S&DS 242/542: Theory of Statistics

Lecture 14: Consistency and asymptotic normality of the MLE



Recap: Consistency and asymptotic normality

. 1D .
Given data Xi,..., X, ~ f(x | 6) from a parametric model, an

estimator 6 for 6 is consistent if

A~

60— 0

in probability as n — oo.

It is asymptotically normal if, furthermore, for some asymptotic
variance v(0),

V(0 — ) = N(0,v(9))
in distribution as n — oc.
We showed last lecture why a method of moments estimator 6 for

a parameter 6 € R is usually asymptotically normal, and used the
delta method to derive its asymptotic variance.



Consistency and asymptotic normality of the MLE

Theorem
Let f(x | §) be a parametric model, with a single parameter 6 € R.

Let Xq,...,Xn "2 £(x | 0), and let § = O(X,...,Xy,) be the MLE.
Under regu/ar/ty conditions for f(x | #), as n — oo,!

(a) 0 is consistent.
(b) @ is asymptotically normal, and \/n(8 — 6) — N (0, ﬁ)

The function 1(0) in this asymptotic variance has the two
equivalent forms

1(0) = Varg | 2 log £(X | 9)} - [802 log F(X | 0)

where By and Vary denote expectation/variance over X ~ f(x | 0).

!In this course, we won't discuss the exact conditions, which are technical.
Three of the conditions are that 6 is not on the boundary of the parameter
space, 0 — log f(x | 0) is twice differentiable, and /(6) is non-zero.



Fisher Information

The function

1(0) = Varg | & log f(X | 6’)} = —[Ey [38722 log (X | )

is called the Fisher information. The quantity % log f(X | 0) is
called the score.

The first expression for /(6) states that the Fisher information is
the variance of the score. We will see that the score has mean zero
under the true parameter 6:

Ey [% log F(X | 9)} ~0

So this first expression may also be written as

1(0) = By [(% log £(X | 9))2} .



Example of the Poisson model

Let X1,..., X, © Poisson()). The MLE is A = X.
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Example of the Pareto model

1D PN n
Let Xi,..., X, ~ Pareto(#,1). The MLE is 6 = ST og X

£(xl10)- x—ij (Er )= /.J F(x/o)zlv 0‘(01/)[9)(
}/o Qxl@)‘/"/vx —Thly s He seore.

)220\1/ ,«Ea[l?) X]’/ g“ IE, [90/ %(/9)] ’4 51
2 by €Ge)= -

- I(e): - E, [ 5l €xg)-



Example of the Pareto model
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Comparison with method of moments

Recall from last lecture that for the method of moments estimator,
we instead had (when 6 > 2)

A 6(6 — 1)?
() _>N<0’79—2 )
For any 6 > 2, it holds that
00 —1)>
— 7 > 0°.
-2 =

So when n is large, the method-of-moments estimator has larger
standard error than the MLE. This is a general phenomenon, which
we will discuss next lecture.



Plug-in estimator for the Pareto mean

Suppose we are interested in estimating the mean % of this
Pareto distribution _instead of 6. A plug-in estimator based on the

MLE 6§ would be 3 . To compute its asymptotlc variance:
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Comparison to the sample mean
The plug-in estimate 9

the mean of the Paretc_)_distribution: What if we decided to simply
use the sample mean X7

is not the only reasonable estimate for

For this estimate X, the CLT shows

i(x=55) v 0 geaa)

where Wo(e—z) is the variance of the Pareto distribution (again
assuming 6 > 2).

It may be checked that this variance is greater than the variance
92 . . .
=17 for the plug-in estimate using the MLE.



Comparison to the sample mean

When n is large, the plug-in estimate 6%1 using the MLE 0 is more

accurate than the sample mean X.

In the Pareto model, one intuition is that the distribution is
heavy-tailed, and the sample mean X is heavily influenced by rare
but large data values. In contrast, 0 estimate the shape of the
Pareto distribution in a more robust way, and then estimates the
mean from its relationship to the shape of the distribution.

A downside of this plug-in approach is that it is model-dependent:
@fl relies strongly on the correctness of the Pareto
model, whereas X would be a reasonable estimate of the mean of
the data distribution even if the Pareto model doesn’t hold true.

The estimate
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Proof sketch: consistency of the MLE

To explain why the MLE 0 is consistent, recall that f is the value
of 8 which maximizes

1 1«
=~ 0,00 :,§:| FIX |6
- () ni:1og( | 0)

Suppose Xi,..., X, © f(x | 0*) with true parameter 6*. Fixing

any 0 (not necessarily 6*), the above is the sample average of n
IID random variables, so the LLN implies

L) = 1S log (X, 6)  Eo-llog F(X | )]
i=1

Here Eg-[log f(X | 0)] is the expected value of each log f(X; | 0)
when X; ~ f(x | 0*), where the log-likelihood is evaluated at an
arbitrary parameter 6§ which may be different from 6*.
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Proof sketch: consistency of the MLE
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Under suitable conditions, the value of § maximizing ££,(6) (which

is the MLE ) converges in probability to the value of 6
maximizing the limiting function L(0) = Ey-[log f(X | 0)].
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Proof sketch: consistency of the MLE

We claim that 6 maximizing L(6) = Eg«[log f(X | )] is exactly the
true parameter 6*:
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Proof sketch: consistency of the MLE
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So L(0) — L(6*) < 0 for every 6, meaning that L(6) is maximized
at 6*. This explains the consistency of 6.
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Proof sketch: Definition of Fisher information

Next, let us check that the two definitions of /(6) are the same,

and that the score has mean zero:
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Proof sketch: Definition of Fisher information
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Proof sketch: Definition of Fisher information
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Proof sketch: Asymptotic normality
Finally, let us show the convergence in distribution
V(B — 0) = N(0, 1)

when the true parameter is 6.
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Proof sketch: Asymptotic normality
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Proof sketch: Asymptotic normality
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