S&DS 242/542: Theory of Statistics

Lecture 10: Testing multiple hypotheses



The multiple testing problem
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Why Most Published Research Findings

Are False

John P.A. loani

Summary

There is increasing concern that most
current published research findings are
false. The probability that a research claim
is true may depend on study power and
bias, the number of other studies on the
same question, and, importantly, the ratio
of true to no relationships among the
relationships probed in each scientific
field. In this framework, a research finding
is less likely to be true when the studies
conducted in a field are smaller; when
effect sizes are smaller; when there is a
greater number and lesser preselection
of tested relationships; where there is
greater flexibility in designs, definitions,
outcomes, and analytical modes; when
there is greater financial and other
interest and prejudice; and when more
teams are involved in a scientific field
in chase of statistical significance.
Simulations show that for most study
designs and settings, it is more likely for
aresearch claim to be false than true.
Moreover, for many current scientific
fields, claimed research findings may
often be simply accurate measures of the
prevailing bias. In this essay, | discuss the
implications of these problems for the
conduct and interpretation of research.

factors that influence this problem and
some corollaries thereof.

Modeling the Framework for False
Positive Findings

Several methodologists have

pointed out [9-11] that the high

rate of nonreplication (lack of
confirmation) of research discoveries
is a consequence of the convenient,
yet ill-founded strategy of claiming
conclusive research findings solely on
the basis of a single study assessed by
formal statistical significance, typically
for a pvalue less than 0.05. Research
is not most appropriately represented
and summarized by pvalues, but,
unfortunately, there is a widespread
notion that medical research articles

It can be proven that
most claimed research
findings are false.

should be interpreted based only on
rvalues. Research findings are defined
here as any relationship reaching
formal statistical significance, c.g.,
effective interventions, informative
predictors, risk factors, or associations.
“Negative” rescarch is also very useful.
“Negative” is actually a misnomer, and

is characteristic of the field and can
vary a lot depending on whether the
field targets highly likely relationships
or searches for only one or a few

true relationships among thousands
and millions of hypotheses that may

be postulated. Let us also consider,

for computational simplicity,
circumscribed fields where either there
is only one true relationship (among
‘many that can be hypothesized) or

the power is similar to find any of the
several existing true relationships. The
pre-study probability of a relationship
being true is R/(R + 1). The probability
of a study finding a true relationship
reflects the power 1 - B (one minus
the Type II error rate). The probability
of claiming a relationship when none
truly exists reflects the Type I error
rate, o Assuming that ¢ relationships
are being probed in the field, the
expected values of the 2 x 2 table are
given in Table 1. After a research
finding has been claimed based on
achieving formal statistical significance,
the post-study probability that it is true
is the positive predictive value, PPV.
The PPV is also the complementary
probability of what Wacholder et al.
have called the false positive report
probability [10]. According to the 2

x 2 table, one gets PPV = (1 - B)R/(R
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“There is increasing concern that most current published research
findings are false. The probability that a research claim is true may
depend on study power and bias, the number of other studies on
the same question, and, importantly, the ratio of true to no
relationships among the relationships probed in each scientific field.
In this framework, a research finding is less likely to be true when
the studies conducted in a field are smaller; when effect sizes are
smaller; when there is a greater number and lesser preselection of
tested relationships...”

—John P.A. loannidis



The multiple testing problem

Multiple testing problem: If | test n null hypotheses at level «, all
of which are true, then on average I'll (wrongly) reject an of them.

Examples:
» Test the safety of a drug in terms of many different side effects

» Test whether a disease is associated to 1,000,000 different
genetic markers

What are some aggregate notions of statistical signficance and
Type | error across multiple hypothesis tests and experiments?

What statistical procedures can we use to control these aggregate
measures of error?



Thinking in terms of p-values

For today, we will think of each individual hypothesis test as
returning a p-value, and compare/combine statistical significance
using these p-values.

Most statistical multiple-testing procedures take as input these
p-values, rather than the original data or the original test statistic
used in each experiment.

Advantages:
> Abstracts away details about individual tests
> Allows different experiments to use different test statistics

> Allows for meta-analysis of previous results without needing
access to the original data



P-values for one-sided tests

Recall: For a statistical test, the p-value is the smallest
significance level at which the test rejects the null hypothesis.

Null distribution of T

N

tobs

For a one-sided test rejecting Hy for large T, the p-value is the
right tail probability at the observed value of T.



P-values for two-sided tests

Recall: For a statistical test, the p-value is the smallest
significance level at which the test rejects the null hypothesis.

Null distribution of T

_ N

tobs

For a two-sided test, the p-value is the sum of left and right tail
probabilities when the boundary of the rejection region is at T.
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P-values as transformed test statistics

Let F(t) be the CDF of the null distribution of T. For a one-sided
test rejecting Hyp for large T, the p-value is

P=1-F(T)

If the null distribution of T is symmetric around 0, for a two-sided
test rejecting Ho for large | T|, the p-value is

P=[1-F(TNI+ F(=ITI)

The p-value is a transformation of different test statistics to a
common [0, 1] scale, summarizing the amount of statistical

evidence against Hp in a way that admits a common interpretation.

By definition, the test rejects Hy at significance levels o« > P and
accepts Hp at significance levels o < P. So the rejection event of
the test at any fixed significance level o € (0,1) is P < av.

11



The null distribution of the p-value

Suppose, for each a € (0, 1), our test at significance level o has
Type | error probability exactly equal to a:

a = Py, [reject Ho)

(This is usually the case for continuous test statistics T.) Since
the test rejects Hy when P < o, this means

a=PylP <]

This holds for every a € (0,1), so P ~ Uniform(0, 1) under Hp.

[One may also verify this by computing the CDF of P from the
expression P=1— F(T) or P=[1— F(|T|)] + F(—|T]|) in the
preceding one-sided and two-sided testing examples.]
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P-values across multiple tests

A typical histogram of p-values obtained across many different
hypothesis tests may look like the following.

100 150

Frequency
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p-value

Most tested null hypotheses may be true nulls, and their p-values
are uniformly distributed on [0, 1]. A small subset of tested null
hypotheses may be false nulls, and their p-values are closer to 0.
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Ordered p-value plots

We may also visualize the p-values across many tests by sorting
them and plotting them in rank order:
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If all tested null hypotheses were true nulls, we should see a
diagonal line. Here instead, there seem to be many p-values close
to 0, suggesting the presence of some false null hypotheses.
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Rejected and accepted null hypotheses

Suppose we apply each hypothesis test at the significance level
a = 0.05. Then we would reject Hp in the tests that yielded the 18
red p-values below, and accept Hp in the remaining 82 tests.
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We might suspect that the rejected null hypotheses Hy with
extremely small p-values are correctly rejected, but some of those
with p-value closer to the o = 0.05 cutoff are incorrectly rejected.



The Bonferroni correction

The simplest multiple-testing correction is the Bonferroni
method: When testing n different null hypotheses, perform each
test at the significance level a//n instead of a.

Justification: Suppose that all n null hypotheses H(gl), cee H(g") are
in fact true nulls. The Bonferroni method ensures that

IP[ reject any null hypothesis |
=P [{reject Hél)} U...U {reject H(()")}}
<P [reject H(()l)] +...+P [reject Hén)}

« o
<—4...+— =«
n n

The last line holds because each hypothesis is rejected with
probability at most «/n, under a test with significance level a/n.
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Family-wise error rate

More generally, suppose we test n null hypotheses, ng of which are
true nulls and n — ng of which are false nulls. (Each null hypothesis
is either true or false — this is unknown to us, but not random.)

The family-wise error rate (FWER) is the probability that we
reject at least one of the ng true null hypotheses:

FWER = PJ reject any true null hypothesis ]

This is not affected by our decision for the false nulls. If all n tested
null hypotheses are false (so ng = 0), then FWER is trivially 0.

A procedure controls FWER at level o if FWER < «, regardless of
how many (and which) null hypotheses are true and false.
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FWER of the Bonferroni method

The Bonferroni method controls FWER at level a.

Justification: Suppose now that Hél), e Hé"o) are true, and
H(()nOH), e H(()n) are false. Then

FWER = P[ reject any true null hypothesis |
=P {{reject H(()l)} U...U{reject H(()"O)}}

<P [reject H(gl)} +...+P [reject H(()no)}
a a  ang
=—+...+—=—<oa.

n n n
—_——

ng times
If we knew the number of true null hypotheses ng, we could do
each individual test at level a/ng. But we usually don’t know ng,
and often ng is close to n, so we use the conservative level a/n.



Rejected and accepted null hypotheses

Applying the Bonferroni method to control FWER < 0.05 across
100 tests, we reject the 4 null hypotheses below with p-value less
than 0.0005, instead of the previous 18.
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FWER is controlled, but we have sacrificed testing power and may
be accepting many null hypotheses Hy which are actually false.



False discovery proportion

In certain applications, we may be tolerant of making a few Type |
errors, provided that the proportion of Type | errors among all
rejected null hypotheses — the false discovery proportion (FDP)
— is not too high.

Example: We test 1,000,000 genetic markers, and identify 1,000 of
them as associated to a disease. (The null hypothesis Hy for each
marker is that there is no association.) Of these, 950 are truly
associated to the disease, and 50 are not. Then our false discovery

proportion is
50
FDP = —— =59
1000 %
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False discovery rate

Let

V' = number of true null hypotheses rejected ( “false discoveries”)

R = number of total null hypotheses rejected (“total discoveries”)

so FDP = V/R.
Here, V and R are random quantities depending on the data of

each individual hypothesis test. The false discovery rate is

FDR = E[FDP] = E [;]

with the convention that FDP = V/R=0if V =R =0.

A procedure controls FDR at level a if FDR < «, regardless of how
many (and which) null hypotheses are true and false.
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FWER vs. FDR

Controlling FWER may be appropriate if

» There is a more severe consequence for committing even a
single Type | error

» The result of the statistical test is going to be interpreted as a
definitive answer for whether the discovery is true

In contrast, controlling FDR may be appropriate if

> The statistical test identifies candidate discoveries out of a
large pool, which are then going to be subject to further study

» There is some cost associated to false discoveries, but this is
acceptable as long as most of our discoveries are correct
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The Benjamini-Hochberg procedure

Suppose, for n hypothesis tests, we observe the final outcome of
the tests: Null hypotheses with p-values < t were rejected, and
those with p-values > t were accepted. Can we estimate the FDP?

Recall FDP = V//R. We observe R, the total number of rejections.
We don’t know which are true and false, so we don't know V.

However, we can estimate V: Recall that p-values corresponding
to true null hypotheses have distribution Uniform(0,1). So for ng
true nulls, we expect roughly tng of these to have p-value < t.
That is, V = tng, and FDP =~ tny/R.

We usually don't know ng. A slightly conservative estimate of FDP
(erring on the side of being too large) is

F/D\P:tn/R
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The Benjamini-Hochberg procedure

Idea: To control FDR at level «, pick the largest cutoff t such that

— tn

FDP = <
R(t) =

Here R(t) is the number of rejected hypotheses using this cutoff t,
i.e. the total number of p-values < t.

Equivalently: Suppose we reject r null hypotheses. Then the cutoff
is t = P,), the rth smallest p-value. Pick the largest r such that

P(,,) n

ar
<« < P(r) < —
r n

This is the Benjamini-Hochberg (BH) procedure.
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The Benjamini-Hochberg procedure

More precisely, the BH procedure at level « is performed as follows:
1. Sort the n total p-values from smallest to largest. Denote
these by P(]_) <...< 'D(n)
2. Find the largest r such that P,y < <.
3. Reject the null hypotheses corresponding to Py, ..., P(,).

The smallest p-value P(y) is compared to the Bonferroni level, a/n.
However, the next smallest p-value P(,) is compared to 2a/n, then
Py to 3a/n, etc.

If some p-values are extremely small, then there is strong evidence
that these null hypotheses are false. It is then allowable to reject a
few true nulls and still control the FDR, so the BH procedure uses
a more lenient threshold for the remaining p-values.
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The Benjamini-Hochberg procedure

The BH procedure compares the sorted p-values to a diagonal
cutoff line Py = ar/n. This line is equal to the Bonferroni level
a/n at r =1 and to the uncorrected level o at r = n.
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Rejected and accepted null hypotheses

In this example, the BH procedure applied at level o = 0.05 rejects
10 null hypotheses, in green. Recall that Bonferroni rejected 4,
while naively testing each hypothesis at level a = 0.05 rejected 18.
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Guarantee for FDR control

Theorem (Benjamini and Hochberg (1995))

Consider tests of n null hypotheses, ng of which are true. If the n
p-values are independent, then the false discovery rate of the BH
procedure applied at level o satisfies

FDR < 1% <
n

» The p-values are independent if the data from the n
experiments are independent.

» There are some conditions of positive dependence where the
BH procedure still controls FDR at level «.

» There are also counterexamples where p-values are dependent
and FDR is not controlled at level «. In the worst case, for n

hypotheses, the FDR is controlled at level a(1 + % +...+ %)

28



