S&DS 242/542: Theory of Statistics

Lecture 12: Maximum likelihood estimation and optimization



Maximum likelihood estimation

The joint PDF or PMF of the data, viewed as a function of the
model parameters 0, is called the likelihood function.

For data Xi,..., X, 0 f(x | 0) from a parametric model f(x | 9),

this is given by
lik(0) = (X1 ]0) x...x f(X,|6)
The maximum likelihood estimator (MLE) is the value of 6 in

the parameter space of the model that maximizes lik(6).

Intuitively, it is the value of § that makes the observed data “most
probable” or “most likely”.



Connection to the likelihood ratio statistic

In our discussion of the Neyman-Pearson lemma, recall that for
testing
Ho:XNfo VS. H1:X~f1

the most powerful test rejects Hp for large values of the likelihood
ratio statistic
L(X) = f(X)/fo(X).

In the context of a parametric model, we may consider testing

Ho: X1, ..., Xn " (x| 60) versus Hy : X1, ..., X " (x| 61) for

two different parameter values. Then

fo(X1, ..., Xn) = f(X1 [ 00) x ... x f(Xs | o),
fl(Xlw"aXn):f(Xl‘el) XX f(Xn‘el)a

so the likelihood ratio statistic is exactly L(X) = lik(61)/1ik(6p).



Connection to empirical risk minimization

Maximizing lik(6) is equivalent to maximizing its logarithm, the

log-likelihood function. For data X1, ..., X, % f(x | 6), this is

(n(6) = log (lik(0 Zlogf (Xi | 0)

It is usually easier to work with the log-likelihood instead of the
likelihood itself, because this involves a sum rather than a product.

The MLE maximizes £,(6), or equivalently, minimizes
1 n
- Z —log f(Xi | 6)
i=1

This is an example of empirical risk minimization, minimizing the
average of the loss function — log f(x | #) across the observed data.



Maximum likelihood in the Poisson model

Let Xi,..., X, 2 Poisson(A).
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Maximum likelihood in the Pareto model

Let X1, ..., X, "2 Pareto(a, 1).
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Maximum likelihood in the Pareto model

A A
OMLE OMom

True parameter oo = 2

This estimate &ML = > coincides with a generalized

n
7:1 |0gX,'
method of moments estimator from last lecture, and is different
from usual the method of moments estimator dyom = <=—. The

X-1
variability of &g is smaller than that of Gpmom.



Maximum likelihood in the normal model

Let Xq,..., X, Irlgj\/'(u,a2)
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Maximum likelihood in the normal model
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Maximum likelihood in the Gamma model

Let X1,..., Xn Gamma(a, 5).
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Maximum likelihood in the Gamma model
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Maximum likelihood in the Gamma model

One may check that the function

r/( ) _ 1 n
f(a) = loga — C“—|X+f§| Xi
() = log 10 og n og

is decreasing over « € (0, 00), and

» limg—0f(a) =00

> limg o0 f(a) = —log X + % >0 log X;
By Jensen's inequality, %Z,’-’:l log X; < log X, so f(a) < 0 for all
large . Thus 0 = f(«) has a unique solution &. [There is no

explicit form, and & is usually computed numerically.]

The maximum likelihood estimators are (&, 3) = (&, &/X).
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Maximum likelihood in the Gamma model
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True parametersa =1, f =1

The maximum likelihood estimates are again different from the
method of moments estimates, and have smaller variability.
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Maximum likelihood in the Multinomial model

Let (X1,..., Xk) ~ Multinomial(n, (p1, ..., pk))- Here Xi,..., X
are not |ID, but instead are integer counts summing to n.

A (F'”F”') : 1:7 [(X:;('n)(u '/"X‘ /,‘Z(“]

: /\‘J (&:‘Xso) “ X lvf‘ e x“'(’]/”“
L,. gt ww[l,},/,‘,,/ wothd
L‘v\(ﬂ‘/’/l’k/ A) :ﬂﬁ(f'l}f“') ! > (}0‘1‘."/0“‘/)

“h J Ctn) mlypet by p e A
soL” O‘ ~/k. ) £ ek Sel,k
O ® {‘;!‘(,,“1 ﬂb, S) 13



Maximum likelihood in the Multinomial model
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Maximum likelihood in the Multinomial model

The formal reasoning behind this Lagrange multiplier method is:

» Fixing any A € R, maximizing ¢,(p1, - - ., px) subject to the
constraint p; 4+ ...+ px = 1 is the same as maximizing
La(p1,--., Pk, A) subject to this constraint, because the
additional term in Ly(p1, ..., pk,A) is O.

If we instead ignore the constraint p; 4 ...+ px = 1, then the
unconstrained maximizer of L,(p1, ..., pk,\) for each \ is
(p1,---,pk) = —(1/N)(X1,...,Xk) as we computed.

Using the specific choice A = —n, this unconstrained

maximizer satisfies the constraint p; + ...+ px =1, so it
must also be the constrained maximizer of Ln(p1, ..., Pk, A).

Combining these three statements, (p1,...,px) = (X1,...,Xk)/n
is the constrained maximizer of £,(p1, ..., pk)-
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The Hardy-Weinberg model

In genetics, it is often assumed that the genotypes AA, Aa, and aa
at a single locus satisfy Hardy-Weinberg equilibrium — they occur
with probabilities (1 — p)?, 2p(1 — p), and p?, where p € [0, 1]
represents the frequency of the minor allele. Thus the counts of
these three genotypes in n samples may be modeled as

(X1, X2, X3) ~ Multinomial (n, ((1 — p)2,2p(1 — p),p2)>

f,\ ( ,o) | %) [6(,::(,,, )(3> (([7’)7 X‘(Z/"[/ 7’)) e (/'l)(‘]
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Gradient ascent

Computing the MLE is an optimization problem: For § € R, we
wish to maximize £,(6), or to solve the score equation 0 = ¢/ ().

When there is no explicit solution, we oftentimes use numerical

optimization procedures. The simplest procedure is gradient
ascent: Starting with an initial guess 09, iterate

ot+1) — (8 1y ¢/ (6(1))
where 7 > 0 is a learning rate parameter.

When 0 = ¢,(6(*)), this gives (tT1) = (1),
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Gradient ascent

N

o)

N

e

N

N

6© @

19



Newton's method

A second-order procedure is Newton’s method: Given 6(t),
approximate the solution to 0 = ¢/,(6) by a Taylor expansion

0=10.(0) ~ 2,000y + 2766 — 6)).
Solve this equation in 8 and set this as 6(t+1);

1) _ g0 _ 0,(00)
p(6)

When 0 = £,((*)), again this gives #(t+1) = (1),
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Newton's method
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Optimization in higher dimensions

For # € R¥, gradient ascent is the procedure
o+ = 9 v, (00)

where V/,(0) € R¥ is the gradient of £,(0), i.e. the vector of its
1st-order partial derivatives.

Newton's method is the procedure
o0+ = 9 — [V2£,(0(0)]"1ve,(6)

where V2(,(0) € RK*K is the Hessian of £,(6), i.e. the matrix of
its 2nd-order partial derivatives.
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