S&DS 242/542: Theory of Statistics Lecture 8: Statistical power and the Neyman-Pearson lemma

Midterm exam logistics

Our midterm exam will take place on

Monday Feb 24, 7-9PM, YSB Marsh Auditorium

- It is a closed-book exam. You are allowed to bring 1 page of notes (front-and-back, standard letter or A4 size paper).
- The exam will cover material up to the end of lecture on Wed Feb 19, with a focus on Units 0 and 1 of our course.

If you have a conflict with the exam time or need alternative exam arrangements, please email our course manager Bella Bao:

bella.bao@yale.edu

Type I error and power

For testing a null hypothesis H_0 against an alternative H_1 , recall

 $\mathbb{P}[\mathsf{Type} \ \mathsf{I} \ \mathsf{error}] = \mathbb{P}_{H_0}[\mathsf{reject} \ H_0]$

A test with significance level $\boldsymbol{\alpha}$ guarantees that

 $\mathbb{P}[\mathsf{Type} \ \mathsf{I} \ \mathsf{error}] \leq \alpha$

Among several different level- α tests of the same hypotheses, we may prefer the test that maximizes

Power = \mathbb{P}_{H_1} [reject H_0]

Q: Given two arbitrary hypotheses H_0 and H_1 , is there an optimal test that maximizes power, among all possible level- α tests?

Simple and composite hypotheses

We will see that the answer to this question is generally "yes" if both hypotheses H_0 and H_1 are simple.

 H_0 or H_1 is **simple** if it describes a *single* distribution for the data — there are no unknown parameters or other missing information about the distribution. Otherwise, the hypothesis is **composite**.

A simple hypothesis provides all the information that would be needed to *simulate* the data. A composite hypothesis requires some further specification of the data distribution in order to perform a simulation.

Simple and composite hypotheses

Example: The null and alternative hypotheses

$$H_0: X_1, \dots, X_n \stackrel{IID}{\sim} \mathcal{N}(0, 1)$$
$$H_1: X_1, \dots, X_n \stackrel{IID}{\sim} \mathcal{N}(1, 1)$$

are both simple. The null hypotheses

$$H_0: X_1, \ldots, X_n \stackrel{IID}{\sim} \mathcal{N}(0, \sigma^2)$$
 for some (unknown) $\sigma^2 > 0$
 $H_0: X_1, \ldots, X_n$ are IID from a distribution with mean 0

are both composite. The alternative hypothesis

$$H_1: X_1, \ldots, X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, 1)$$
 for some (unknown) $\mu > 0$

is also composite.

A simple vs. simple testing example

We observe a single value $X \in \{1, ..., 5\}$, sampled from one of two discrete distributions:

	1				
$f_0(x)$	0.2	0.2	0.2	0.2	0.2
$f_1(x)$	0.0	0.1	0.2	0.3	0.4

We wish to test

$$H_0: X \sim f_0$$
 vs. $H_1: X \sim f_1$

at the significance level $\alpha = 0.4$. What is the test based on the observation X that would maximize power against H_1 ?

A simple vs. simple testing example

	1				
$f_0(x)$	0.2	0.2	0.2	0.2	0.2
$\frac{f_0(x)}{f_1(x)}$	0.0	0.1	0.2	0.3	0.4

To ensure

 $\mathbb{P}[\mathsf{Type~I~error}] \leq \alpha = \mathsf{0.4}$

we are allowed to reject H_0 for two possible values of X, because each value has probability 0.2 under H_0 .

To maximize the power against H_1 , we want to pick the two values that have maximum probability under H_1 : These are 4 and 5. So the most powerful test at level $\alpha = 0.4$ would reject H_0 if $X \in \{4, 5\}$ and accept H_0 if $X \in \{1, 2, 3\}$.

Testing as constrained optimization

When designing an optimal test of H_0 vs. H_1 , we have the following goal:

maximize: power of the test against H_1 subject to: probability of Type I error under H_0 is $\leq \alpha$

This is a constrained optimization problem.

Suppose we observe random data $\mathbf{X} = (X_1, \dots, X_n)$, taking possible values denoted $\mathbf{x} = (x_1, \dots, x_n)$. To define a test, we must decide, for each possible value \mathbf{x} , whether to accept or reject H_0 if we observe $\mathbf{X} = \mathbf{x}$.

I.e., we must define the set of values \mathbf{x} that belong to the *acceptance* and *rejection* regions of the test.

The likelihood ratio test

Suppose the distribution of \boldsymbol{X} is discrete, and the hypotheses are

 H_0 : **X** is distributed with (joint) PMF $f_0(\mathbf{x})$ H_1 : **X** is distributed with (joint) PMF $f_1(\mathbf{x})$

Which values \mathbf{x} should we include in the rejection region?

Intuition suggests to reject H_0 for those points **x** with largest values of

$$\frac{f_1(\mathbf{x})}{f_0(\mathbf{x})}$$

because these give the "largest increase in power per unit increase of Type I error". Alternatively, these provide the "strongest evidence" in favor of H_1 over H_0 .

The likelihood ratio test

The case of continuous ${\boldsymbol{\mathsf{X}}}$ is similar: Suppose the hypotheses are

 H_0 : **X** is distributed with (joint) PDF $f_0(\mathbf{x})$ H_1 : **X** is distributed with (joint) PDF $f_1(\mathbf{x})$

Intuition suggests to reject H_0 for those points **x** with largest values of

$$\frac{f_1(\mathbf{x})}{f_0(\mathbf{x})}$$

In both the discrete and continuous settings, the test statistic

$$L(\mathbf{X}) = rac{f_1(\mathbf{X})}{f_0(\mathbf{X})}$$

is called the **likelihood ratio statistic**. The test that rejects H_0 in favor of H_1 for large $\frac{\mathcal{T}(\mathbf{X})}{\mathcal{L}(\mathbf{X})}$ is the **likelihood ratio test**.

The Neyman-Pearson lemma

For testing a simple null hypothesis versus a simple alternative, the Neyman-Pearson lemma guarantees that the likelihood ratio test is the *most powerful test*.

Theorem (Neyman-Pearson lemma)

Let H_0 and H_1 be simple hypotheses, and fix a significance level $\alpha \in (0, 1)$. Suppose there exists a value c > 0 such that the likelihood ratio test which

 $\begin{cases} rejects H_0 \text{ if } L(\mathbf{X}) > c \\ accepts H_0 \text{ if } L(\mathbf{X}) \leq c \end{cases}$

has Type I error probability exactly equal to α .

Then for any other test with probability of Type I error $\leq \alpha$, its power against H_1 is at most the power of this likelihood ratio test.

Proof of the Neyman-Pearson lemma

Consider the discrete case. Let

$$\mathcal{R} = \{\mathbf{x} : L(\mathbf{x}) > c\} = \{\mathbf{x} : f_1(\mathbf{x}) > cf_0(\mathbf{x})\}$$

be the rejection region of the likelihood ratio test.

Among all possible rejection regions, this set ${\mathcal R}$ maximizes

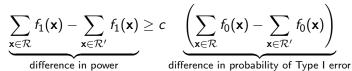
$$\sum_{\mathbf{x}\in\mathcal{R}} \left(f_1(\mathbf{x}) - cf_0(\mathbf{x})\right)$$

because $f_1(\mathbf{x}) - cf_0(\mathbf{x}) > 0$ for $\mathbf{x} \in \mathcal{R}$ and $f_1(\mathbf{x}) - cf_0(\mathbf{x}) \leq 0$ for $\mathbf{x} \notin \mathcal{R}$. Then for any test, say with rejection region \mathcal{R}' ,

$$\sum_{\mathbf{x}\in\mathcal{R}}\left(f_1(\mathbf{x})-cf_0(\mathbf{x})
ight)\geq \sum_{\mathbf{x}\in\mathcal{R}'}\left(f_1(\mathbf{x})-cf_0(\mathbf{x})
ight).$$

Proof of the Neyman-Pearson lemma

Rearranging this inequality,



If the likelihood ratio test (with rejection region \mathcal{R}) has Type I error probability α , and the other test (with rejection region \mathcal{R}') has Type I error probability $\leq \alpha$, then

difference in probability of Type I error ≥ 0

So this implies

```
difference in power \geq 0
```

i.e. power of likelihood ratio test \geq power of the other test. The continuous case is the same, with all sums replaced by integrals.

Example: Consider data $\mathbf{X} = (X_1, \dots, X_n)$, and a test of

$$H_0: X_1, \dots, X_n \stackrel{IID}{\sim} \mathcal{N}(0, 1)$$

 $H_1: X_1, \dots, X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, 1)$

Assume that $\mu > 0$ is a known and pre-specified value, so both H_0 and H_1 are simple hypotheses. Let's derive the form of $L(\mathbf{X})$: $U_{n,d} = H_0 : \quad f_0(\mathbf{x}) = \prod_{i=1}^{n} f_0(\mathbf{x}_i) = \prod_{i=1}^{n} \prod_{j=1}^{d} e^{-\frac{\mathbf{x}_i^2}{2}} = (\prod_{j=1}^{d})^n e^{-\frac{1}{2}(\mathbf{x}_i^2 \cdot \dots \cdot \mathbf{x}_n^2)}$ $U_{n,d} = H_1 : \quad f_1(\mathbf{x}) = \prod_{i=1}^{n} f_1(\mathbf{x}_i) = \prod_{i=1}^{n} \prod_{j=1}^{d} e^{-\frac{(\mathbf{x}_i^2 \cdot \dots \cdot \mathbf{x}_n)^2}{2}}$ $= (\prod_{i=1}^{d})^n e^{-\frac{1}{2}[(\mathbf{x}_i^2 \cdot \dots \cdot \mathbf{x}_n)^2]}$

Testing a normal mean $L(x) = \frac{f_{1}(x)}{f_{0}(x)} = \frac{e^{-\frac{1}{2}\left[(X_{1}^{-}y_{0})^{2}y_{0} + \frac{1}{2}(X_{0}^{-}y_{0})^{2}\right]}}{e^{-\frac{1}{2}\left[(X_{0}^{-}y_{0} - \frac{1}{2}X_{0})^{2}\right]}}$ = exp (- + [(x, -, 1) + + (x, -, 1) + + [x, + + x, -]) = enp (-1 [x12-24x1+12+-+x2-24x1+12] $+\frac{1}{2}[x_{1}^{2}+..+x_{n}^{2}])$ $z \exp\left(\mu x_{i} + \mu x_{i} + \mu x_{n} - \frac{\mu^{2}}{2} - \frac{\mu^{2}}{2}\right)$ = exp (u (x, t. * xn) - " u2)

The Neyman-Pearson lemma ensures that the most powerful test is the test which rejects H_0 when $L(\mathbf{X}) > c$, where c is chosen so that

$$\mathbb{P}[\mathsf{Type} \ \mathsf{I} \ \mathsf{error}] = \mathbb{P}_{H_0}[L(\mathsf{X}) > c] = \alpha$$

Thus c is the upper- α point of the distribution of $L(\mathbf{X})$ under H_0 .

Observe that, for $\mu > 0$, the statistic

$$L(\mathbf{X}) = e^{\mu(X_1 + ... + X_n) - \frac{n\mu^2}{2}}$$

depends on **X** only via the sample mean $\bar{X} = \frac{1}{n}(X_1 + \ldots + X_n)$. Furthermore, $L(\mathbf{X})$ is an *increasing* function of \bar{X} .

Because $L(\mathbf{X})$ is increasing in \overline{X} , the rejection event

 $L(\mathbf{X}) > \text{upper-}\alpha \text{ point of the null distribution of } L(\mathbf{X})$

is exactly the same as the rejection event

 $\sqrt{n}\,\bar{X}>$ upper-lpha point of the null distribution of $\sqrt{n}\,\bar{X}$

Under H_0 , recall $Z = \sqrt{n} \bar{X} \sim \mathcal{N}(0, 1)$, with upper- α point $z^{(\alpha)}$.

Thus the Neyman-Pearson lemma implies that the most powerful test is exactly the z-test, which rejects H_0 when $Z > z^{(\alpha)}$.

The form of this most powerful test is the same against any simple alternative with known and pre-specified mean μ > 0. Thus this z-test is *uniformly most powerful* against the compositive alternative H₁ : μ > 0 when μ is unknown.

If we specify an alternative
$$\mu < 0$$
, then
 $L(\mathbf{X}) = e^{\mu(X_1 + ... + X_n) - \frac{n\mu^2}{2}}$ is *decreasing* in \bar{X} . So

 $L(\mathbf{X}) > \text{upper-}\alpha \text{ point of the null distribution of } L(\mathbf{X})$ \uparrow $\sqrt{n}\bar{X} < \text{lower-}\alpha \text{ point of the null distribution of } \sqrt{n}\bar{X}$

The most powerful test would reject H_0 for *small* values of Z.

There is no single test that is uniformly most powerful against both positive and negative alternatives, because the most powerful test in each case rejects H₀ for different values of Z.

Testing if a coin is fair

Example: Let $X_1, \ldots, X_n \in \{0, 1\}$, and consider testing

$$H_0: X_1, \dots, X_n \stackrel{IID}{\sim} \text{Bernoulli}\left(\frac{1}{2}\right)$$
$$H_1: X_1, \dots, X_n \stackrel{IID}{\sim} \text{Bernoulli}(p).$$

Assume $p > \frac{1}{2}$ is a known and pre-specified value, so both hypotheses are simple. Let's derive the form of $L(\mathbf{X})$:

Testing if a coin is fair

The Neyman-Pearson lemma ensures that the most powerful test is the test which rejects H_0 when $L(\mathbf{X}) > c$, where c is chosen so that

$$\mathbb{P}[\mathsf{Type} \ \mathsf{I} \ \mathsf{error}] = \mathbb{P}_{\mathcal{H}_0}[\mathcal{L}(\mathbf{X}) > c] = \alpha$$

Thus c is the upper- α point of the distribution of $L(\mathbf{X})$ under H_0 . Here, for any fixed $p > \frac{1}{2}$,

$$L(\mathbf{X}) = 2^{n}(1-p)^{n}(\frac{p}{1-p})^{X_{1}+...+X_{n}}$$

is increasing in $S = X_1 + \ldots + X_n$. Under H_0 , $S \sim \text{Binomial}(n, \frac{1}{2})$. So equivalently, the most powerful test rejects H_0 when

$$S > b_n^{(\alpha)}$$
 the "upper- α point" of Binomial $(n, \frac{1}{2})$

Test statistics with discrete distributions

In this case, both $S = X_1 + \ldots + X_n$ and $L(\mathbf{X})$ have discrete null distributions. There may not exist a value of c for which

$$\mathbb{P}_{H_0}[L(\mathbf{X}) > c] = \alpha$$

exactly, i.e. there may not exist a value $b_n^{(\alpha)}$ for which

$$\mathbb{P}_{H_0}[S > b_n^{(\alpha)}] = \alpha$$

Example: Suppose n = 20. For $S \sim \text{Binomial}(20, \frac{1}{2})$, we have $\mathbb{P}[S > 14] = 0.021$ and $\mathbb{P}[S > 13] = 0.058$. We cannot perform this test to attain Type I error probability exactly $\alpha = 0.05$.

A level- α test would be conservative and reject H_0 when S > 14. The Neyman-Pearson lemma would not guarantee that this is most powerful, although we would usually go with this test in practice.

Beyond the Neyman-Pearson lemma

If there is a single test that maximizes power, why do we still have so many different testing procedures?

- Alternative hypotheses H₁ in practice are oftentimes not simple, and we may wish to balance power against different types of alternatives.
- Null hypotheses H₀ in practice are sometimes not simple, and we may wish to restrict to test statistics that are pivotal under broad specifications of H₀.
- ▶ We may be unsure about a specific data model for *H*₀ and prefer to sacrifice some power to achieve greater robustness against misspecification of the null model.