
S&DS 242/542: Theory of Statistics
Lecture 7: Nonparametric tests, permutation tests



Two-sample tests



Two-sample tests

Given two independent data samples

X1, . . . ,Xn and Y1, . . . ,Ym

are their distributions di↵erent? Is one distribution “larger than”
the other?



Two-sample z-test

Suppose

X1, . . . ,Xn

IID⇠ N (µX ,�
2), Y1, . . . ,Ym

IID⇠ N (µY ,�
2)

The two samples are assumed independent, with a common
variance �2 > 0. We wish to test

H0 : µX = µY vs. H1 : µX > µY

Assuming that �2 is known, the two-sample z-statistic is
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under H0, X̄ � Ȳ ⇠ N (0,�2( 1
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)), so Z ⇠ N (0, 1).

The two-sample z-test at level-↵ rejects H0 when Z > z
(↵).



Two-sample t-test

When �2 is unknown, we may estimate it by the pooled sample
variance
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This estimate is reasonable assuming that the Xi ’s and Yj ’s have
the same variance.

The two-sample t-statistic is
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X̄ � Ȳ
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and a test of H0 based on T is called a two-sample t-test.



Distribution of the pooled sample variance

Theorem
If X1, . . . ,Xn

IID⇠ N (µX ,�2) and Y1, . . . ,Ym

IID⇠ N (µY ,�2) are
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Proof:



Two-sample t-test

The two-sample t-statistic may be written as

T =
X̄ � Ȳ
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Under H0, Z ⇠ N (0, 1), U ⇠ 1
m+n�2 · �2

m+n�2, and these are
independent. So by definition of the t-distribution,

T ⇠ tm+n�2

The two-sample t-test at significance level ↵ would reject H0 when

T > t
(↵)
m+n�2, the upper-↵ point of the tm+n�2 distribution.

Note that T has the same distribution for any �2 > 0 and also any
µX = µY , so it is pivotal under H0.



Welch’s t-test
If instead

X1, . . . ,Xn

IID⇠ N (µX ,�
2
X
), Y1, . . . ,Ym

IID⇠ N (µY ,�
2
Y
)

with di↵erent variances �2
X
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Y
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We may estimate this variance by
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individual sample variances, and test H0 using Welch’s t-statistic
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This is called Welch’s ttt-test or the unequal variances ttt-test.
Welch showed that the null distribution of Twelch is approximately
(but not exactly) a t-distribution with degrees-of-freedom
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Robustness in large samples

The reason why the t-test is widely used is not because our data
are usually normally distributed. Instead, as long as each sample is
IID with mean 0 and (finite) variance �2:

I The z-statistic

Z = X̄ � Ȳ

.
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converges in distribution to N (0, 1) as m, n ! 1, by the CLT.

I The pooled variance S
2
pooled ! �2 in probability.

I Then also the t-statistic

T = Z

.q
S2
pooled/�

2

converges in distribution to N (0, 1). [This is formalized by a
result known as Slutsky’s Lemma.]

Thus a level-↵ t-test will have Type I error probability ⇡ ↵ when
m, n are large, even when the data are not normally distributed.



Robustness in small samples?
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Sample sizes: control m = 30, experiment n 2 {2, 5, 10, 30}



Wilcoxon rank-sum statistic

The Wilcoxon (a.k.a. Mann-Whitney) rank-sum test is a
two-sample test that is valid for non-normally-distributed data:

1. Sort the pooled sample X1, . . . ,Xn,Y1, . . . ,Ym, and assign the
smallest a rank of 1, the next smallest a rank of 2, etc., and
the largest a rank of m + n.1

2. The test statistic T is the sum of ranks of the values
Y1, . . . ,Ym of the second sample.

Example: Consider sample sizes m = n = 2,

(X1,X2) = (1.8,�0.5), (Y1,Y2) = (0.4,�2.3)

In sorted order, the pooled observations and their ranks are

Observation Y2 X2 Y1 X1

Rank 1 2 3 4

So the rank-sum statistic is T = 1 + 3 = 4.
1For simplicity, let us assume that there are no ties in the data values.



Null hypothesis of the rank-sum test

If X1, . . . ,Xn

IID⇠ F and Y1, . . . ,Ym

IID⇠ G for two continuous
distributions F and G , this tests the nonparametric null hypothesis

H0 : F = G

Under H0, each permutation of the ranks 1, 2, . . . ,m + n is equally
likely for X1, . . . ,Xn,Y1, . . . ,Ym, e.g. for m = n = 2:

Ranks of X1,X2,Y1,Y2 Value of T Probability
1, 2, 3, 4 7 1

4!
1, 2, 4, 3 7 1

4!
1, 3, 2, 4 6 1

4!
...

...
...

4, 3, 2, 1 3 1
4!

This gives the null distribution of T , and T is pivotal under H0.



Wilcoxon rank-sum test

Theorem
Let T be the rank-sum statistic. Under H0,

E[T ] =
m(m + n + 1)

2
, Var[T ] =

mn(m + n + 1)

12
.

We may compute/approximate the null distribution of T by:

I Exhaustive enumeration of all permutations, if m, n are small.

I Applying a normal approximation if m, n are large:

T ⇠ N
⇣
m(m+n+1)

2 , mn(m+n+1)
12

⌘

I Simulating permutations of 1, 2, . . . ,m + n uniformly at
random, and computing T for these simulations.

Testing against a one-sided alternative H1 that the Xi ’s “tend to
be larger” than the Yj ’s, the ranks of the Yj ’s should be smaller
under H1, so we would reject H0 : F = G for small values of T .



Type I error probabilities in small samples
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Statistical power

The power of a test is its ability to successfully distinguish an
alternative H1 from the null H0. It is defined as

Power = PH1 [reject H0]

where PH1 means that this probability is computed assuming the
alternative hypothesis is true.

[The complement of power is the probability of Type II error, i.e.
the probability that we do not reject H0 when H1 is in fact true:

P[Type II error] = 1� Power = PH1 [accept H0]

We will stick to thinking about power instead of Type II error.]



Simulated power under the normal model
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Sample sizes m = n = 8



Permutation testing



A second view of the rank-sum test

Consider two independent samples

X1, . . . ,Xn

IID⇠ F , Y1, . . . ,Ym

IID⇠ G

and the problem of testing equality of distribution

H0 : F = G

Another way to understand the rank-sum test is: Let

{Z1, . . . ,Zm+n} = {X1, . . . ,Xn,Y1, . . . ,Ym}

denote the set of all observations, discarding their ordering.2 Under
H0, given only {Z1, . . . ,Zm+n}, each of the (m + n)! assignments
of these values to X1, . . . ,Xn,Y1, . . . ,Ym is equally probable.

So each assignment of ranks to Y1, . . . ,Ym is also equally probable.

2Again let us assume that there are no ties in the data values.



The permutation null distribution

For the same testing problem, consider any test statistic
T (X1, . . . ,Xn,Y1, . . . ,Ym), not necessarily the rank-sum.

The permutation null distribution of T is the distribution of

T (X ⇤
1 , . . . ,X

⇤
n ,Y

⇤
1 , . . . ,Y

⇤
m)

when we fix the set of values

{Z1, . . . ,Zm+n} = {X1, . . . ,Xn,Y1, . . . ,Ym}

and let X ⇤
1 , . . . ,X

⇤
n ,Y

⇤
1 , . . . ,Y

⇤
m be a permutation of these values

chosen uniformly at random.

Equivalently, it is the conditional distribution of T under H0 given
the pooled sample {Z1, . . . ,Zm+n}.



The permutation null distribution

Example: Consider data X1, . . . ,Xn and Y1, . . . ,Ym, and the
t-statistic

T = X̄ � Ȳ
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The permutation test

Suppose large values of T provide evidence against H0 in favor of
an alternative H1.

A level-↵ permutation test based on T rejects H0 if the observed
value of T exceeds the upper-↵ point of its permutation null
distribution.

This ensures the conditional Type I error guarantee

P[ Type I error | {Z1, . . . ,Zm+n} ]  ↵

for any possible observed values of {Z1, . . . ,Zm+n}.

Hence, averaging over all possible values of {Z1, . . . ,Zm+n}, this
also ensures P[Type I error]  ↵ unconditionally.



The permutation test

Example: Suppose H1 specifies that the mean of F (distribution of
Xi ’s) is larger than the mean of G (distribution of Yj ’s). A level-↵
permutation test of H0 vs. H1 based on the t-statistic

T = X̄ � Ȳ
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would reject H0 when T exceeds the upper-↵ point of the
distribution of
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over random permutations X ⇤
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⇤
n ,Y

⇤
1 , . . . ,Y
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m of the data.

We may simulate this permutation null distribution by computing
T on randomly generated permutations of the data, and compare
T for the original (unpermuted) data with these simulated values.



Advantages of permutation testing

Why might we compare T to its permutation null distribution,
rather than its actual (unconditional) null distribution under H0?

I The permutation null distribution does not rely on parametric
modeling assumptions, and is robust to misspecifications of
the data model.

I Permutation testing is easy to apply for test statistics T
where we may not know its theoretical null distribution.

I We do not need T to be pivotal under H0: Even if T has
di↵erent sampling distributions for di↵erent data distributions
F = G , its conditional distribution given {Z1, . . . ,Zm+n} no
longer depends on the data distribution, and is always given by
uniform sampling of a permutation of these observed values.



Robustness of the permutation t-test
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Power of the permutation t-test
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Two-sample testing in higher dimensions

Suppose

X1, . . . ,Xn

IID⇠ F , Y1, . . . ,Ym

IID⇠ G

are data in a general metric space, e.g. images or documents
represented in a feature space Rp. We wish to test

H0 : F = G vs. H1 : F 6= G

There may not be a reasonable notion of “ordering” or “rank” for
the data. Instead, many test statistics have been proposed:

I Compute the average distances dXY = 1
nm

P
i ,j d(Xi ,Yj),

dXX = 1
(n2)

P
i<i 0 d(Xi ,Xi 0), dYY = 1

(m2)
P

j<j 0 d(Yj ,Yj 0). Set

T = 2dXY � dXX � dYY



Two-sample testing in higher dimensions

I For each observation Xi and Yj , count how many of its k
nearest neighbors come from the same sample as itself. Take

T = average of this count across all m + n observations

I Construct a minimal spanning tree of

{X1, . . . ,Xn,Y1, . . . ,Ym}

(This is the tree connecting all m + n observations and having
smallest total edge length.) Delete those edges whose
endpoints do not belong to the same sample. Take

T = number of remaining connected components

These statistics have complex distributions, and also may not be
exactly pivotal under H0, but one may use them to test H0 in a
permutation testing framework.


