S&DS 242/542: Theory of Statistics

Lecture 13: Asymptotic normality and the delta method



Recap of estimators

We've discussed two general methods for estimating a parameter
0 € Rk given data X1, ..., X, © f(x | 0) from a parametric model:

» Method of moments, which chooses 6 so that the first k
moments of f(x | ) match their sample estimates:

1< 1o
E[X] = ;ZX,-, .., E[Xf= ;Zx,k
i=1 i=1

» Maximum likelihood, which chooses 8 to maximize the
likelihood (joint PDF or PMF of the observed data) or
equivalently the log-likelihood

(a6) = log £(X; | 0)
i=1

We've computed these estimators analytically in some simple
models, and also discussed numerical approaches for computation.



Large sample properties and confidence intervals

In this lecture, we will begin to discuss the statistical properties of
these estimators in large samples, and aim to understand:

P In typical parametric models, why the sampling distributions
of method of moments and maximum likelihood estimators
are approximately normal for large n.

» General methods to compute the variances of these normal
approximations.

» How to use these normal approximations to construct
confidence intervals that quantify our uncertainty about the
parameter value.



Example of the Poisson model

Let X1,..., Xp 2 Poisson(\). Recall that the method of moments
estimator and MLE are both given by the sample average A= X.

Previously, we computed the bias and variance of /A\ showing that
Ex[A\]=A,  Van\[\] = \/n.
So \is unbiased, with standard error \/A\/n.

When n is large, asymptotic theory gives a more complete picture
of the statistical behavior of A: By the LLN, A — X in probability
as n — oo. Furthermore, by the CLT

V(A =) = N(0,))

in distribution as n — oo. Informally, the distribution of Nis
approximately (), 2) for large n.



Confidence interval in the Poisson model

This normal approximation allows us to construct a confidence
interval for \: For a desired coverage level 1 —a € (0, 1), let z(®/2)
be the upper-a/2 point of the standard normal distribution. Then
an asymptotic (1 — «)-confidence interval is given by

A 0/, /3

This satisfies, for large n,
Py [A e At 2o/ 5} _p, [x Cae iz(a/z)\/ﬂ

=By [ /38— 3) € 27

~1—«
where P, denotes the probability over Xi,..., X, 0 Poisson(\)
with true parameter \.



Consistency and asymptotic normality

An estimator 6 = A(Xy, ..., X,) in a parametric model is

consistent if, for any true value of the parameter 6, given data

X1,y Xn 0 f(x|0), we have

~

00— 0

in probability as n — oo.

This estimator 6 is furthermore asymptotically normal if, for
some asymptotic variance v(6),

V(6 —6) — N (0, v(6))

in distribution as n — oo.

In our previous example, the estimator A = X in the Poisson(\)
model is a consistent and asymptotically normal estimator of A.



Implications of asymptotic normality

If an estimator 6 is asymptotically normal, with

V(6 —6) — N (0, v(6))

then informally, for large n, this tells us:

» 0 is asymptotically unbiased. More precisely, the bias of 8 is of
smaller order than 1/y/n. (Otherwise \/n(6 — ) would not
converge to a distribution with mean 0.)

> The standard error of f is approximately /v(#)/n. In
particular, this is on the order of 1/4/n, so the variance
(rather than the squared bias) is the main contributing factor
to the mean-squared-error.

» Under the true parameter 0, the sampling distribution of O is
approximately A/(0, V(e ).



Confidence intervals

Given a coverage level 1 —a € (0,1), a (1 — a)-confidence
interval for 6 is an interval S = S(Xi,..., X;) such that

Pyl e Sl =1—a

where Py denotes the probability when Xi,..., X, 0 f(x|9).

Here, 0 is a fixed parameter, and Py is the probability over the
randomness of the data Xi,..., X, defining S.

The interval S is an asymptotic (1 — «)-confidence interval for 6 if
Pyl eS| —»1—a

as n — oo. Informally, the probability that S covers 0 is
approximately 1 — « for large sample sizes n.



Confidence intervals from asymptotically normal estimators

Proposition

Suppose 0 is a consistent and asymptotically normal estimator of
0, with
V(@ - 8) - N0, v(9))

in distribution as n — oo, and v(0) is a continuous function that is
non-zero at 0. Then for any 1 — « € (0, 1),

f 4 /2, /v
n
is an asymptotic (1 — a)-confidence interval for 6.

Note that estimators with smaller asymptotic variance v(6) will
yield narrower confidence intervals.



Confidence intervals from asymptotically normal estimators
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Asymptotic normality of method of moments estimators

In the Poisson(\) example, we showed asymptotic normality of the
method of moments estimator A = X using the CLT.

More generally, for estimating a parameter 6 € R, the method of
moments estimator equates

Eg[X] = X

Supposing that Eg[X] = x(¢) and 4 is a 1-to-1 function, the
method of moments estimator is § = p~(X).

How can we deduce asymptotic normality of 6 from the asymptotic
normality of X7
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The delta method

If S is an asymptotically normal statistic and g : R — R is a
smooth function, then g(S) will also be asymptotically normal.
This is formalized as the delta method.

Theorem (Delta method)
Suppose S = S(Xi,...,X,) satisfies
Vn(S(X) = u(6)) = N(0, v(6))
11D

in distribution as n — oo, when Xi,..., X, ~ f(x | 6).

If g : R — R is continuously differentiable at (), then

Vi(g(S(X)) — (u(8))) — N(0. &' (1u(6))*v(6) ).
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Proof sketch of the delta method
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Method of moments in the Exponential model

Let Xi,..., X, "0 Exponential()). Recall that E\[X] = % so the

method of moments estimator is A = +.

X
57 #H CLT:
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Method of moments in the Exponential model
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Method of moments in the Pareto model

Let Xi,..., X, 20 Pareto(f,1). Recall that Eg[X] = 57 (for

0 > 1), so the method of moments estimator is § =

Jn(x-Z)=u (o, Ve, ZXJ)

e
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Method of moments in the Pareto model
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Asymptotic normality of method of moments estimators

Proposition
Let X1,..., X, 0 f(x | 0) for a single parameter § € R. Suppose
Eg[X] = p(0) and Varg[X] = v(0), and consider the method of

moments estimator = p~1(X).

If i is continuously differentiable at 6 and 1/ (0) # 0, then

N /\/(o, M‘f((g))z)

in distribution as n — oco.
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Asymptotic normality of method of moments estimators
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Plug-in estimators

Sometimes we are interested in a function g(6) of the parameter,
rather than 0 itself. A natural estimate of g(0) is g(6), where 0 is
our estimate of #. This is called the plug-in estimate of g(6).

Example: You play a game where you flip a biased coin. If the coin
lands heads, you give your friend $1. If the coin lands tails, your
friend gives you $x. What is the value of x that makes this a fair
game?

If the coin lands heads with probability p, then your expected
winnings is p- (—1) 4+ (1 — p) - x. The game is fair when

p-(-1)+(1-p)-x=0

p

i.e. when x = £ where ﬁ is the odds of getting heads.
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Plug-in estimators

The odds function ﬁ is not symmetric about p = 3. It is
sometimes easier to interpret the log-odds or logit, which is
log ﬁ. The log-odds for p is the negative of that for 1 — p.

To estimate the log-odds from n coin flips

X, ..., X» "2 Bernoulli(p)

we may first estimate p by p = X. (This is both the method of
moments estimator and the MLE.)

X

Then the plugin estimate of log ﬁ is simply log 5.
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Plug-in estimator for the log-odds

Let X1,..., Xn 0 Berrloulli(p), and consider the plugin estimate of
Iogﬁ given by log %

B, T Ju(5-p) oMo ,aaff))

Af/% Jb([ﬁ WJL/\«// /)“) / = /:7 -'/D /"x)
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Confidence interval for the log-odds

Suppose we toss this coin n = 100 times and observe 60 heads, i.e.

X = 0.6. We would estimate the log-odds by Iog Tox ~ 0.41.

We may estimate our standard error by n)'((11—>'<) ~ 0.20.

An asymptotic (1 — a)-confidence interval for the log-odds log ﬁ
is then given by 0.41 + 0.20 - z(¢/2),
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