
S&DS 242/542: Theory of Statistics
Lecture 11: Parametric models and method of moments



Parametric models

This unit of our course will be about fitting parametric models to
data. We will discuss how to:

I Estimate unknown parameters of a model

I Construct confidence intervals and quantify uncertainty

I Test hypotheses about unknown parameters

We will explore frequentist and Bayesian approaches to these
questions, and also think about these questions in contexts of
model misspecification.
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Parametric models

A parametric model is a family of probability distributions that
can be described by a small number of parameters.

We’ve seen many examples already, including:

I N (µ,�2) with parameters µ 2 R and �2 > 0.

I Bernoulli(p) with parameter p 2 [0, 1].

I Poisson(�) with parameter � > 0.

I Gamma(↵,�) with parameters ↵,� > 0.

2



Parametric models

We will denote a general parametric model by its PDF or PMF
f (x | ✓), which depends on a vector of k parameters ✓ 2 Rk .

The set of allowable parameter values for the model is the
parameter space — this may be all, or only a subset, of Rk .

For example, in the N (µ,�2) model, the parameters may be
✓ = (µ,�2) and

f (x | µ,�2) =
1p
2⇡�2

e�
(x�µ)2

2�2 .

The parameter space may be {(µ,�2) 2 R2 : �2 > 0}.
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Choosing the model

Our choice of model may depend on many factors, including:

I What the data values represent. (Are they discrete or
continuous measurements? Can they be negative?)

I Our understanding of the generative process for the data.

I Exploratory analysis and visual examination of the data.

I Considerations of computational time and cost.

I Considerations of how many parameters we can accurately
learn given the amount of data that we have.

I Considerations of predictive accuracy, if the model is to make
predictions on new unseen examples.

In this and next lecture, we will study the simple question:
Assuming

X1, . . . ,Xn
IID⇠ f (x | ✓)

how can we estimate the unknown parameter ✓?
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Method of moments



Method of moments for a single parameter

If ✓ 2 R is a single number, the method of moments estimator ✓̂
is the value of ✓ for which the theoretical mean of the distribution
f (x | ✓) matches the sample mean X̄ = 1

n (X1 + . . .+ Xn).

Example: Suppose X1, . . . ,Xn
IID⇠ Poisson(�).
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Method of moments for a single parameter

Example: Suppose X1, . . . ,Xn
IID⇠ Exponential(�).
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Method of moments for multiple parameters

Equating the theoretical mean of f (x | ✓) to the sample mean X̄
gives one equation in the unknown parameters.

To estimate ✓ 2 Rk having k unknown parameters, in general we
would need k equations. We may consider the first k moments of
the distribution X ⇠ f (x | ✓), which are the values

µ1 = E[X ], µ2 = E[X 2], . . . µk = E[X k ].

The method of moments estimator ✓̂ is the value of ✓ for which
µ1, . . . , µk match the observed sample moments

µ̂1 =
1
n (X1 + . . .+ Xn)

µ̂2 =
1
n (X

2
1 + . . .+ X 2

n )

...

µ̂k = 1
n (X

k
1 + . . .+ X k

n )
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Method of moments for multiple parameters

Example: Let X1, . . . ,Xn
IID⇠ N (µ,�2).
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Method of moments for multiple parameters

Example: Let X1, . . . ,Xn
IID⇠ Gamma(↵,�).

10



Method of moments for multiple parameters
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Generalized method of moments

Instead of choosing to match the means of X ,X 2, . . . ,X k , one
may choose to match the means of other functions
T1(X ),T2(X ), . . . ,Tk(X ).

For example, suppose ✓ 2 R is a single parameter, and let
T : R ! R be any function. A generalized method of moments
estimator may choose ✓ so that the theoretical mean E✓[T (X )]
matches the sample mean 1

n (T (X1) + . . .+ T (Xn)).

Here, we write E✓ to indicate that the expectation is computed
assuming that X ⇠ f (x | ✓) with true parameter ✓.
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Generalized method of moments

Example: X1, . . . ,Xn
IID⇠ Pareto(↵, 1).
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Generalized method of moments

Example: X1, . . . ,Xn
IID⇠ Pareto(↵, 1).
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Bias, variance, and mean-squared-error



Bias and variance

Consider a parameter ✓ 2 R. Any estimator ✓̂ = ✓̂(X1, . . . ,Xn) is a
statistic — i.e. a function of the observed data — and has
variability due to the randomness of the data X1, . . . ,Xn.

If X1, . . . ,Xn
IID⇠ f (x | ✓) with true parameter ✓, we can measure

the accuracy of ✓̂ via its bias and variance:

I The bias of ✓̂ is E✓[✓̂]� ✓ = E✓[✓̂(X1, . . . ,Xn)]� ✓. Here E✓

is the expectation computed assuming X1, . . . ,Xn
IID⇠ f (x | ✓).

I The variance of ✓̂

Var✓[✓̂] = Var✓[✓̂(X1, . . . ,Xn)]

also computed assuming X1, . . . ,Xn
IID⇠ f (x | ✓).

The standard error of ✓̂ is the standard deviation
q

Var✓[✓̂].
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Bias and variance

Distribution of θ̂

θ

Large bias

Distribution of θ̂

θ

Large variance

Bias measures how close the average value of ✓̂ is to the true
parameter ✓. Variance measures how variable is this estimate ✓̂
around its average value.
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Bias and variance

The mean-squared-error (MSE) of ✓̂ is E✓[(✓̂ � ✓)2]. It
encompasses both bias and variance:
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Bias and variance

This is the bias-variance decomposition of mean-squared-error:

MSE = Variance + Bias2

Typically the bias, variance, and MSE all depend on the true
parameter ✓. That is, the accuracy of the estimator ✓̂ may be
di↵erent for di↵erent values of the true parameter ✓.

We say that ✓̂ is unbiased for ✓ if E✓[✓̂] = ✓ for all possible
parameter values ✓ belonging to the parameter space of the model.
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Method of moments in the Poisson model

Recall, for X1, . . . ,Xn
IID⇠ Poisson(�), the method of moments

estimator of � was �̂ = X̄ .

For Xi ⇠ Poisson(�), we have E�[Xi ] = Var�[Xi ] = �. Then

E�[�̂] = E�[X̄ ] =
1

n

nX

i=1

E�[Xi ] = �

So E�[�̂] = � for all � > 0, meaning that �̂ is an unbiased
estimator of �. For the variance,

Var�[�̂] = Var�[X̄ ] =
1

n2
Var�

"
nX

i=1

Xi

#
=

1

n2

nX

i=1

Var�[Xi ] =
�

n

The standard error is
q

�
n , and the MSE is variance + bias2 = �

n .
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Estimating the standard error

We would often wish to report the standard error of �̂. Since the

true standard error
q

�
n depends on �, which is unknown, we

typically report a plug-in estimate
q

�̂
n for this standard error.

You may ask why we don’t further account for the uncertainty of

this estimate
q

�̂
n . We usually don’t, because this additional error

is much smaller than the standard error itself for large sample sizes

n: If �̂� � ⇣ 1p
n
, then (by a Taylor expansion)

q
�
n �

q
�̂
n ⇣ 1

n .

For example: If n = 100 and we estimate �̂ = 1, we may report the

standard error as
q

�̂
n = 0.1. The di↵erence between this and the

true standard error should be on the scale of 1
n = 0.01, which is

small compared to our reported standard error of 0.1.
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Method of moments in the Exponential model

Recall, for X1, . . . ,Xn
IID⇠ Exponential(�), the method of moments

estimator of � was �̂ = 1/X̄ . Note that

E�[X̄ ] =
1

n

nX

i=1

E�[Xi ] =
1

�
.

So X̄ is an unbiased estimator of 1/�. However, this does not
mean that 1/X̄ is an unbiased estimator of �.

Recall Jensen’s inequality: For any random variable Y taking
values in (a, b) and any convex function g : (a, b) ! R,

E[g(Y )] � g(E[Y ]).

If Y is not a constant and g is strictly convex, then this inequality
holds strictly. E.g. E[Y 2] > (E[Y ])2 as long as Y is not a constant.
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Method of moments in the Exponential model

The function g(x) = 1/x is strictly convex on the interval (0,1)
of possible values for X̄ , so

E�[�̂] = E�[1/X̄ ] > 1/E�[X̄ ] = �.

Then E�[�̂]�� > 0 for all � > 0, meaning that �̂ has positive bias.

One may derive the exact bias and standard error in this example
by using that �̂ = 1/X̄ ⇠ Inverse-Gamma(n, n�). Then

Bias = E�[�̂]� � = �n
n�1 � � = �

n�1

Standard error =
q
Var�[�̂] =

q
�2n2

(n�1)2(n�2)

For large n, we see that bias ⇣ 1
n , standard error ⇣ 1p

n
, so MSE is

dominated by variance rather than squared bias. This is a general
phenomenon that we will observe again in later examples.
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