent and the
number of collisions is very large, so their total e↵ect is bivariate
normal by the (multivariate) Central Limit Theorem.

In 1905, scientists were debating whether atoms and molecules
actually exist. Validation of Einstein’s theory was a big step
towards proving Dalton’s theory of the atom.



Example: Einstein’s theory of Brownian motion

More precisely, Einstein predicted:

Pt+�t � Pt ⇠ N
✓✓

0
0

◆
,

✓
�2 0
0 �2

◆◆

where

�2 =
RT

3⇡⌘rNA
(�t).

I R : ideal gas constant

I T : absolute temperature

I ⌘: viscosity of water

I r : radius of particle

I NA: Avogadro’s number



Example: Einstein’s theory of Brownian motion

Jean Perrin (1909): Measured the position of the particle every 30
seconds, to test Einstein’s theory. For his experiment, the variance
predicted by Einstein’s theory was �2 = 2.23⇥ 10�7 cm2.

Does Perrin’s data support Einstein’s theory of Brownian motion?



Null and alternative hypotheses

A hypothesis test is a binary question about the distribution of
the data.

Our goal is to either accept a null hypothesis H0 about this
distribution, or reject it in favor of an alternative hypothesis H1.

Today we’ll focus on the null hypothesis H0. We’ll think more
about the alternative hypothesis H1 in later lectures.



Null and alternative hypotheses

Example: Let (X1, . . . ,X6) be the numbers of 1’s through 6’s in n
rolls of a six-sided die. The hypothesis that the die is fair is the
null hypothesis

H0 : (X1, . . . ,X6) ⇠ Multinomial
�
n,
�
1
6 , . . . ,

1
6

��
.

We might wish to test this null hypothesis against the alternative
hypothesis that the die is not fair,

H1 : (X1, . . . ,X6) ⇠ Multinomial(n, (p1, . . . , p6))

for some probability vector (p1, . . . , p6) 6=
�
1
6 , . . . ,

1
6

�
.



Null and alternative hypotheses

Example: Let

(X1,Y1) = P1 � P0,

(X2,Y2) = P2 � P1,

...

(Xn,Yn) = Pn � Pn�1

be the displacements measured in Perrin’s experiment, where
P0,P1,P2 . . . 2 R2 are the positions (in cm) every 30 seconds.

Einstein’s theory is the null hypothesis

H0 : (X1,Y1), . . . , (Xn,Yn)
IID⇠ N

✓✓
0
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◆◆



Null and alternative hypotheses

There might be various alternative hypotheses that we are
interested in testing this against.

The theory is qualitatively correct, but the variance is wrong:

H1 : (X1,Y1), . . . , (Xn,Yn)
IID⇠ N

✓✓
0
0

◆
,

✓
�2 0
0 �2

◆◆

for some �2 6= 2.23e�7.

Or maybe the drift is not normal:

H1 : (X1,Y1), . . . , (Xn,Yn) are IID from a distribution

that is not bivariate normal

Or maybe these displacements are not independent, etc.



Which is the null and which is the alternative?

We will discuss the classical Neyman-Pearson paradigm for
hypothesis testing. In this approach, the null and alternative
hypotheses are not treated symmetrically.

The question we will ask is: Does the data provide su�ciently
strong evidence to reject H0, in favor of H1?

This means that the “default” assumption is that H0 is true. The
burden is on the investigator to convincingly demonstrate that H0

is false, not that it is true.



Which hypothesis should be the null?

Example: In clinical trials for drugs, typically

H0 : Drug has no treatment e↵ect

H1 : Drug has a treatment e↵ect

The burden is on the investigator to demonstrate, using data from
the clinical trial, that the drug is e↵ective.

Example: Does ESP (extrasensory perception) exist? Most studies
of this were conducted with

H0 : ESP does not exist

H1 : ESP exists

The burden is on the investigator to show that ESP exists.



Test statistics

A test statistic T is any statistic computed from the data, such
that an extreme value for T (too large, or too small, or either too
large or too small) provides evidence against H0, in favor of H1.

Example: Let (X1, . . . ,X6) count the results from n rolls of a
six-sided die. One possible test statistic is

T =

✓
X1

n
� 1

6

◆2

+ . . .+

✓
X6

n
� 1

6

◆2

.

Large values of T provide evidence against the null hypothesis that
the die is fair,

H0 : (X1, . . . ,X6) ⇠ Multinomial
�
n,
�
1
6 , . . . ,

1
6

��
.



Test statistics

Let’s conceptually separate the problem of hypothesis testing into
two questions:

1. How can we design good test statistics T?

2. How can we decide if H0 is true or false based on T?



Test statistics

Example: Let (X1,Y1), . . . , (Xn,Yn) be the displacements from
Perrin’s experiment. For testing

H0 : (X1,Y1), . . . , (Xn,Yn)
IID⇠ N

✓✓
0
0

◆
,

✓
2.23e�7 0

0 2.23e�7
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against the alternative �2 6= 2.23e�7, one idea for a test statistic is

R̄ =
1

n

⇣
X 2
1 + Y 2

1| {z }
=R1

+X 2
2 + Y 2

2| {z }
=R2

+ . . .+ X 2
n + Y 2

n| {z }
=Rn

⌘

Under Einstein’s theory, we should have

E[R̄] = E[X 2
i + Y 2

i ] = 4.46e�7.

Values of R̄ much larger or smaller than 4.46e�7 may indicate
that the predicted variance �2 = 2.23e�7 is wrong. However, this
statistic R̄ may not be able to detect departures from normality.



Test statistics from histograms

Let’s consider again the value Ri = X 2
i + Y 2

i . If Einstein’s theory
were correct, then this should be the sum-of-squares of two IID
normals, which has the distribution 2.23e�7 · �2

2. Instead of just
looking at the mean R̄ , we can plot a histogram of the values
R1, . . . ,Rn to assess goodness-of-fit to the �2-distribution.

Histogram of X^2+Y^2

X^2+Y^2

C
ou
nt

0.0e+00 5.0e−07 1.0e−06 1.5e−06

0
5

10
15



Test statistics from histograms

Deviations from this distribution are better visualized by a hanging

histogram. This plots Oi � Ei for each histogram bin, where Oi is
the observed count for bin i and Ei is the theoretical expected
count under the 2.23e�7 · �2

2 distribution:

Hanging histogram of X^2+Y^2
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We may compute from this a test statistic T =
P

i (Oi � Ei )2. If
T is too large, then this may indicate that R1, . . . ,Rn do not have
the distribution 2.23e�7 · �2

2, so Einstein’s theory may be wrong.



Test statistics from histograms

Hanging histogram of X^2+Y^2
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The bars of this hanging histogram are larger on the left and
smaller on the right. Should the bars on the left provide more
evidence against the hypothesized 2.23e�7 · �2

2 distribution?



Test statistics from histograms

Not necessarily: Let pi be total probability of bin i . If f (x) is the
PDF of 2.23e�7 · �2

2, then

pi =

Z

bin i
f (x)dx .

The observed count for bin i is Oi ⇠ Binomial(n, pi ), and the
expected count is Ei = npi = E[Oi ]. So

E[(Oi � Ei )
2] = Var[Oi ] = npi (1� pi ).

Thus (Oi � Ei ) is more variable if the bin probability pi is close to
1/2, and less variable if it is close to 0 or 1.

If pi for each individual bin is small, then Var[Oi ] ⇡ npi = Ei ,
which is smaller for bins with smaller expected counts Ei .



Test statistics from histograms

To balance contributions from low- and high-probability bins, we
can “stabilize the variance” by plotting Oi�Eip

Ei
, so that

E[(Oi�Eip
Ei

)2] ⇡ 1 for all bins. This is called a hanging chi-gram.
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The reweighted test statistic T =
P

i
(Oi�Ei )2

Ei
is called Pearson’s

chi-squared statistic for goodness of fit.



Test statistics from histograms

Alternatively, to stabilize the variance, we can plot
p
Oi �

p
Ei .

This is called Tukey’s hanging rootogram.

Hanging rootogram of X^2+Y^2

sq
rt(

ob
se

rv
ed

) −
 s

qr
t(e

xp
ec

te
d)

−1
.0

−0
.5

0.
0

0.
5

1.
0

Taylor expansion of
p
x around x = Ei yields

p
Oi �

p
Ei ⇡ Oi�Ei

2
p
Ei

so this is similar to the hanging chi-gram when Oi � Ei are small.

This motivates another test statistic T =
P

i (
p
Oi �

p
Ei )2.



Test statistics from QQ plots

A di↵erent visualization of goodness-of-fit is the QQ plot

(quantile-quantile plot). This plots the sorted values of
R1,R2, . . . ,Rn against the 1

n ,
2
n , . . . ,

n
n quantiles∗ of their

hypothesized distribution, 2.23e�7 · �2
2 in our case:
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Values far from the diagonal line y = x provide evidence against
the hypothesized distribution.
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Test statistics from QQ plots

How can we get a test statistic from a QQ plot? One idea is to
take the maximum vertical deviation from the y = x line.

Let R(1) < . . . < R(n) be the sorted values of R1, . . . ,Rn. Then this
maximum vertical deviation is

T =
n

max
i=1

����R(i) � F�1

✓
i

n

◆����

Here, F�1 is the quantile function of the hypothesized distribution
(the inverse function of its CDF), so F�1( in ) is its

i
n -quantile.

[Instead of taking the maximum deviation, one may also take the
average deviation, the sum-of-squared-deviations, etc.]



Test statistics from QQ plots
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The deviations are larger to the right of the QQ plot, where the
observed values are more spaced out. Should these points provide
more evidence against the 2.23e�7 · �2

2 distribution?

Not necessarily. The sorted values of Ri are closer together on the
left, so they are less variable.



Test statistics from QQ plots

We may stabilize the spacings between quantiles by considering
instead

T =
n

max
i=1

����F (R(i))�
i

n

���� .

This is the maximum vertical deviation of a QQ-plot of the sorted
values of F (R1),F (R2), . . . ,F (Rn) against the values 1
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2
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n
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This is the Kolmogorov-Smirnov statistic for goodness of fit.



Conducting the hypothesis test

The choice of test statistic depends on the null hypothesis we wish
to test, how we wish to summarize the evidence in our data, and
the alternative hypotheses we wish to test against.

We’ll see a few principles for choosing test statistics and some
more examples in later lectures.

1. How can we design good test statistics T?

2. How can we decide if H0 is true or false based on T?



The null distribution

We usually cannot assert with 100% confidence that H0 is false.
But we can compute T from our data, and compare this value
with the sampling distribution of T if H0 were true. This is called
the null distribution of T .

Example: Let X1, . . . ,Xn be IID normal variables. We wish to test

H0 : X1, . . . ,Xn
IID⇠ N (0, 1)

H1 : X1, . . . ,Xn
IID⇠ N (✓, 1) for some ✓ > 0

Consider the test statistic T =
p
n X̄ . If H0 were true, then

T ⇠ N (0, 1)

This is the null distribution of T .



The null distribution
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If we observe T = 0.5, this would not provide strong evidence
against H0 in favor of H1. In this case we might accept H0.



The null distribution
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If we observe T = 2.5, this would provide stronger evidence
against H0. In this case we might reject H0 in favor of H1.



Rejection and acceptance regions

For a test statistic T , we divide its possible values into a rejection

region and an acceptance region, for rejecting/accepting H0.
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In the previous example, large values of T provide evidence against
H0 in favor of H1, so we might define our rejection region as all
values greater than some threshold, as depicted in red.



Significance level and Type I error

The probability of Type I error is the probability that we wrongly
reject H0, when H0 is in fact true:

P[Type I error] = PH0 [reject H0]

We write PH0 to mean that this probability is computed under the
assumption that H0 is true, i.e. using the null distribution of T .

We may choose the rejection region for T to ensure that

P[Type I error]  ↵

for a specified significance level ↵ 2 (0, 1) of the test.



Signficance level and Type I error
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Here, the null distribution is N (0, 1). If we wish to perform the
test at significance level ↵, we may set the threshold of the
rejection region to be the “upper-↵ point” (i.e. the (1� ↵)th

quantile) of the N (0, 1) distribution.



p-values

Oftentimes, we do not want to fix a specific significance level. We
may instead ask the question: Would the test reject H0 at level
↵ = 0.01? At level ↵ = 0.05? At level ↵ = 0.1? ...
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p-values

The smallest signifance level at which we would reject H0 is called
the p-value for our test. This provides a quantitative measure of
the extent to which the data supports the null hypothesis.
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In this example, the p-value is PH0 [T � tobs], where tobs is our
observed value of the test statistic T . In other words, it is the
total probability that the null distribution assigns to values � tobs.



p-values
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If our alternative is H1 : ✓ < 0 and our test rejects H0 for small
values of T , then the p-value is PH0 [T  tobs], the total probability
that the null distribution assigns to values  tobs.



p-values
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If our alternative is H1 : ✓ 6= 0 and we perform a “two-sided” test
that rejects H0 for large values of |T |, then the p-value is
PH0 [|T | � |tobs|], the total probability that the null distribution
assigns to both values � |tobs| and  �|tobs|.



Determining the null distribution

To determine the rejection region for a test statistic T at a given
significance level, or to compute its p-value, we must know its null
distribution — what typical values of T look like if H0 were true.

I Sometimes we can derive the null distribution exactly. In the
previous example, the null distribution was N (0, 1).

I Sometimes we can derive a large-sample approximation, using
the LLN, CLT, and tools that we discussed last lecture.

I Sometimes we can approximate the null distribution by
simulation.



Simulated null distribution for Perrin’s data

Let T be the previously discussed Pearson’s chi-squared statistic
for goodness-of-fit (computed from 6 histogram bins), on the
values R1, . . . ,Rn from Perrin’s experiments.
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This is the null distribution of T obtained from 1000 simulations of
particle paths that follow Einstein’s theory of Brownian motion.
The observed value tobs = 2.83 for Perrin’s actual data is in red.



p-value for Perrin’s data

The p-value is the right tail probability P = PH0 [T � 2.83].

In our simulations, 75.4% of simulated values for T were larger
than tobs = 2.83, so we may approximate P ⇡ 0.754. This
indicates little evidence against Einstein’s theory.

[In this example of Pearson’s chi-squared test, there is in fact a
large-sample �2-approximation to the null distribution of T . This
is usually used instead of simulation to assess statistical
significance and compute a p-value.]


