
S&DS 242/542: Theory of Statistics
Lecture 9: E↵ect size, power, and experimental design



Steps of a scientific study

A typical scientific study might consist of the following steps:

1. Identify and formulate a question of interest

2. Design an experiment to produce or collect data that
addresses this question

3. Visualize and perform exploratory analysis of the data

4. Apply an inferential statistical procedure to answer the
question of interest

Our focus in this course is mostly on Step 4.

Today we’ll discuss some aspects of Step 2 — the design of the
experiment — in the context of hypothesis testing.
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Main questions for today

I Can we predict in advance whether the study will be able to
identify an e↵ect of interest?

I Can we predict the size of the study that would be needed to
identify this e↵ect?

I How can our experimental design potentially influence our
ability to identify this e↵ect?
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Case study: Stanford peer grading experiment

I Context: Grading homework assignments in large classes is
time-consuming and costly. It may even be infeasible in
Massive Open Online Courses (MOOCs) with thousands or
tens of thousands of students.

I An approach that has been suggested is peer grading: have
students grade each other’s assignments.

I Adopted by the Owasso School District in Tulsa County, OK
in 2001. Challenged as a violation of student privacy, and
brought to the U.S. Supreme Court in 2002.

“Correcting a classmate’s work can be as much a part of the
assignment as taking the test itself. It is a way to teach material
again in a new context, and it helps show students how to assist
and respect fellow pupils.”

—Anthony Kennedy, Owasso v. Falvo 2002
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Case study: Stanford peer grading experiment

I Question of interest: In addition to saving cost, does peer
grading actually increase student learning?

I In 2014–2015, a statistics course at Stanford University
conducted an experiment to answer this question: Divide 300
students in one year of the course into “peer-grading” and
“control” groups, and compare the di↵erence in learning
between the two groups as measured by exam scores.

I Can we predict, before doing the experiment, whether we will
discover a significant di↵erence in learning? Can we determine
in advance the number of students needed for the study?
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Predicting the power

In a hypothesis testing context, “discovering the e↵ect” usually
means rejecting H0 at a desired level of significance.

These questions then pertain to our anticipated power: Under an
alternative H1 that we believe may be true (peer grading improves
test scores on average by 20%), what is our probability of rejecting
H0 (that peer grading has no e↵ect on test scores)?

What is the sample size of the study that we would need to make
this probability larger than, say, 90%?
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Power in the one-sample z-test

Suppose we observe X1, . . . ,Xn
IID⇠ N (µ,�2), and test

H0 : µ = 0 vs. H1 : µ > 0

using the z-statistic Z =
p
n
� X̄ . (By the Neyman-Pearson lemma,

assuming �2 is known, this is the most powerful test.)

H0 H1

In this depiction of the sampling distributions of Z , the power is
the probability of the rejection region under the red H1 curve.
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Power in the one-sample z-test

The z-test rejects H0 when Z =
p
n
� X̄ > z(↵). This ensures

P[Type I error] = ↵

To compute its power:
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Factors that determine power
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This is influenced by:
I The sample size n. Larger n gives more power, and power

increases to 1 as n ! 1.
I The significance level ↵. A less stringent test (larger ↵)

corresponds to smaller z(↵), and hence more power.
I The e↵ect size µ/�: di↵erence in mean of the data between

H0 and H1, scaled by the noise standard deviation.
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Factors that determine power

Power also depends on the choice of test and test statistic: Less
powerful test statistics have more overlap between their sampling
distributions under H0 and H1.

H0 H1

For example, Homework 5 asks you to show for a nonparametric
sign test that

Power ⇡ �

 r
2n

⇡

µ

�
� z(↵)

!

This is smaller than the power of the z-test, as
q

2
⇡ ⇡ 0.798 < 1.
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Power in comparing two samples

For designs with a control group, as in the peer-grading study:
Consider X1, . . . ,Xn ⇠ N (µX ,�2), Y1, . . . ,Ym ⇠ N (µY ,�2), and

H0 : µX = µY vs. H1 : µX > µY

The power of the two-sample z-test based on Z = X̄�Ȳ

�
q

1
n+

1
m

is:

10



Power in comparing two samples

Power = �

 
1q

1
n + 1
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�

| {z }
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� z(↵)
!

This again depends on:

I The sample sizes n and m.

I The significance level ↵.

I The e↵ect size (µX � µY )/�: the di↵erence in mean between
the two groups, divided by the common standard deviation.
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Optimally splitting the sample

Suppose our budget is determined by the total sample size
N = n +m. How should we split this between the experiment and
control groups?

The power is increasing in

� =
1q

1
n + 1

m

· µX � µY

�

and hence decreasing in 1
n + 1

m .

Subject to N = n +m, we may check that 1
n + 1

m is minimized by
setting n = m = N

2 . So to maximize our power, we should take the
treatment and control groups to be of equal size.
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Predicting the power

If we know the e↵ect size, then we can predict the power before
doing the study. In the Stanford peer-grading study, the e↵ect size
identified was (in retrospect) 0.11: peer grading improved the

mean student test score by about 1
9
th

of a standard deviation.

Typically we wouldn’t know this e↵ect size a priori, but we may
have a guess based on previous studies. The 2015 Hattie ranking
lists e↵ect sizes for 195 di↵erent educational interventions, e.g.:

Classroom discussion: 0.82
Computer assisted instruction: 0.45
Teacher education: 0.12
Charter schools: 0.07

In education, e↵ect sizes around 0.1 are typical, and e↵ect sizes
larger than 0.4 are considered very strong.
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Predicting the power

Suppose we have n +m = 300 total students, and divide them
equally into n = m = 150 students per group. For an e↵ect size of
0.11 and a two-sample z-test at significance level ↵ = 0.05,

� =
0.11q
1

150 + 1
150

⇡ 0.95, Power = �
⇣
�� z(↵)

⌘
⇡ 0.244.

Had we done this experiment, a z-test at level ↵ = 0.05 would
have a 24% chance of identifying the peer grading e↵ect.
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Predicting a typical p-value

Instead of fixing the significance level ↵, we can also ask: What
would be a “typical” p-value of the test? For a one-sided z-test
that rejects H0 for large values of Z , the p-value is

P = 1� �(Z ).

Under H1, we showed
Z ⇠ N (�, 1)

So the median value for Z under H1 is �, and the median p-value
is 1� �(�). For � = 0.95, this median p-value is 0.17.

Both these calculations indicate that this test is underpowered:
The e↵ect size is too small to be reliably detected with a sample
size of only 300 students.
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How many samples?

Suppose we would like the power to be much larger, say 90%,
under a z-test at level ↵ = 0.05. We can achieve this by increasing
the sample size. How many students would we need in the study?

Assuming an equal split of m = n students in each group, set

0.9 = �

0

@ 0.11q
1
n + 1

n

� z(0.05)

1

A

and solve for n: We get n ⇡ 1416.

So we would need 2n ⇡ 2832 total students. At 300 students per
year, this requires running the study over a period of 9–10 years.
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Changing the experiment to improve power

Main problem: There is too much variation in scores across
students (size of �), as compared to the mean improvement from
peer-grading (size of µX � µY ).

This variation may be caused by a number of confounding factors:
Class year, previous statistics courses, di↵erent learning styles, etc.

Di↵erences between students that are attributable to these factors
may overwhelm the mean di↵erence arising from peer-grading,
leading to the small e↵ect size (µX � µY )/�.

Idea: Change the experimental design to compare students to
themselves. This is an example of a paired design.
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A paired design to improve power

Divide the course into 2 units1, with a separate quiz at the end of
each unit. Randomly assign each student to the peer-grading
group for one unit, and the control group for the other unit.

Then compare the performance of each student in the peer-grading
unit with his/her own performance in the control unit. Many
confounding factors that a↵ect the student for one unit are likely
to also a↵ect that same student for the other unit.

1
The real Stanford study used 4 units instead of 2.
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Testing and power in the paired design

Why does this help, and how much does it help by?

Suppose there are n students. Let X1, . . . ,Xn be their quiz scores
in the peer-grading unit, and Y1, . . . ,Yn their scores in the control
unit. Assume Xi ⇠ N (µX ,�2) and Yi ⇠ N (µY ,�2), as before.

However, since Xi and Yi now correspond to the same student,
they are likely very correlated. Let’s consider a model where
(Xi ,Yi ) are IID bivariate normal pairs, with correlation ⇢:

✓
Xi

Yi

◆
⇠ N

✓✓
µX

µY

◆
,

✓
�2 ⇢�2

⇢�2 �2

◆◆

This is in contrast to the previous unpaired setting, where it was
reasonable to model the Xi ’s and Yj ’s as independent because they
corresponded to di↵erent students.
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Testing and power in the paired design

To test
H0 : µX = µY vs H1 : µX > µY

consider the paired di↵erences Di = Xi � Yi .

If (Xi ,Yi ) is bivariate normal, then Di = Xi � Yi is normally
distributed, with mean:

and variance:
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Testing and power in the paired design

Thus, D1, . . . ,Dn
IID⇠ N (µX � µY , 2�2(1� ⇢)), and we wish to test

H0 : µX � µY = 0 vs H1 : µX � µY > 0

This reduces to a one-sample testing problem, and we may perform

our test using the one-sample z-statistic2 Z =
p
np

2�2(1�⇢)
D̄.

Applying our previous result for the power of the one-sample z-test
with µX � µY in place of µ and

p
2�2(1� ⇢) in place of �,

Power = �

 
p
n · µX � µYp

2�2(1� ⇢)
� z(↵)

!

= �

✓
1p
1� ⇢

r
n

2
· µX � µY

�
� z(↵)

◆

2
In practice, we may not know � or ⇢ and use instead a 1-sample t-test.
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Power comparison

To summarize, the power of the paired 2-sample z-test is

Power = �

✓
1p
1� ⇢

r
n

2
· µX � µY

�
� z(↵)

◆

The power of the unpaired two-sample z-test with m = n is

Power = �

✓r
n

2
· µX � µY

�
� z(↵)

◆

The di↵erence is this additional factor of 1/
p
1� ⇢, where ⇢ is the

correlation between the two scores of the same student.

22



Power comparison

Power = �

✓
1p
1� ⇢

r
n

2
· µX � µY

�
� z(↵)

◆

The paired test with (1� ⇢)n pairs has the same power as an
unpaired test with n individuals per group.

Here 1� ⇢ is called the relative e�ciency of the unpaired design
to the paired design.

For example, if the correlation were ⇢ = 0.9, then the relative
e�ciency of the unpaired design to the paired design is 10%. This
means that an unpaired design with n pairs and a paired design
with only 10%⇥ n pairs would yield the same testing power.
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Examples of paired designs

I Before-and-after studies on the same subjects

I Twin studies

I Subject matching by covariates (For example: In a medical
study, matching by age, weight, severity of condition, etc.)

Matching by covariates was also used in the Stanford peer-grading
experiment: Each student was paired with the “most similar” other
student based on previous statistics courses, class year, and several
other possible confounding variables.

One student in each pair was randomly assigned to peer-grade in
unit 1, and the other to peer-grade in unit 2.
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Summary of peer-grading study

I The estimated (short-term) e↵ect size was 0.11. This e↵ect
was found to be statistically significant (with p-value 0.002)
using a study of only 300 students.

I To understand whether the e↵ect persisted until the end of
the course, a longer-term e↵ect was assessed by having
questions for both units on the final exam, and comparing the
performance of each student between the questions for Unit 1
versus Unit 2. This estimated e↵ect size was 0.12, and also
found to be statistically significant (with p-value of 0.001).

Conclusion: Peer grading did improve student learning.

For more details, see: DL Sun, N Harris, G Walther, M Baiocchi, “Peer

Assessment Enhances Student Learning: The Results of a Matched Randomized

Crossover Experiment in a College Statistics Class,” PLoS One, 10(12), 2015.
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