
S&DS 242/542: Theory of Statistics
Lecture 8: Statistical power and the Neyman-Pearson lemma



Midterm exam logistics

Our midterm exam will take place on

Monday Feb 24, 7-9PM, YSB Marsh Auditorium

I It is a closed-book exam. You are allowed to bring 1 page of
notes (front-and-back, standard letter or A4 size paper).

I The exam will cover material up to the end of lecture on Wed
Feb 19, with a focus on Units 0 and 1 of our course.

If you have a conflict with the exam time or need alternative exam
arrangements, please email our course manager Bella Bao:

bella.bao@yale.edu
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Type I error and power

For testing a null hypothesis H0 against an alternative H1, recall

P[Type I error] = PH0 [reject H0]

A test with significance level ↵ guarantees that

P[Type I error]  ↵

Among several di↵erent level-↵ tests of the same hypotheses, we
may prefer the test that maximizes

Power = PH1 [reject H0]

Q: Given two arbitrary hypotheses H0 and H1, is there an optimal
test that maximizes power, among all possible level-↵ tests?
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Simple and composite hypotheses

We will see that the answer to this question is generally “yes” if
both hypotheses H0 and H1 are simple.

H0 or H1 is simple if it describes a single distribution for the data
— there are no unknown parameters or other missing information
about the distribution. Otherwise, the hypothesis is composite.

A simple hypothesis provides all the information that would be
needed to simulate the data. A composite hypothesis requires
some further specification of the data distribution in order to
perform a simulation.
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Simple and composite hypotheses

Example: The null and alternative hypotheses

H0 : X1, . . . ,Xn

IID⇠ N (0, 1)

H1 : X1, . . . ,Xn

IID⇠ N (1, 1)

are both simple. The null hypotheses

H0 : X1, . . . ,Xn

IID⇠ N (0,�2) for some (unknown) �2 > 0

H0 : X1, . . . ,Xn are IID from a distribution with mean 0

are both composite. The alternative hypothesis

H1 : X1, . . . ,Xn

IID⇠ N (µ, 1) for some (unknown) µ > 0

is also composite.
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A simple vs. simple testing example

We observe a single value X 2 {1, . . . , 5}, sampled from one of
two discrete distributions:

x 1 2 3 4 5
f0(x) 0.2 0.2 0.2 0.2 0.2
f1(x) 0.0 0.1 0.2 0.3 0.4

We wish to test

H0 : X ⇠ f0 vs. H1 : X ⇠ f1

at the significance level ↵ = 0.4. What is the test based on the
observation X that would maximize power against H1?
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A simple vs. simple testing example

x 1 2 3 4 5
f0(x) 0.2 0.2 0.2 0.2 0.2
f1(x) 0.0 0.1 0.2 0.3 0.4

To ensure
P[Type I error]  ↵ = 0.4

we are allowed to reject H0 for two possible values of X , because
each value has probability 0.2 under H0.

To maximize the power against H1, we want to pick the two values
that have maximum probability under H1: These are 4 and 5. So
the most powerful test at level ↵ = 0.4 would reject H0 if
X 2 {4, 5} and accept H0 if X 2 {1, 2, 3}.
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Testing as constrained optimization

When designing an optimal test of H0 vs. H1, we have the
following goal:

maximize: power of the test against H1

subject to: probability of Type I error under H0 is  ↵

This is a constrained optimization problem.

Suppose we observe random data X = (X1, . . . ,Xn), taking
possible values denoted x = (x1, . . . , xn). To define a test, we must
decide, for each possible value x, whether to accept or reject H0 if
we observe X = x.

I.e., we must define the set of values x that belong to the
acceptance and rejection regions of the test.
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The likelihood ratio test

Suppose the distribution of X is discrete, and the hypotheses are

H0 : X is distributed with (joint) PMF f0(x)

H1 : X is distributed with (joint) PMF f1(x)

Which values x should we include in the rejection region?

Intuition suggests to reject H0 for those points x with largest
values of

f1(x)
f0(x)

because these give the “largest increase in power per unit increase
of Type I error”. Alternatively, these provide the “strongest
evidence” in favor of H1 over H0.
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The likelihood ratio test

The case of continuous X is similar: Suppose the hypotheses are

H0 : X is distributed with (joint) PDF f0(x)

H1 : X is distributed with (joint) PDF f1(x)

Intuition suggests to reject H0 for those points x with largest
values of

f1(x)
f0(x)

In both the discrete and continuous settings, the test statistic

L(X) =
f1(X)
f0(X)

is called the likelihood ratio statistic. The test that rejects H0 in
favor of H1 for large T (X) is the likelihood ratio test.
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The Neyman-Pearson lemma

For testing a simple null hypothesis versus a simple alternative, the
Neyman-Pearson lemma guarantees that the likelihood ratio test is
the most powerful test.

Theorem (Neyman-Pearson lemma)

Let H0 and H1 be simple hypotheses, and fix a significance level

↵ 2 (0, 1). Suppose there exists a value c > 0 such that the

likelihood ratio test which

(
rejects H0 if L(X) > c

accepts H0 if L(X)  c

has Type I error probability exactly equal to ↵.

Then for any other test with probability of Type I error  ↵, its
power against H1 is at most the power of this likelihood ratio test.
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Proof of the Neyman-Pearson lemma

Consider the discrete case. Let

R = {x : L(x) > c} = {x : f1(x) > cf0(x)}

be the rejection region of the likelihood ratio test.

Among all possible rejection regions, this set R maximizes

X

x2R
(f1(x)� cf0(x))

because f1(x)� cf0(x) > 0 for x 2 R and f1(x)� cf0(x)  0 for
x /2 R. Then for any test, say with rejection region R0,

X

x2R
(f1(x)� cf0(x)) �

X

x2R0

(f1(x)� cf0(x)) .
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Proof of the Neyman-Pearson lemma

Rearranging this inequality,

X

x2R
f1(x)�

X

x2R0

f1(x)

| {z }
di↵erence in power

� c

 
X

x2R
f0(x)�

X

x2R0

f0(x)

!

| {z }
di↵erence in probability of Type I error

If the likelihood ratio test (with rejection region R) has Type I
error probability ↵, and the other test (with rejection region R0)
has Type I error probability  ↵, then

di↵erence in probability of Type I error � 0

So this implies
di↵erence in power � 0

i.e. power of likelihood ratio test � power of the other test. The
continuous case is the same, with all sums replaced by integrals.
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Testing a normal mean

Example: Consider data X = (X1, . . . ,Xn), and a test of

H0 : X1, . . . ,Xn

IID⇠ N (0, 1)

H1 : X1, . . . ,Xn

IID⇠ N (µ, 1)

Assume that µ > 0 is a known and pre-specified value, so both H0

and H1 are simple hypotheses. Let’s derive the form of L(X):
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Testing a normal mean
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Testing a normal mean

The Neyman-Pearson lemma ensures that the most powerful test is
the test which rejects H0 when L(X) > c , where c is chosen so that

P[Type I error] = PH0 [L(X) > c] = ↵

Thus c is the upper-↵ point of the distribution of L(X) under H0.

Observe that, for µ > 0, the statistic

L(X) = e
µ(X1+...+Xn)� nµ2

2

depends on X only via the sample mean X̄ = 1
n
(X1 + . . .+ Xn).

Furthermore, L(X) is an increasing function of X̄ .
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Testing a normal mean

Because L(X) is increasing in X̄ , the rejection event

L(X) > upper-↵ point of the null distribution of L(X)

is exactly the same as the rejection event

p
n X̄ > upper-↵ point of the null distribution of

p
n X̄

Under H0, recall Z =
p
n X̄ ⇠ N (0, 1), with upper-↵ point z(↵).

Thus the Neyman-Pearson lemma implies that the most powerful
test is exactly the z-test, which rejects H0 when Z > z

(↵).
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Testing a normal mean

I The form of this most powerful test is the same against any
simple alternative with known and pre-specified mean µ > 0.
Thus this z-test is uniformly most powerful against the
compositive alternative H1 : µ > 0 when µ is unknown.

I If we specify an alternative µ < 0, then

L(X) = e
µ(X1+...+Xn)� nµ2

2 is decreasing in X̄ . So

L(X) > upper-↵ point of the null distribution of L(X)

m
p
n X̄ < lower-↵ point of the null distribution of

p
n X̄

The most powerful test would reject H0 for small values of Z .

I There is no single test that is uniformly most powerful against
both positive and negative alternatives, because the most
powerful test in each case rejects H0 for di↵erent values of Z .
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Testing if a coin is fair

Example: Let X1, . . . ,Xn 2 {0, 1}, and consider testing

H0 : X1, . . . ,Xn

IID⇠ Bernoulli
�
1
2

�

H1 : X1, . . . ,Xn

IID⇠ Bernoulli(p).

Assume p > 1
2 is a known and pre-specified value, so both

hypotheses are simple. Let’s derive the form of L(X):
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Testing if a coin is fair

The Neyman-Pearson lemma ensures that the most powerful test is
the test which rejects H0 when L(X) > c , where c is chosen so that

P[Type I error] = PH0 [L(X) > c] = ↵

Thus c is the upper-↵ point of the distribution of L(X) under H0.
Here, for any fixed p > 1

2 ,

L(X) = 2n(1� p)n( p

1�p
)X1+...+Xn

is increasing in S = X1 + . . .+ Xn. Under H0, S ⇠ Binomial(n, 12).
So equivalently, the most powerful test rejects H0 when

S > b
(↵)
n the “upper-↵ point” of Binomial(n, 12)
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Test statistics with discrete distributions

In this case, both S = X1 + . . .+ Xn and L(X) have discrete null
distributions. There may not exist a value of c for which

PH0 [L(X) > c] = ↵

exactly, i.e. there may not exist a value b
(↵)
n for which

PH0 [S > b
(↵)
n ] = ↵

Example: Suppose n = 20. For S ⇠ Binomial(20, 12), we have
P[S > 14] = 0.021 and P[S > 13] = 0.058. We cannot perform
this test to attain Type I error probability exactly ↵ = 0.05.

A level-↵ test would be conservative and reject H0 when S > 14.
The Neyman-Pearson lemma would not guarantee that this is most
powerful, although we would usually go with this test in practice.
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Beyond the Neyman-Pearson lemma

If there is a single test that maximizes power, why do we still have
so many di↵erent testing procedures?

I Alternative hypotheses H1 in practice are oftentimes not
simple, and we may wish to balance power against di↵erent
types of alternatives.

I Null hypotheses H0 in practice are sometimes not simple, and
we may wish to restrict to test statistics that are pivotal under
broad specifications of H0.

I We may be unsure about a specific data model for H0 and
prefer to sacrifice some power to achieve greater robustness
against misspecification of the null model.
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