
S&DS 242/542: Theory of Statistics
Lecture 14: Consistency and asymptotic normality of the MLE



Recap: Consistency and asymptotic normality

Given data X1, . . . ,Xn
IID⇠ f (x | ✓) from a parametric model, an

estimator ✓̂ for ✓ is consistent if

✓̂ ! ✓

in probability as n ! 1.

It is asymptotically normal if, furthermore, for some asymptotic

variance v(✓), p
n(✓̂ � ✓) ! N (0, v(✓))

in distribution as n ! 1.

We showed last lecture why a method of moments estimator ✓̂ for

a parameter ✓ 2 R is usually asymptotically normal, and used the

delta method to derive its asymptotic variance.
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Consistency and asymptotic normality of the MLE

Theorem
Let f (x | ✓) be a parametric model, with a single parameter ✓ 2 R.
Let X1, . . . ,Xn

IID⇠ f (x | ✓), and let ✓̂ = ✓̂(X1, . . . ,Xn) be the MLE.
Under regularity conditions for f (x | ✓), as n ! 1,1

(a) ✓̂ is consistent.

(b) ✓̂ is asymptotically normal, and
p
n(✓̂ � ✓) ! N (0, 1

I (✓)).

The function I (✓) in this asymptotic variance has the two
equivalent forms

I (✓) = Var✓

h
@
@✓ log f (X | ✓)

i
= �E✓

h
@2

@✓2 log f (X | ✓)
i

where E✓ and Var✓ denote expectation/variance over X ⇠ f (x | ✓).

1In this course, we won’t discuss the exact conditions, which are technical.
Three of the conditions are that ✓ is not on the boundary of the parameter
space, ✓ 7! log f (x | ✓) is twice di↵erentiable, and I (✓) is non-zero.
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Fisher Information

The function

I (✓) = Var✓

h
@
@✓ log f (X | ✓)

i
= �E✓

h
@2

@✓2 log f (X | ✓)
i

is called the Fisher information. The quantity
@
@✓ log f (X | ✓) is

called the score.

The first expression for I (✓) states that the Fisher information is

the variance of the score. We will see that the score has mean zero

under the true parameter ✓:

E✓

h
@
@✓ log f (X | ✓)

i
= 0

So this first expression may also be written as

I (✓) = E✓

h�
@
@✓ log f (X | ✓)

�2i
.
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Example of the Poisson model

Let X1, . . . ,Xn
IID⇠ Poisson(�). The MLE is �̂ = X̄ .
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Example of the Pareto model

Let X1, . . . ,Xn
IID⇠ Pareto(✓, 1). The MLE is ✓̂ =

nPn
i=1 logXi

.
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Example of the Pareto model

6



Comparison with method of moments

Recall from last lecture that for the method of moments estimator,

we instead had (when ✓ > 2)

p
n(✓̂ � ✓) ! N

⇣
0,

✓(✓ � 1)
2

✓ � 2

⌘

For any ✓ > 2, it holds that

✓(✓ � 1)
2

✓ � 2
> ✓2.

So when n is large, the method-of-moments estimator has larger

standard error than the MLE. This is a general phenomenon, which

we will discuss next lecture.
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Plug-in estimator for the Pareto mean

Suppose we are interested in estimating the mean
✓

✓�1 of this

Pareto distribution, instead of ✓. A plug-in estimator based on the

MLE ✓̂ would be
✓̂

✓̂�1
. To compute its asymptotic variance:
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Comparison to the sample mean

The plug-in estimate
✓̂

✓̂�1
is not the only reasonable estimate for

the mean of the Pareto distribution: What if we decided to simply

use the sample mean X̄?

For this estimate X̄ , the CLT shows

p
n

✓
X̄ � ✓

✓ � 1

◆
! N

✓
0,

✓

(✓ � 1)2(✓ � 2)

◆

where
✓

(✓�1)2(✓�2) is the variance of the Pareto distribution (again

assuming ✓ > 2).

It may be checked that this variance is greater than the variance
✓2

(✓�1)4 for the plug-in estimate using the MLE.
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Comparison to the sample mean

When n is large, the plug-in estimate
✓̂

✓̂�1
using the MLE ✓̂ is more

accurate than the sample mean X̄ .

In the Pareto model, one intuition is that the distribution is

heavy-tailed, and the sample mean X̄ is heavily influenced by rare

but large data values. In contrast, ✓̂ estimate the shape of the

Pareto distribution in a more robust way, and then estimates the

mean from its relationship to the shape of the distribution.

A downside of this plug-in approach is that it is model-dependent:

The estimate
✓̂

✓̂�1
relies strongly on the correctness of the Pareto

model, whereas X̄ would be a reasonable estimate of the mean of

the data distribution even if the Pareto model doesn’t hold true.
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Proof sketch: consistency of the MLE

To explain why the MLE ✓̂ is consistent, recall that ✓̂ is the value

of ✓ which maximizes

1

n
`n(✓) =

1

n

nX

i=1

log f (Xi | ✓)

Suppose X1, . . . ,Xn
IID⇠ f (x | ✓⇤) with true parameter ✓⇤. Fixing

any ✓ (not necessarily ✓⇤), the above is the sample average of n
IID random variables, so the LLN implies

1

n
`n(✓) =

1

n

nX

i=1

log f (Xi | ✓) ! E✓⇤ [log f (X | ✓)]

Here E✓⇤ [log f (X | ✓)] is the expected value of each log f (Xi | ✓)
when Xi ⇠ f (x | ✓⇤), where the log-likelihood is evaluated at an

arbitrary parameter ✓ which may be di↵erent from ✓⇤.
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Proof sketch: consistency of the MLE

Under suitable conditions, the value of ✓ maximizing
1
n`n(✓) (which

is the MLE ✓̂) converges in probability to the value of ✓
maximizing the limiting function L(✓) = E✓⇤ [log f (X | ✓)].
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Proof sketch: consistency of the MLE

We claim that ✓ maximizing L(✓) = E✓⇤ [log f (X | ✓)] is exactly the

true parameter ✓⇤:
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Proof sketch: consistency of the MLE

So L(✓)� L(✓⇤)  0 for every ✓, meaning that L(✓) is maximized

at ✓⇤. This explains the consistency of ✓̂.
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Proof sketch: Definition of Fisher information

Next, let us check that the two definitions of I (✓) are the same,

and that the score has mean zero:
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Proof sketch: Definition of Fisher information
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Proof sketch: Definition of Fisher information
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Proof sketch: Asymptotic normality

Finally, let us show the convergence in distribution

p
n(✓̂ � ✓) ! N (0, 1

I (✓))

when the true parameter is ✓.
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Proof sketch: Asymptotic normality
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Proof sketch: Asymptotic normality
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