
S&DS 242/542: Theory of Statistics
Lecture 13: Asymptotic normality and the delta method



Recap of estimators

We’ve discussed two general methods for estimating a parameter

✓ 2 Rk given data X1, . . . ,Xn
IID⇠ f (x | ✓) from a parametric model:

I Method of moments, which chooses ✓ so that the first k
moments of f (x | ✓) match their sample estimates:

E[X ] =
1

n

nX

i=1

Xi , . . . , E[X k ] =
1

n

nX

i=1

X k
i

I Maximum likelihood, which chooses ✓ to maximize the
likelihood (joint PDF or PMF of the observed data) or
equivalently the log-likelihood

`n(✓) =
nX

i=1

log f (Xi | ✓)

We’ve computed these estimators analytically in some simple
models, and also discussed numerical approaches for computation.
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Large sample properties and confidence intervals

In this lecture, we will begin to discuss the statistical properties of
these estimators in large samples, and aim to understand:

I In typical parametric models, why the sampling distributions
of method of moments and maximum likelihood estimators
are approximately normal for large n.

I General methods to compute the variances of these normal
approximations.

I How to use these normal approximations to construct
confidence intervals that quantify our uncertainty about the
parameter value.
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Example of the Poisson model

Let X1, . . . ,Xn
IID⇠ Poisson(�). Recall that the method of moments

estimator and MLE are both given by the sample average �̂ = X̄ .

Previously, we computed the bias and variance of �̂, showing that

E�[�̂] = �, Var�[�̂] = �/n.

So �̂ is unbiased, with standard error
p

�/n.

When n is large, asymptotic theory gives a more complete picture
of the statistical behavior of �̂: By the LLN, �̂ ! � in probability
as n ! 1. Furthermore, by the CLT

p
n(�̂� �) ! N (0,�)

in distribution as n ! 1. Informally, the distribution of �̂ is
approximately N (�, �n ) for large n.
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Confidence interval in the Poisson model

This normal approximation allows us to construct a confidence
interval for �: For a desired coverage level 1� ↵ 2 (0, 1), let z(↵/2)

be the upper-↵/2 point of the standard normal distribution. Then
an asymptotic (1� ↵)-confidence interval is given by

�̂± z(↵/2)
q

�̂
n

This satisfies, for large n,

P�


� 2 �̂± z(↵/2)

q
�̂
n

�
= P�


�̂� � 2 ±z(↵/2)

q
�̂
n

�

= P�

hq
n
�̂
(�̂� �) 2 ±z(↵/2)

i

⇡ 1� ↵

where P� denotes the probability over X1, . . . ,Xn
IID⇠ Poisson(�)

with true parameter �.
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Consistency and asymptotic normality

An estimator ✓̂ = ✓̂(X1, . . . ,Xn) in a parametric model is
consistent if, for any true value of the parameter ✓, given data

X1, . . . ,Xn
IID⇠ f (x | ✓), we have

✓̂ ! ✓

in probability as n ! 1.

This estimator ✓̂ is furthermore asymptotically normal if, for
some asymptotic variance v(✓),

p
n(✓̂ � ✓) ! N (0, v(✓))

in distribution as n ! 1.

In our previous example, the estimator �̂ = X̄ in the Poisson(�)
model is a consistent and asymptotically normal estimator of �.
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Implications of asymptotic normality

If an estimator ✓̂ is asymptotically normal, with

p
n(✓̂ � ✓) ! N (0, v(✓))

then informally, for large n, this tells us:

I ✓̂ is asymptotically unbiased. More precisely, the bias of ✓̂ is of
smaller order than 1/

p
n. (Otherwise

p
n(✓̂ � ✓) would not

converge to a distribution with mean 0.)

I The standard error of ✓̂ is approximately
p
v(✓)/n. In

particular, this is on the order of 1/
p
n, so the variance

(rather than the squared bias) is the main contributing factor
to the mean-squared-error.

I Under the true parameter ✓, the sampling distribution of ✓̂ is
approximately N (✓, v(✓)n ).
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Confidence intervals

Given a coverage level 1� ↵ 2 (0, 1), a (1� ↵)(1� ↵)(1� ↵)-confidence
interval for ✓ is an interval bS = bS(X1, . . . ,Xn) such that

P✓[✓ 2 bS ] = 1� ↵

where P✓ denotes the probability when X1, . . . ,Xn
IID⇠ f (x | ✓).

Here, ✓ is a fixed parameter, and P✓ is the probability over the
randomness of the data X1, . . . ,Xn defining bS .

The interval bS is an asymptotic (1� ↵)-confidence interval for ✓ if

P✓[✓ 2 bS ] ! 1� ↵

as n ! 1. Informally, the probability that bS covers ✓ is
approximately 1� ↵ for large sample sizes n.
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Confidence intervals from asymptotically normal estimators

Proposition
Suppose ✓̂ is a consistent and asymptotically normal estimator of
✓, with p

n(✓̂ � ✓) ! N (0, v(✓))

in distribution as n ! 1, and v(✓) is a continuous function that is
non-zero at ✓. Then for any 1� ↵ 2 (0, 1),

✓̂ ± z(↵/2)
q

v(✓̂)
n

is an asymptotic (1� ↵)-confidence interval for ✓.

Note that estimators with smaller asymptotic variance v(✓) will
yield narrower confidence intervals.
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Confidence intervals from asymptotically normal estimators

Proof:
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Asymptotic normality of method of moments estimators

In the Poisson(�) example, we showed asymptotic normality of the
method of moments estimator �̂ = X̄ using the CLT.

More generally, for estimating a parameter ✓ 2 R, the method of
moments estimator equates

E✓[X ] = X̄

Supposing that E✓[X ] = µ(✓) and µ is a 1-to-1 function, the
method of moments estimator is ✓̂ = µ�1(X̄ ).

How can we deduce asymptotic normality of ✓̂ from the asymptotic
normality of X̄?
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The delta method

If S is an asymptotically normal statistic and g : R ! R is a
smooth function, then g(S) will also be asymptotically normal.
This is formalized as the delta method.

Theorem (Delta method)

Suppose S = S(X1, . . . ,Xn) satisfies

p
n(S(X )� µ(✓)) ! N (0, v(✓))

in distribution as n ! 1, when X1, . . . ,Xn
IID⇠ f (x | ✓).

If g : R ! R is continuously di↵erentiable at µ(✓), then

p
n
⇣
g(S(X ))� g(µ(✓))

⌘
! N

⇣
0, g 0(µ(✓))2v(✓)

⌘
.
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Proof sketch of the delta method
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Method of moments in the Exponential model

Let X1, . . . ,Xn
IID⇠ Exponential(�). Recall that E�[X ] = 1

� , so the

method of moments estimator is �̂ = 1
X̄
.
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Method of moments in the Exponential model
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Method of moments in the Pareto model

Let X1, . . . ,Xn
IID⇠ Pareto(✓, 1). Recall that E✓[X ] = ✓

✓�1 (for

✓ > 1), so the method of moments estimator is ✓̂ = X̄
X̄�1

.
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Method of moments in the Pareto model
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Asymptotic normality of method of moments estimators

Proposition
Let X1, . . . ,Xn

IID⇠ f (x | ✓) for a single parameter ✓ 2 R. Suppose
E✓[X ] = µ(✓) and Var✓[X ] = v(✓), and consider the method of
moments estimator ✓̂ = µ�1(X̄ ).

If µ is continuously di↵erentiable at ✓ and µ0(✓) 6= 0, then

p
n(✓̂ � ✓) ! N

⇣
0,

v(✓)

µ0(✓)2

⌘

in distribution as n ! 1.
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Asymptotic normality of method of moments estimators

Proof:
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Plug-in estimators

Sometimes we are interested in a function g(✓) of the parameter,
rather than ✓ itself. A natural estimate of g(✓) is g(✓̂), where ✓̂ is
our estimate of ✓. This is called the plug-in estimate of g(✓).

Example: You play a game where you flip a biased coin. If the coin
lands heads, you give your friend $1. If the coin lands tails, your
friend gives you $x . What is the value of x that makes this a fair
game?

If the coin lands heads with probability p, then your expected
winnings is p · (�1) + (1� p) · x . The game is fair when

p · (�1) + (1� p) · x = 0

i.e. when x = p
1�p where p

1�p is the odds of getting heads.
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Plug-in estimators

The odds function p
1�p is not symmetric about p = 1

2 . It is
sometimes easier to interpret the log-odds or logit, which is
log p

1�p . The log-odds for p is the negative of that for 1� p.

To estimate the log-odds from n coin flips

X1, . . . ,Xn
IID⇠ Bernoulli(p)

we may first estimate p by p̂ = X̄ . (This is both the method of
moments estimator and the MLE.)

Then the plugin estimate of log p
1�p is simply log X̄

1�X̄
.
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Plug-in estimator for the log-odds

Let X1, . . . ,Xn
IID⇠ Bernoulli(p), and consider the plugin estimate of

log p
1�p given by log X̄

1�X̄
.
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Confidence interval for the log-odds

Suppose we toss this coin n = 100 times and observe 60 heads, i.e.
X̄ = 0.6. We would estimate the log-odds by log X̄

1�X̄
⇡ 0.41.

We may estimate our standard error by
q

1
nX̄ (1�X̄ )

⇡ 0.20.

An asymptotic (1� ↵)-confidence interval for the log-odds log p
1�p

is then given by 0.41± 0.20 · z(↵/2).
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