
S&DS 242/542: Theory of Statistics
Lecture 12: Maximum likelihood estimation and optimization



Maximum likelihood estimation

The joint PDF or PMF of the data, viewed as a function of the
model parameters ✓, is called the likelihood function.

For data X1, . . . ,Xn
IID⇠ f (x | ✓) from a parametric model f (x | ✓),

this is given by

lik(✓) = f (X1 | ✓)⇥ . . .⇥ f (Xn | ✓)

The maximum likelihood estimator (MLE) is the value of ✓ in
the parameter space of the model that maximizes lik(✓).

Intuitively, it is the value of ✓ that makes the observed data “most
probable” or “most likely”.
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Connection to the likelihood ratio statistic

In our discussion of the Neyman-Pearson lemma, recall that for
testing

H0 : X ⇠ f0 vs. H1 : X ⇠ f1

the most powerful test rejects H0 for large values of the likelihood
ratio statistic

L(X) = f1(X)/f0(X).

In the context of a parametric model, we may consider testing

H0 : X1, . . . ,Xn
IID⇠ f (x | ✓0) versus H1 : X1, . . . ,Xn

IID⇠ f (x | ✓1) for
two di↵erent parameter values. Then

f0(X1, . . . ,Xn) = f (X1 | ✓0)⇥ . . .⇥ f (Xn | ✓0),
f1(X1, . . . ,Xn) = f (X1 | ✓1)⇥ . . .⇥ f (Xn | ✓1),

so the likelihood ratio statistic is exactly L(X) = lik(✓1)/lik(✓0).
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Connection to empirical risk minimization

Maximizing lik(✓) is equivalent to maximizing its logarithm, the

log-likelihood function. For data X1, . . . ,Xn
IID⇠ f (x | ✓), this is

`n(✓) = log (lik(✓)) =
nX

i=1

log f (Xi | ✓)

It is usually easier to work with the log-likelihood instead of the
likelihood itself, because this involves a sum rather than a product.

The MLE maximizes `n(✓), or equivalently, minimizes

1

n

nX

i=1

� log f (Xi | ✓)

This is an example of empirical risk minimization, minimizing the
average of the loss function � log f (x | ✓) across the observed data.
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Maximum likelihood in the Poisson model

Let X1, . . . ,Xn
IID⇠ Poisson(�).
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Maximum likelihood in the Pareto model

Let X1, . . . ,Xn
IID⇠ Pareto(↵, 1).
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Maximum likelihood in the Pareto model
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This estimate ↵̂MLE = nPn
i=1 logXi

coincides with a generalized

method of moments estimator from last lecture, and is di↵erent
from usual the method of moments estimator ↵̂MoM = X̄

X̄�1
. The

variability of ↵̂MLE is smaller than that of ↵̂MoM.
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Maximum likelihood in the normal model

Let X1, . . . ,Xn
IID⇠ N (µ,�2).
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Maximum likelihood in the normal model
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Maximum likelihood in the Gamma model

Let X1, . . . ,Xn
IID⇠ Gamma(↵,�).
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Maximum likelihood in the Gamma model
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Maximum likelihood in the Gamma model

One may check that the function

f (↵) = log↵� �0(↵)

�(↵)
� log X̄ +

1

n

nX

i=1

logXi

is decreasing over ↵ 2 (0,1), and

I lim↵!0 f (↵) = 1
I lim↵!1 f (↵) = � log X̄ + 1

n

Pn
i=1 logXi

By Jensen’s inequality, 1
n

Pn
i=1 logXi < log X̄ , so f (↵) < 0 for all

large ↵. Thus 0 = f (↵) has a unique solution ↵̂. [There is no
explicit form, and ↵̂ is usually computed numerically.]

The maximum likelihood estimators are (↵̂, �̂) = (↵̂, ↵̂/X̄ ).
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Maximum likelihood in the Gamma model
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The maximum likelihood estimates are again di↵erent from the
method of moments estimates, and have smaller variability.
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Maximum likelihood in the Multinomial model

Let (X1, . . . ,Xk) ⇠ Multinomial(n, (p1, . . . , pk)). Here X1, . . . ,Xk

are not IID, but instead are integer counts summing to n.
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Maximum likelihood in the Multinomial model
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Maximum likelihood in the Multinomial model

The formal reasoning behind this Lagrange multiplier method is:

I Fixing any � 2 R, maximizing `n(p1, . . . , pk) subject to the
constraint p1 + . . .+ pk = 1 is the same as maximizing
Ln(p1, . . . , pk ,�) subject to this constraint, because the
additional term in Ln(p1, . . . , pk ,�) is 0.

I If we instead ignore the constraint p1 + . . .+ pk = 1, then the
unconstrained maximizer of Ln(p1, . . . , pk ,�) for each � is
(p1, . . . , pk) = �(1/�)(X1, . . . ,Xk) as we computed.

I Using the specific choice � = �n, this unconstrained
maximizer satisfies the constraint p1 + . . .+ pk = 1, so it
must also be the constrained maximizer of Ln(p1, . . . , pk ,�).

Combining these three statements, (p1, . . . , pk) = (X1, . . . ,Xk)/n
is the constrained maximizer of `n(p1, . . . , pk).
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The Hardy-Weinberg model

In genetics, it is often assumed that the genotypes AA, Aa, and aa
at a single locus satisfy Hardy-Weinberg equilibrium — they occur
with probabilities (1� p)2, 2p(1� p), and p

2, where p 2 [0, 1]
represents the frequency of the minor allele. Thus the counts of
these three genotypes in n samples may be modeled as

(X1,X2,X3) ⇠ Multinomial
⇣
n,
�
(1� p)2, 2p(1� p), p2

�⌘
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Gradient ascent

Computing the MLE is an optimization problem: For ✓ 2 R, we
wish to maximize `n(✓), or to solve the score equation 0 = `0n(✓).

When there is no explicit solution, we oftentimes use numerical
optimization procedures. The simplest procedure is gradient
ascent: Starting with an initial guess ✓(0), iterate

✓(t+1) = ✓(t) + ⌘ `0n(✓
(t))

where ⌘ > 0 is a learning rate parameter.

When 0 = `0n(✓
(t)), this gives ✓(t+1) = ✓(t).
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Gradient ascent
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Newton’s method

A second-order procedure is Newton’s method: Given ✓(t),
approximate the solution to 0 = `0n(✓) by a Taylor expansion

0 = `0n(✓) ⇡ `0n(✓
(t)) + `00n(✓

(t))(✓ � ✓(t)).

Solve this equation in ✓ and set this as ✓(t+1):

✓(t+1) = ✓(t) � `0n(✓
(t))

`00n(✓
(t))

When 0 = `0n(✓
(t)), again this gives ✓(t+1) = ✓(t).
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Newton’s method
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Optimization in higher dimensions

For ✓ 2 Rk , gradient ascent is the procedure

✓(t+1) = ✓(t) + ⌘r`n(✓
(t))

where r`n(✓) 2 Rk is the gradient of `n(✓), i.e. the vector of its
1st-order partial derivatives.

Newton’s method is the procedure

✓(t+1) = ✓(t) � [r2`n(✓
(t))]�1r`n(✓

(t))

where r2`n(✓) 2 Rk⇥k is the Hessian of `n(✓), i.e. the matrix of
its 2nd-order partial derivatives.
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