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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 
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Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.
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The multiple testing problem

“There is increasing concern that most current published research
findings are false. The probability that a research claim is true may
depend on study power and bias, the number of other studies on
the same question, and, importantly, the ratio of true to no
relationships among the relationships probed in each scientific field.
In this framework, a research finding is less likely to be true when
the studies conducted in a field are smaller; when e↵ect sizes are
smaller; when there is a greater number and lesser preselection of
tested relationships...”

—John P.A. Ioannidis
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The multiple testing problem

Multiple testing problem: If I test n null hypotheses at level ↵, all
of which are true, then on average I’ll (wrongly) reject ↵n of them.

Examples:

I Test the safety of a drug in terms of many di↵erent side e↵ects

I Test whether a disease is associated to 1,000,000 di↵erent
genetic markers

What are some aggregate notions of statistical signficance and
Type I error across multiple hypothesis tests and experiments?

What statistical procedures can we use to control these aggregate
measures of error?
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Thinking in terms of p-values

For today, we will think of each individual hypothesis test as
returning a p-value, and compare/combine statistical significance
using these p-values.

Most statistical multiple-testing procedures take as input these
p-values, rather than the original data or the original test statistic
used in each experiment.

Advantages:

I Abstracts away details about individual tests

I Allows di↵erent experiments to use di↵erent test statistics

I Allows for meta-analysis of previous results without needing
access to the original data
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P-values for one-sided tests

Recall: For a statistical test, the p-value is the smallest
significance level at which the test rejects the null hypothesis.

Null distribution of T

tobs

For a one-sided test rejecting H0 for large T , the p-value is the
right tail probability at the observed value of T .
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P-values for two-sided tests

Recall: For a statistical test, the p-value is the smallest
significance level at which the test rejects the null hypothesis.

Null distribution of T

tobs

For a two-sided test, the p-value is the sum of left and right tail
probabilities when the boundary of the rejection region is at T .
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P-values as transformed test statistics

Let F (t) be the CDF of the null distribution of T . For a one-sided
test rejecting H0 for large T , the p-value is

P = 1� F (T )

If the null distribution of T is symmetric around 0, for a two-sided
test rejecting H0 for large |T |, the p-value is

P = [1� F (|T |)] + F (�|T |)

The p-value is a transformation of di↵erent test statistics to a
common [0, 1] scale, summarizing the amount of statistical
evidence against H0 in a way that admits a common interpretation.

By definition, the test rejects H0 at significance levels ↵ � P and
accepts H0 at significance levels ↵ < P . So the rejection event of
the test at any fixed significance level ↵ 2 (0, 1) is P  ↵.
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The null distribution of the p-value

Suppose, for each ↵ 2 (0, 1), our test at significance level ↵ has
Type I error probability exactly equal to ↵:

↵ = PH0 [reject H0]

(This is usually the case for continuous test statistics T .) Since
the test rejects H0 when P  ↵, this means

↵ = PH0 [P  ↵]

This holds for every ↵ 2 (0, 1), so P ⇠ Uniform(0, 1) under H0.

[One may also verify this by computing the CDF of P from the
expression P = 1� F (T ) or P = [1� F (|T |)] + F (�|T |) in the
preceding one-sided and two-sided testing examples.]
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P-values across multiple tests

A typical histogram of p-values obtained across many di↵erent
hypothesis tests may look like the following.
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Most tested null hypotheses may be true nulls, and their p-values
are uniformly distributed on [0, 1]. A small subset of tested null
hypotheses may be false nulls, and their p-values are closer to 0.
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Ordered p-value plots

We may also visualize the p-values across many tests by sorting
them and plotting them in rank order:
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If all tested null hypotheses were true nulls, we should see a
diagonal line. Here instead, there seem to be many p-values close
to 0, suggesting the presence of some false null hypotheses.
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Rejected and accepted null hypotheses

Suppose we apply each hypothesis test at the significance level
↵ = 0.05. Then we would reject H0 in the tests that yielded the 18
red p-values below, and accept H0 in the remaining 82 tests.

●●●●●●●●●●●●●
●●
●●
●●
●●●●

●●
●
●●●●●●

●●●
●●●●

●●

●●●●
●●●

●●●
●●
●●
●●
●●
●●

●
●●
●●
●●●

●
●●
●●
●●
●

●
●●●

●●●
●●●

●

●

●●
●●

●
●●

●
●
●●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rank

p−
va
lu
e

●●●●●●●●●●●●●
●●
●●
●

We might suspect that the rejected null hypotheses H0 with
extremely small p-values are correctly rejected, but some of those
with p-value closer to the ↵ = 0.05 cuto↵ are incorrectly rejected.
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The Bonferroni correction

The simplest multiple-testing correction is the Bonferroni

method: When testing n di↵erent null hypotheses, perform each
test at the significance level ↵/n instead of ↵.

Justification: Suppose that all n null hypotheses H(1)
0 , . . . ,H(n)

0 are
in fact true nulls. The Bonferroni method ensures that

P[ reject any null hypothesis ]

= P
h
{reject H(1)

0 } [ . . . [ {reject H(n)
0 }

i

 P
h
reject H(1)

0

i
+ . . .+ P

h
reject H(n)

0

i

 ↵

n
+ . . .+

↵

n
= ↵

The last line holds because each hypothesis is rejected with
probability at most ↵/n, under a test with significance level ↵/n.
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Family-wise error rate

More generally, suppose we test n null hypotheses, n0 of which are
true nulls and n� n0 of which are false nulls. (Each null hypothesis
is either true or false — this is unknown to us, but not random.)

The family-wise error rate (FWER) is the probability that we
reject at least one of the n0 true null hypotheses:

FWER = P[ reject any true null hypothesis ]

This is not a↵ected by our decision for the false nulls. If all n tested
null hypotheses are false (so n0 = 0), then FWER is trivially 0.

A procedure controls FWER at level ↵ if FWER  ↵, regardless of
how many (and which) null hypotheses are true and false.
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FWER of the Bonferroni method

The Bonferroni method controls FWER at level ↵.

Justification: Suppose now that H(1)
0 , . . . ,H(n0)

0 are true, and

H
(n0+1)
0 , . . . ,H(n)

0 are false. Then

FWER = P[ reject any true null hypothesis ]

= P
h
{reject H(1)

0 } [ . . . [ {reject H(n0)
0 }

i

 P
h
reject H(1)

0

i
+ . . .+ P

h
reject H(n0)

0

i

=
↵

n
+ . . .+

↵

n| {z }
n0 times

=
↵n0
n

 ↵.

If we knew the number of true null hypotheses n0, we could do
each individual test at level ↵/n0. But we usually don’t know n0,
and often n0 is close to n, so we use the conservative level ↵/n.
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Rejected and accepted null hypotheses

Applying the Bonferroni method to control FWER  0.05 across
100 tests, we reject the 4 null hypotheses below with p-value less
than 0.0005, instead of the previous 18.
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FWER is controlled, but we have sacrificed testing power and may
be accepting many null hypotheses H0 which are actually false.
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False discovery proportion

In certain applications, we may be tolerant of making a few Type I
errors, provided that the proportion of Type I errors among all
rejected null hypotheses — the false discovery proportion (FDP)

— is not too high.

Example: We test 1,000,000 genetic markers, and identify 1,000 of
them as associated to a disease. (The null hypothesis H0 for each
marker is that there is no association.) Of these, 950 are truly
associated to the disease, and 50 are not. Then our false discovery
proportion is

FDP =
50

1000
= 5%
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False discovery rate

Let

V = number of true null hypotheses rejected (“false discoveries”)

R = number of total null hypotheses rejected (“total discoveries”)

so FDP = V /R .

Here, V and R are random quantities depending on the data of
each individual hypothesis test. The false discovery rate is

FDR = E [FDP] = E

V

R

�

with the convention that FDP = V /R = 0 if V = R = 0.

A procedure controls FDR at level ↵ if FDR  ↵, regardless of how
many (and which) null hypotheses are true and false.
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FWER vs. FDR

Controlling FWER may be appropriate if

I There is a more severe consequence for committing even a
single Type I error

I The result of the statistical test is going to be interpreted as a
definitive answer for whether the discovery is true

In contrast, controlling FDR may be appropriate if

I The statistical test identifies candidate discoveries out of a
large pool, which are then going to be subject to further study

I There is some cost associated to false discoveries, but this is
acceptable as long as most of our discoveries are correct
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The Benjamini-Hochberg procedure

Suppose, for n hypothesis tests, we observe the final outcome of
the tests: Null hypotheses with p-values  t were rejected, and
those with p-values > t were accepted. Can we estimate the FDP?

Recall FDP = V /R . We observe R , the total number of rejections.
We don’t know which are true and false, so we don’t know V .

However, we can estimate V : Recall that p-values corresponding
to true null hypotheses have distribution Uniform(0, 1). So for n0
true nulls, we expect roughly tn0 of these to have p-value  t.
That is, V ⇡ tn0, and FDP ⇡ tn0/R .

We usually don’t know n0. A slightly conservative estimate of FDP
(erring on the side of being too large) is

dFDP = tn/R
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The Benjamini-Hochberg procedure

Idea: To control FDR at level ↵, pick the largest cuto↵ t such that

dFDP =
tn

R(t)
 ↵

Here R(t) is the number of rejected hypotheses using this cuto↵ t,
i.e. the total number of p-values  t.

Equivalently: Suppose we reject r null hypotheses. Then the cuto↵
is t = P(r), the r

th smallest p-value. Pick the largest r such that

P(r) · n
r

 ↵ () P(r) 
↵r

n

This is the Benjamini-Hochberg (BH) procedure.
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The Benjamini-Hochberg procedure

More precisely, the BH procedure at level ↵ is performed as follows:

1. Sort the n total p-values from smallest to largest. Denote
these by P(1)  . . .  P(n).

2. Find the largest r such that P(r)  ↵r
n
.

3. Reject the null hypotheses corresponding to P(1), . . . ,P(r).

The smallest p-value P(1) is compared to the Bonferroni level, ↵/n.
However, the next smallest p-value P(2) is compared to 2↵/n, then
P(3) to 3↵/n, etc.

If some p-values are extremely small, then there is strong evidence
that these null hypotheses are false. It is then allowable to reject a
few true nulls and still control the FDR, so the BH procedure uses
a more lenient threshold for the remaining p-values.
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The Benjamini-Hochberg procedure

The BH procedure compares the sorted p-values to a diagonal

cuto↵ line P(r) = ↵r/n. This line is equal to the Bonferroni level
↵/n at r = 1 and to the uncorrected level ↵ at r = n.
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Rejected and accepted null hypotheses

In this example, the BH procedure applied at level ↵ = 0.05 rejects
10 null hypotheses, in green. Recall that Bonferroni rejected 4,
while naively testing each hypothesis at level ↵ = 0.05 rejected 18.
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Guarantee for FDR control

Theorem (Benjamini and Hochberg (1995))

Consider tests of n null hypotheses, n0 of which are true. If the n

p-values are independent, then the false discovery rate of the BH

procedure applied at level ↵ satisfies

FDR  n0↵

n
 ↵

I The p-values are independent if the data from the n

experiments are independent.

I There are some conditions of positive dependence where the
BH procedure still controls FDR at level ↵.

I There are also counterexamples where p-values are dependent
and FDR is not controlled at level ↵. In the worst case, for n
hypotheses, the FDR is controlled at level ↵(1 + 1

2 + . . .+ 1
n
).
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