S&DS 242/542: Theory of Statistics

Lecture 11: Parametric models and method of moments



Parametric models

This unit of our course will be about fitting parametric models to
data. We will discuss how to:

» Estimate unknown parameters of a model

» Construct confidence intervals and quantify uncertainty

» Test hypotheses about unknown parameters

We will explore frequentist and Bayesian approaches to these
questions, and also think about these questions in contexts of

model misspecification.



Parametric models

A parametric model is a family of probability distributions that
can be described by a small number of parameters.

We've seen many examples already, including:
» N(u,0?) with parameters ;1 € R and o2 > 0.
» Bernoulli(p) with parameter p € [0, 1].
» Poisson(A) with parameter A > 0.
» Gamma(a, 8) with parameters «, 3 > 0.



Parametric models
We will denote a general parametric model by its PDF or PMF
f(x | #), which depends on a vector of k parameters 6 € R¥.

The set of allowable parameter values for the model is the
parameter space — this may be all, or only a subset, of RX.

For example, in the N(u1, 7?) model, the parameters may be
0 = (u,0?) and
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The parameter space may be {(, %) € R? : 02 > 0}.

f(x | p,o?) =
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Choosing the model

choice of model may depend on many factors, including:

What the data values represent. (Are they discrete or
continuous measurements? Can they be negative?)

Our understanding of the generative process for the data.
Exploratory analysis and visual examination of the data.
Considerations of computational time and cost.

Considerations of how many parameters we can accurately
learn given the amount of data that we have.

Considerations of predictive accuracy, if the model is to make
predictions on new unseen examples.

In this and next lecture, we will study the simple question:

Assuming
11D
Xty Xn ~ f(x]0)
how can we estimate the unknown parameter 67



Method of moments



Method of moments for a single parameter

If # € R is a single number, the method of moments estimator
is the value of 6 for which the theor§tica| mean of the distribution
f(x | 0) matches the sample mean X = 1(X; +... + X,).

Example: Suppose Xi,..., X, 0 Poisson(\).
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Method of moments for a single parameter

Example: Suppose Xi,..., Xn 0 Exponential()).
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Method of moments for multiple parameters

Equating the theoretical mean of f(x | #) to the sample mean X
gives one equation in the unknown parameters.

To estimate # € R¥ having k unknown parameters, in general we
would need k equations. We may consider the first Kk moments of
the distribution X ~ f(x | 8), which are the values

H1 :E[X]’ H2 :E[X2]7 R 1 :E[Xk]
The method of moments estimator 0 is the value of § for which
W41, - -, ik match the observed sample moments
fin=1(X1+...+ Xn)
fio =X +...+X?)

fi = L(XE+ .o+ XE)



Method of moments for multiple parameters

Example: Let X1,..., Xn 2 N (1, 02).  Let )(W}«,r?
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Method of moments for multiple parameters

Example: Let Xi,..., Xn 0 Gamma(a, ).
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Method of moments for multiple parameters
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Generalized method of moments

Instead of choosing to match the means of X, X2,..., XX, one
may choose to match the means of other functions
T1(X), Ta(X), ..., Te(X).

For example, suppose 6 € R is a single parameter, and let

T : R — R be any function. A generalized method of moments
estimator may choose 6 so that the theoretical mean Eg[ T (X)]
matches the sample mean 1(T(X1) + ...+ T(Xn)).

Here, we write £y to indicate that the expectation is computed
assuming that X ~ f(x | #) with true parameter 6.
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Generalized method of moments

Example: Xi,..., X, 0 Pareto(a, 1).
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Generalized method of moments

Example: Xl,...,X Paretoa 1). Conside lnstid T(X)
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Bias, variance, and mean-squared-error



Bias and variance

Consider a parameter § € R. Any estimator 6 = é(Xl, o, Xp)is a

statistic — i.e. a function of the observed data — and has
variability due to the randomness of the data Xi,..., X,.

1D :
If X1,...,X, ~ f(x|0) with true parameter 6, we can measure

the accuracy of 6 via its bias and variance:
> The bias of § is Eg[f] — 0 = Eg[A(X1, ..., X,)] — 0. Here Eg
is the expectation computed assuming Xi, ..., X, © f(x|8).

» The variance of §

Varg[0] = Varg[0(X1, ..., Xn)]

also computed assuming Xi, ..., X, 0 f(x|0).

The standard error of @ is the standard deviation 1/ Varg[0].
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Bias and variance

Distribution of é\ Distribution of é\

0 0
Large bias Large variance

Bias measures how close the average value of § is to the true
parameter 6. Variance measures how variable is this estimate 6
around its average value.
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Bias and variance

The mean-squared-error (MSE) of 0 is Eg[(d — 6)?]. It
encompasses both bias and variance:
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Bias and variance

This is the bias-variance decomposition of mean-squared-error:

MSE = Variance + Bias?

Typically the bias, variance, and MSE all depend on the true
parameter 0. That is, the accuracy of the estimator # may be
different for different values of the true parameter 6.

We say that § is unbiased for 0 if Eg[0] = 6 for all possible
parameter values 6 belonging to the parameter space of the model.

18



Method of moments in the Poisson model

Recall, for Xi,..., X, Ir@_Poisson()\), the method of moments

estimator of \ was A = X.

For Xj ~ Poisson(\), we have E)\[Xi] = Var,[X;] = A. Then
N _ 1<
Ex[A] = Ex[X] == ) Ex[Xi]=A
AN = Ea[X] n; AlXi]

So Ez[A] = A for all A > 0, meaning that  is an unbiased
estimator of A. For the variance,

A - 1
Vary[A] = Vary[X] = ?Vam

> %
i=1

The standard error is \/g and the MSE is variance + bias® = %

1 ¢ A
= ? ;Var)\[X;] = E

19



Estimating the standard error

We would often wish to report the standard error of \. Since the
true standard error \/g depends on A, which is unknown, we

. . . R :
typically report a plug-in estimate \/; for this standard error.

You may ask why we don't further account for the uncertainty of

>

this estimate /2. We usually don't, because this additional error

is much smaller than the standard error itself for large sample sizes
nIfA— )= ﬁ then (by a Taylor expansion) \/% — \[% = %

For example: If n = 100 and we estimate A=1, we may report the

standard error as \/g = 0.1. The difference between this and the

true standard error should be on the scale of % = 0.01, which is
small compared to our reported standard error of 0.1.
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Method of moments in the Exponential model

Recall, for X1,..., X, o E>_<ponentia|()\), the method of moments
estimator of A was A = 1/X. Note that

EA[X] = iiEA[Xi] = %
i—1

So X is an unbiased estimator of 1/A. However, this does not
mean that 1/X is an unbiased estimator of A.

Recall Jensen's inequality: For any random variable Y taking
values in (a, b) and any convex function g : (a, b) — R,

Elg(Y)] = g(E[Y]).

If Y is not a constant and g is strictly convex, then this inequality
holds strictly. E.g. E[Y?] > (E[Y])? as long as Y is not a constant.
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Method of moments in the Exponential model

The function g(x) = 1/x is strictly convex on the interval (0, c0)
of possible values for X, so

EA[A] = Ea[1/X] > 1/E5[X] = A.

Then Ex[A] — A > 0 for all A > 0, meaning that \ has positive bias.

One may derive the exact bias and standard error in this example
by using that A = 1/X ~ Inverse-Gamma(n, nA). Then

Bias = E\[\] - A = A% — A = A

Standard error = 1/ Vary[\] = %

For large n, we see that bias =< % standard error < % so MSE is

dominated by variance rather than squared bias. This is a general
phenomenon that we will observe again in later examples.
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